Home | History | Annotate | Line # | Download | only in xscale
ixp425_npe.c revision 1.11.34.1
      1 /*	$NetBSD: ixp425_npe.c,v 1.11.34.1 2021/03/20 19:33:32 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  *
     18  * NO WARRANTY
     19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     21  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     22  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     23  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     24  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     27  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     29  * THE POSSIBILITY OF SUCH DAMAGES.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 2001-2005, Intel Corporation.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the Intel Corporation nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
     50  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60 */
     61 #include <sys/cdefs.h>
     62 #if 0
     63 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/ixp425_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
     64 #endif
     65 __KERNEL_RCSID(0, "$NetBSD: ixp425_npe.c,v 1.11.34.1 2021/03/20 19:33:32 thorpej Exp $");
     66 
     67 /*
     68  * Intel XScale Network Processing Engine (NPE) support.
     69  *
     70  * Each NPE has an ixpnpeX device associated with it that is
     71  * attached at boot.  Depending on the microcode loaded into
     72  * an NPE there may be an Ethernet interface (npeX) or some
     73  * other network interface (e.g. for ATM).  This file has support
     74  * for loading microcode images and the associated NPE CPU
     75  * manipulations (start, stop, reset).
     76  *
     77  * The code here basically replaces the npeDl and npeMh classes
     78  * in the Intel Access Library (IAL).
     79  *
     80  * NB: Microcode images are loaded with firmware(9).  To
     81  *     include microcode in a static kernel include the
     82  *     ixpnpe_fw device.  Otherwise the firmware will be
     83  *     automatically loaded from the filesystem.
     84  */
     85 #include <sys/param.h>
     86 #include <sys/systm.h>
     87 #include <sys/kernel.h>
     88 #include <sys/malloc.h>
     89 #include <sys/mutex.h>
     90 #include <sys/time.h>
     91 #include <sys/proc.h>
     92 
     93 #include <dev/firmload.h>
     94 
     95 #include <sys/bus.h>
     96 #include <machine/cpu.h>
     97 #include <machine/intr.h>
     98 
     99 #include <arm/xscale/ixp425reg.h>
    100 #include <arm/xscale/ixp425var.h>
    101 #include <arm/xscale/ixp425_ixmevar.h>
    102 
    103 #include <arm/xscale/ixp425_npereg.h>
    104 #include <arm/xscale/ixp425_npevar.h>
    105 #include <arm/xscale/ixp425_if_npereg.h>
    106 
    107 #include "locators.h"
    108 
    109 /*
    110  * IXP425_NPE_MICROCODE will be defined by ixp425-fw.mk IFF the
    111  * microcode object file exists in sys/arch/arm/xscale.
    112  *
    113  * To permit building the NPE drivers without microcode (so they
    114  * don't bitrot due to lack of use), we use "empty" microcode so
    115  * that the NPE drivers will simply fail to start at runtime.
    116  */
    117 #ifdef IXP425_NPE_MICROCODE
    118 extern char	_binary_IxNpeMicrocode_dat_start[];
    119 #else
    120 static char	_binary_IxNpeMicrocode_dat_start[] = {
    121 	0xfe, 0xed, 0xf0, 0x0d, 0xfe, 0xed, 0xf0, 0x0d
    122 };
    123 #endif
    124 
    125 #define	IX_NPEDL_NPEIMAGE_FIELD_MASK	0xff
    126 
    127 /* used to read download map from version in microcode image */
    128 #define IX_NPEDL_BLOCK_TYPE_INSTRUCTION	0x00000000
    129 #define IX_NPEDL_BLOCK_TYPE_DATA	0x00000001
    130 #define IX_NPEDL_BLOCK_TYPE_STATE	0x00000002
    131 #define IX_NPEDL_END_OF_DOWNLOAD_MAP	0x0000000F
    132 
    133 /*
    134  * masks used to extract address info from State information context
    135  * register addresses as read from microcode image
    136  */
    137 #define IX_NPEDL_MASK_STATE_ADDR_CTXT_REG         0x0000000F
    138 #define IX_NPEDL_MASK_STATE_ADDR_CTXT_NUM         0x000000F0
    139 
    140 /* LSB offset of Context Number field in State-Info Context Address */
    141 #define IX_NPEDL_OFFSET_STATE_ADDR_CTXT_NUM       4
    142 
    143 /* size (in words) of single State Information entry (ctxt reg address|data) */
    144 #define IX_NPEDL_STATE_INFO_ENTRY_SIZE	2
    145 
    146 typedef struct {
    147     uint32_t type;
    148     uint32_t offset;
    149 } IxNpeDlNpeMgrDownloadMapBlockEntry;
    150 
    151 typedef union {
    152     IxNpeDlNpeMgrDownloadMapBlockEntry block;
    153     uint32_t eodmMarker;
    154 } IxNpeDlNpeMgrDownloadMapEntry;
    155 
    156 typedef struct {
    157     /* 1st entry in the download map (there may be more than one) */
    158     IxNpeDlNpeMgrDownloadMapEntry entry[1];
    159 } IxNpeDlNpeMgrDownloadMap;
    160 
    161 /* used to access an instruction or data block in a microcode image */
    162 typedef struct {
    163     uint32_t npeMemAddress;
    164     uint32_t size;
    165     uint32_t data[1];
    166 } IxNpeDlNpeMgrCodeBlock;
    167 
    168 /* used to access each Context Reg entry state-information block */
    169 typedef struct {
    170     uint32_t addressInfo;
    171     uint32_t value;
    172 } IxNpeDlNpeMgrStateInfoCtxtRegEntry;
    173 
    174 /* used to access a state-information block in a microcode image */
    175 typedef struct {
    176     uint32_t size;
    177     IxNpeDlNpeMgrStateInfoCtxtRegEntry ctxtRegEntry[1];
    178 } IxNpeDlNpeMgrStateInfoBlock;
    179 
    180 static int npe_debug = 0;
    181 #define	DPRINTF(dev, fmt, ...) do {				\
    182 	if (npe_debug) printf(fmt, __VA_ARGS__);		\
    183 } while (0)
    184 #define	DPRINTFn(n, dev, fmt, ...) do {				\
    185 	if (npe_debug >= n) printf(fmt, __VA_ARGS__);		\
    186 } while (0)
    187 
    188 static int npe_checkbits(struct ixpnpe_softc *, uint32_t reg, uint32_t);
    189 static int npe_isstopped(struct ixpnpe_softc *);
    190 static int npe_load_ins(struct ixpnpe_softc *,
    191 		const IxNpeDlNpeMgrCodeBlock *bp, int verify);
    192 static int npe_load_data(struct ixpnpe_softc *,
    193 		const IxNpeDlNpeMgrCodeBlock *bp, int verify);
    194 static int npe_load_stateinfo(struct ixpnpe_softc *,
    195 		const IxNpeDlNpeMgrStateInfoBlock *bp, int verify);
    196 static int npe_load_image(struct ixpnpe_softc *,
    197 		const uint32_t *imageCodePtr, int verify);
    198 static int npe_cpu_reset(struct ixpnpe_softc *);
    199 static int npe_cpu_start(struct ixpnpe_softc *);
    200 static int npe_cpu_stop(struct ixpnpe_softc *);
    201 static void npe_cmd_issue_write(struct ixpnpe_softc *,
    202 		uint32_t cmd, uint32_t addr, uint32_t data);
    203 static uint32_t npe_cmd_issue_read(struct ixpnpe_softc *,
    204 		uint32_t cmd, uint32_t addr);
    205 static int npe_ins_write(struct ixpnpe_softc *,
    206 		uint32_t addr, uint32_t data, int verify);
    207 static int npe_data_write(struct ixpnpe_softc *,
    208 		uint32_t addr, uint32_t data, int verify);
    209 static void npe_ecs_reg_write(struct ixpnpe_softc *,
    210 		uint32_t reg, uint32_t data);
    211 static uint32_t npe_ecs_reg_read(struct ixpnpe_softc *, uint32_t reg);
    212 static void npe_issue_cmd(struct ixpnpe_softc *, uint32_t command);
    213 static void npe_cpu_step_save(struct ixpnpe_softc *);
    214 static int npe_cpu_step(struct ixpnpe_softc *, uint32_t npeInstruction,
    215 		uint32_t ctxtNum, uint32_t ldur);
    216 static void npe_cpu_step_restore(struct ixpnpe_softc *);
    217 static int npe_logical_reg_read(struct ixpnpe_softc *,
    218 		uint32_t regAddr, uint32_t regSize,
    219 		uint32_t ctxtNum, uint32_t *regVal);
    220 static int npe_logical_reg_write(struct ixpnpe_softc *,
    221 		uint32_t regAddr, uint32_t regVal,
    222 		uint32_t regSize, uint32_t ctxtNum, int verify);
    223 static int npe_physical_reg_write(struct ixpnpe_softc *,
    224 		uint32_t regAddr, uint32_t regValue, int verify);
    225 static int npe_ctx_reg_write(struct ixpnpe_softc *, uint32_t ctxtNum,
    226 		uint32_t ctxtReg, uint32_t ctxtRegVal, int verify);
    227 
    228 static int ixpnpe_intr(void *arg);
    229 
    230 static uint32_t
    231 npe_reg_read(struct ixpnpe_softc *sc, bus_size_t off)
    232 {
    233     uint32_t v = bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
    234     DPRINTFn(9, sc->sc_dev, "%s(0x%lx) => 0x%x\n", __func__, off, v);
    235     return v;
    236 }
    237 
    238 static void
    239 npe_reg_write(struct ixpnpe_softc *sc, bus_size_t off, uint32_t val)
    240 {
    241     DPRINTFn(9, sc->sc_dev, "%s(0x%lx, 0x%x)\n", __func__, off, val);
    242     bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
    243 }
    244 
    245 static int	ixpnpe_match(device_t, cfdata_t, void *);
    246 static void	ixpnpe_attach(device_t, device_t, void *);
    247 static int	ixpnpe_print(void *, const char *);
    248 static int	ixpnpe_search(device_t, cfdata_t, const int *, void *);
    249 
    250 CFATTACH_DECL_NEW(ixpnpe, sizeof(struct ixpnpe_softc),
    251     ixpnpe_match, ixpnpe_attach, NULL, NULL);
    252 
    253 static int
    254 ixpnpe_match(device_t parent, cfdata_t match, void *arg)
    255 {
    256 	struct ixme_attach_args *ixa = arg;
    257 
    258 	return (ixa->ixa_npe == 1 || ixa->ixa_npe == 2);
    259 }
    260 
    261 static void
    262 ixpnpe_attach(device_t parent, device_t self, void *arg)
    263 {
    264     struct ixpnpe_softc *sc = device_private(self);
    265     struct ixme_attach_args *ixa = arg;
    266     bus_addr_t base;
    267     int irq;
    268 
    269     aprint_naive("\n");
    270     aprint_normal("\n");
    271 
    272     sc->sc_dev = self;
    273     sc->sc_iot = ixa->ixa_iot;
    274     sc->sc_dt = ixa->ixa_dt;
    275     sc->sc_unit = ixa->ixa_npe;
    276 
    277     mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_VM);
    278 
    279     /* XXX: Check features to ensure this NPE is enabled */
    280 
    281     switch (ixa->ixa_npe) {
    282     default:
    283 	panic("%s: Invalid NPE!", device_xname(self));
    284 
    285     case 1:
    286 	base = IXP425_NPE_B_HWBASE;
    287 	sc->sc_size = IXP425_NPE_B_SIZE;
    288 	irq = IXP425_INT_NPE_B;
    289 
    290 	/* size of instruction memory */
    291 	sc->insMemSize = IX_NPEDL_INS_MEMSIZE_WORDS_NPEB;
    292 	/* size of data memory */
    293 	sc->dataMemSize = IX_NPEDL_DATA_MEMSIZE_WORDS_NPEB;
    294 	break;
    295 
    296     case 2:
    297 	base = IXP425_NPE_C_HWBASE;
    298 	sc->sc_size = IXP425_NPE_C_SIZE;
    299 	irq = IXP425_INT_NPE_C;
    300 
    301 	/* size of instruction memory */
    302 	sc->insMemSize = IX_NPEDL_INS_MEMSIZE_WORDS_NPEC;
    303 	/* size of data memory */
    304 	sc->dataMemSize = IX_NPEDL_DATA_MEMSIZE_WORDS_NPEC;
    305 	break;
    306     }
    307     if (bus_space_map(sc->sc_iot, base, sc->sc_size, 0, &sc->sc_ioh))
    308 	panic("%s: Cannot map registers", device_xname(self));
    309 
    310     /*
    311      * Setup IRQ and handler for NPE message support.
    312      */
    313     sc->sc_ih = ixp425_intr_establish(irq, IPL_NET, ixpnpe_intr, sc);
    314     if (sc->sc_ih == NULL)
    315 	panic("%s: Unable to establish irq %u", device_xname(self), irq);
    316     /* enable output fifo interrupts (NB: must also set OFIFO Write Enable) */
    317     npe_reg_write(sc, IX_NPECTL,
    318 	npe_reg_read(sc, IX_NPECTL) | (IX_NPECTL_OFE | IX_NPECTL_OFWE));
    319 
    320     config_search(self, ixa,
    321 	CFARG_SUBMATCH, ixpnpe_search,
    322 	CFARG_IATTR, "ixpnpe",
    323 	CFARG_EOL);
    324 }
    325 
    326 static int
    327 ixpnpe_print(void *arg, const char *name)
    328 {
    329 
    330 	return (UNCONF);
    331 }
    332 
    333 static int
    334 ixpnpe_search(device_t parent, cfdata_t cf, const int *ldesc, void *arg)
    335 {
    336 	struct ixpnpe_softc *sc = device_private(parent);
    337 	struct ixme_attach_args *ixa = arg;
    338 	struct ixpnpe_attach_args na;
    339 
    340 	na.na_unit = ixa->ixa_npe;
    341 	na.na_phy = cf->cf_loc[IXPNPECF_PHY];
    342 	na.na_npe = sc;
    343 	na.na_iot = ixa->ixa_iot;
    344 	na.na_dt = ixa->ixa_dt;
    345 
    346 	if (config_match(parent, cf, &na) > 0) {
    347 		config_attach(parent, cf, &na, ixpnpe_print);
    348 		return (1);
    349 	}
    350 
    351 	return (0);
    352 }
    353 
    354 int
    355 ixpnpe_stopandreset(struct ixpnpe_softc *sc)
    356 {
    357     int error;
    358 
    359     mutex_enter(&sc->sc_lock);
    360     error = npe_cpu_stop(sc);		/* stop NPE */
    361     if (error == 0)
    362 	error = npe_cpu_reset(sc);	/* reset it */
    363     if (error == 0)
    364 	sc->started = 0;		/* mark stopped */
    365     mutex_exit(&sc->sc_lock);
    366 
    367     DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
    368     return error;
    369 }
    370 
    371 static int
    372 ixpnpe_start_locked(struct ixpnpe_softc *sc)
    373 {
    374     int error;
    375 
    376     if (!sc->started) {
    377 	error = npe_cpu_start(sc);
    378 	if (error == 0)
    379 	    sc->started = 1;
    380     } else
    381 	error = 0;
    382 
    383     DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
    384     return error;
    385 }
    386 
    387 int
    388 ixpnpe_start(struct ixpnpe_softc *sc)
    389 {
    390 	int ret;
    391 
    392 	mutex_enter(&sc->sc_lock);
    393 	ret = ixpnpe_start_locked(sc);
    394 	mutex_exit(&sc->sc_lock);
    395 	return (ret);
    396 }
    397 
    398 int
    399 ixpnpe_stop(struct ixpnpe_softc *sc)
    400 {
    401     int error;
    402 
    403     mutex_enter(&sc->sc_lock);
    404     error = npe_cpu_stop(sc);
    405     if (error == 0)
    406 	sc->started = 0;
    407     mutex_exit(&sc->sc_lock);
    408 
    409     DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
    410     return error;
    411 }
    412 
    413 /*
    414  * Indicates the start of an NPE Image, in new NPE Image Library format.
    415  * 2 consecutive occurances indicates the end of the NPE Image Library
    416  */
    417 #define NPE_IMAGE_MARKER 0xfeedf00d
    418 
    419 /*
    420  * NPE Image Header definition, used in new NPE Image Library format
    421  */
    422 typedef struct {
    423     uint32_t marker;
    424     uint32_t id;
    425     uint32_t size;
    426 } IxNpeDlImageMgrImageHeader;
    427 
    428 static int
    429 npe_findimage(struct ixpnpe_softc *sc,
    430     const uint32_t *imageLibrary, uint32_t imageId,
    431     const uint32_t **imagePtr, uint32_t *imageSize)
    432 {
    433     const IxNpeDlImageMgrImageHeader *image;
    434     uint32_t offset = 0;
    435 
    436     while (imageLibrary[offset] == NPE_IMAGE_MARKER) {
    437         image = (const IxNpeDlImageMgrImageHeader *)&imageLibrary[offset];
    438         offset += sizeof(IxNpeDlImageMgrImageHeader)/sizeof(uint32_t);
    439 
    440         DPRINTF(sc->sc_dev, "%s: off %u mark 0x%x id 0x%x size %u\n",
    441 	    __func__, offset, image->marker, image->id, image->size);
    442         if (image->id == imageId) {
    443             *imagePtr = imageLibrary + offset;
    444             *imageSize = image->size;
    445             return 0;
    446         }
    447         /* 2 consecutive NPE_IMAGE_MARKER's indicates end of library */
    448         if (image->id == NPE_IMAGE_MARKER) {
    449 	    printf("%s: imageId 0x%08x not found in image library header\n",
    450 	        device_xname(sc->sc_dev), imageId);
    451             /* reached end of library, image not found */
    452             return EIO;
    453         }
    454         offset += image->size;
    455     }
    456     return EIO;
    457 }
    458 
    459 int
    460 ixpnpe_init(struct ixpnpe_softc *sc, const char *imageName, uint32_t imageId)
    461 {
    462     uint32_t imageSize;
    463     const uint32_t *imageCodePtr;
    464     void *fw;
    465     int error;
    466 
    467     DPRINTF(sc->sc_dev, "load %s, imageId 0x%08x\n", imageName, imageId);
    468 
    469 #if 0
    470     IxFeatureCtrlDeviceId devid = IX_NPEDL_DEVICEID_FROM_IMAGEID_GET(imageId);
    471     /*
    472      * Checking if image being loaded is meant for device that is running.
    473      * Image is forward compatible. i.e Image built for IXP42X should run
    474      * on IXP46X but not vice versa.
    475      */
    476     if (devid > (ixFeatureCtrlDeviceRead() & IX_FEATURE_CTRL_DEVICE_TYPE_MASK))
    477 	return EINVAL;
    478 #endif
    479     error = ixpnpe_stopandreset(sc);		/* stop and reset the NPE */
    480     if (error != 0)
    481 	return error;
    482 
    483     fw = (void *)_binary_IxNpeMicrocode_dat_start;
    484 
    485     /* Locate desired image in files w/ combined images */
    486     error = npe_findimage(sc, (void *)fw /*fw->data*/, imageId, &imageCodePtr, &imageSize);
    487     if (error != 0)
    488 	goto done;
    489 
    490     /*
    491      * If download was successful, store image Id in list of
    492      * currently loaded images. If a critical error occured
    493      * during download, record that the NPE has an invalid image
    494      */
    495     mutex_enter(&sc->sc_lock);
    496     error = npe_load_image(sc, imageCodePtr, 1 /*VERIFY*/);
    497     if (error == 0) {
    498 	sc->validImage = 1;
    499 	error = ixpnpe_start_locked(sc);
    500     } else {
    501 	sc->validImage = 0;
    502     }
    503     sc->functionalityId = IX_NPEDL_FUNCTIONID_FROM_IMAGEID_GET(imageId);
    504     mutex_exit(&sc->sc_lock);
    505 done:
    506     DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
    507     return error;
    508 }
    509 
    510 int
    511 ixpnpe_getfunctionality(struct ixpnpe_softc *sc)
    512 {
    513     return (sc->validImage ? sc->functionalityId : 0);
    514 }
    515 
    516 static int
    517 npe_checkbits(struct ixpnpe_softc *sc, uint32_t reg, uint32_t expectedBitsSet)
    518 {
    519     uint32_t val;
    520 
    521     val = npe_reg_read(sc, reg);
    522     DPRINTFn(5, sc->sc_dev, "%s(0x%x, 0x%x) => 0x%x (%u)\n",
    523 	__func__, reg, expectedBitsSet, val,
    524 	(val & expectedBitsSet) == expectedBitsSet);
    525     return ((val & expectedBitsSet) == expectedBitsSet);
    526 }
    527 
    528 static int
    529 npe_isstopped(struct ixpnpe_softc *sc)
    530 {
    531     return npe_checkbits(sc,
    532 	IX_NPEDL_REG_OFFSET_EXCTL, IX_NPEDL_EXCTL_STATUS_STOP);
    533 }
    534 
    535 static int
    536 npe_load_ins(struct ixpnpe_softc *sc,
    537     const IxNpeDlNpeMgrCodeBlock *bp, int verify)
    538 {
    539     uint32_t npeMemAddress;
    540     int i, blockSize;
    541 
    542     npeMemAddress = bp->npeMemAddress;
    543     blockSize = bp->size;		/* NB: instruction/data count */
    544     if (npeMemAddress + blockSize > sc->insMemSize) {
    545 	printf("%s: Block size too big for NPE memory\n", device_xname(sc->sc_dev));
    546 	return EINVAL;	/* XXX */
    547     }
    548     for (i = 0; i < blockSize; i++, npeMemAddress++) {
    549 	if (npe_ins_write(sc, npeMemAddress, bp->data[i], verify) != 0) {
    550 	    printf("%s: NPE instruction write failed", device_xname(sc->sc_dev));
    551 	    return EIO;
    552 	}
    553     }
    554     return 0;
    555 }
    556 
    557 static int
    558 npe_load_data(struct ixpnpe_softc *sc,
    559     const IxNpeDlNpeMgrCodeBlock *bp, int verify)
    560 {
    561     uint32_t npeMemAddress;
    562     int i, blockSize;
    563 
    564     npeMemAddress = bp->npeMemAddress;
    565     blockSize = bp->size;		/* NB: instruction/data count */
    566     if (npeMemAddress + blockSize > sc->dataMemSize) {
    567 	printf("%s: Block size too big for NPE memory\n", device_xname(sc->sc_dev));
    568 	return EINVAL;
    569     }
    570     for (i = 0; i < blockSize; i++, npeMemAddress++) {
    571 	if (npe_data_write(sc, npeMemAddress, bp->data[i], verify) != 0) {
    572 	    printf("%s: NPE data write failed\n", device_xname(sc->sc_dev));
    573 	    return EIO;
    574 	}
    575     }
    576     return 0;
    577 }
    578 
    579 static int
    580 npe_load_stateinfo(struct ixpnpe_softc *sc,
    581     const IxNpeDlNpeMgrStateInfoBlock *bp, int verify)
    582 {
    583     int i, nentries, error;
    584 
    585     npe_cpu_step_save(sc);
    586 
    587     /* for each state-info context register entry in block */
    588     nentries = bp->size / IX_NPEDL_STATE_INFO_ENTRY_SIZE;
    589     error = 0;
    590     for (i = 0; i < nentries; i++) {
    591 	/* each state-info entry is 2 words (address, value) in length */
    592 	uint32_t regVal = bp->ctxtRegEntry[i].value;
    593 	uint32_t addrInfo = bp->ctxtRegEntry[i].addressInfo;
    594 
    595 	uint32_t reg = (addrInfo & IX_NPEDL_MASK_STATE_ADDR_CTXT_REG);
    596 	uint32_t cNum = (addrInfo & IX_NPEDL_MASK_STATE_ADDR_CTXT_NUM) >>
    597 	    IX_NPEDL_OFFSET_STATE_ADDR_CTXT_NUM;
    598 
    599 	/* error-check Context Register No. and Context Number values  */
    600 	if (reg >= IX_NPEDL_CTXT_REG_MAX) {
    601 	    printf("%s: invalid Context Register %u\n", device_xname(sc->sc_dev),
    602 		reg);
    603 	    error = EINVAL;
    604 	    break;
    605 	}
    606 	if (cNum >= IX_NPEDL_CTXT_NUM_MAX) {
    607 	    printf("%s: invalid Context Number %u\n", device_xname(sc->sc_dev),
    608 	        cNum);
    609 	    error = EINVAL;
    610 	    break;
    611 	}
    612 	/* NOTE that there is no STEVT register for Context 0 */
    613 	if (cNum == 0 && reg == IX_NPEDL_CTXT_REG_STEVT) {
    614 	    printf("%s: no STEVT for Context 0\n", device_xname(sc->sc_dev));
    615 	    error = EINVAL;
    616 	    break;
    617 	}
    618 
    619 	if (npe_ctx_reg_write(sc, cNum, reg, regVal, verify) != 0) {
    620 	    printf("%s: write of state-info to NPE failed\n",
    621 	        device_xname(sc->sc_dev));
    622 	    error = EIO;
    623 	    break;
    624 	}
    625     }
    626 
    627     npe_cpu_step_restore(sc);
    628     return error;
    629 }
    630 
    631 static int
    632 npe_load_image(struct ixpnpe_softc *sc,
    633     const uint32_t *imageCodePtr, int verify)
    634 {
    635 #define	EOM(marker)	((marker) == IX_NPEDL_END_OF_DOWNLOAD_MAP)
    636     const IxNpeDlNpeMgrDownloadMap *downloadMap;
    637     int i, error;
    638 
    639     if (!npe_isstopped(sc)) {		/* verify NPE is stopped */
    640 	printf("%s: cannot load image, NPE not stopped\n", device_xname(sc->sc_dev));
    641 	return EIO;
    642     }
    643 
    644     /*
    645      * Read Download Map, checking each block type and calling
    646      * appropriate function to perform download
    647      */
    648     error = 0;
    649     downloadMap = (const IxNpeDlNpeMgrDownloadMap *) imageCodePtr;
    650     for (i = 0; !EOM(downloadMap->entry[i].eodmMarker); i++) {
    651 	/* calculate pointer to block to be downloaded */
    652 	const uint32_t *bp = imageCodePtr + downloadMap->entry[i].block.offset;
    653 	switch (downloadMap->entry[i].block.type) {
    654 	case IX_NPEDL_BLOCK_TYPE_INSTRUCTION:
    655 	    error = npe_load_ins(sc,
    656 			 (const IxNpeDlNpeMgrCodeBlock *) bp, verify);
    657 	    DPRINTF(sc->sc_dev, "%s: inst, error %d\n", __func__, error);
    658 	    break;
    659 	case IX_NPEDL_BLOCK_TYPE_DATA:
    660 	    error = npe_load_data(sc,
    661 			 (const IxNpeDlNpeMgrCodeBlock *) bp, verify);
    662 	    DPRINTF(sc->sc_dev, "%s: data, error %d\n", __func__, error);
    663 	    break;
    664 	case IX_NPEDL_BLOCK_TYPE_STATE:
    665 	    error = npe_load_stateinfo(sc,
    666 			 (const IxNpeDlNpeMgrStateInfoBlock *) bp, verify);
    667 	    DPRINTF(sc->sc_dev, "%s: state, error %d\n", __func__, error);
    668 	    break;
    669 	default:
    670 	    printf("%s: unknown block type 0x%x in download map\n",
    671 		device_xname(sc->sc_dev), downloadMap->entry[i].block.type);
    672 	    error = EIO;		/* XXX */
    673 	    break;
    674 	}
    675 	if (error != 0)
    676 	    break;
    677     }
    678     return error;
    679 #undef EOM
    680 }
    681 
    682 /* contains Reset values for Context Store Registers  */
    683 static const struct {
    684     uint32_t regAddr;
    685     uint32_t regResetVal;
    686 } ixNpeDlEcsRegResetValues[] = {
    687     { IX_NPEDL_ECS_BG_CTXT_REG_0,    IX_NPEDL_ECS_BG_CTXT_REG_0_RESET },
    688     { IX_NPEDL_ECS_BG_CTXT_REG_1,    IX_NPEDL_ECS_BG_CTXT_REG_1_RESET },
    689     { IX_NPEDL_ECS_BG_CTXT_REG_2,    IX_NPEDL_ECS_BG_CTXT_REG_2_RESET },
    690     { IX_NPEDL_ECS_PRI_1_CTXT_REG_0, IX_NPEDL_ECS_PRI_1_CTXT_REG_0_RESET },
    691     { IX_NPEDL_ECS_PRI_1_CTXT_REG_1, IX_NPEDL_ECS_PRI_1_CTXT_REG_1_RESET },
    692     { IX_NPEDL_ECS_PRI_1_CTXT_REG_2, IX_NPEDL_ECS_PRI_1_CTXT_REG_2_RESET },
    693     { IX_NPEDL_ECS_PRI_2_CTXT_REG_0, IX_NPEDL_ECS_PRI_2_CTXT_REG_0_RESET },
    694     { IX_NPEDL_ECS_PRI_2_CTXT_REG_1, IX_NPEDL_ECS_PRI_2_CTXT_REG_1_RESET },
    695     { IX_NPEDL_ECS_PRI_2_CTXT_REG_2, IX_NPEDL_ECS_PRI_2_CTXT_REG_2_RESET },
    696     { IX_NPEDL_ECS_DBG_CTXT_REG_0,   IX_NPEDL_ECS_DBG_CTXT_REG_0_RESET },
    697     { IX_NPEDL_ECS_DBG_CTXT_REG_1,   IX_NPEDL_ECS_DBG_CTXT_REG_1_RESET },
    698     { IX_NPEDL_ECS_DBG_CTXT_REG_2,   IX_NPEDL_ECS_DBG_CTXT_REG_2_RESET },
    699     { IX_NPEDL_ECS_INSTRUCT_REG,     IX_NPEDL_ECS_INSTRUCT_REG_RESET }
    700 };
    701 
    702 /* contains Reset values for Context Store Registers  */
    703 static const uint32_t ixNpeDlCtxtRegResetValues[] = {
    704     IX_NPEDL_CTXT_REG_RESET_STEVT,
    705     IX_NPEDL_CTXT_REG_RESET_STARTPC,
    706     IX_NPEDL_CTXT_REG_RESET_REGMAP,
    707     IX_NPEDL_CTXT_REG_RESET_CINDEX,
    708 };
    709 
    710 #define	IX_NPEDL_RESET_NPE_PARITY	0x0800
    711 #define	IX_NPEDL_PARITY_BIT_MASK	0x3F00FFFF
    712 #define	IX_NPEDL_CONFIG_CTRL_REG_MASK	0x3F3FFFFF
    713 
    714 static int
    715 npe_cpu_reset(struct ixpnpe_softc *sc)
    716 {
    717 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    718     uint32_t ctxtReg; /* identifies Context Store reg (0-3) */
    719     uint32_t regAddr;
    720     uint32_t regVal;
    721     uint32_t resetNpeParity;
    722     uint32_t ixNpeConfigCtrlRegVal;
    723     int i, error = 0;
    724 
    725     /* pre-store the NPE Config Control Register Value */
    726     ixNpeConfigCtrlRegVal = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_CTL);
    727     ixNpeConfigCtrlRegVal |= 0x3F000000;
    728 
    729     /* disable the parity interrupt */
    730     npe_reg_write(sc, IX_NPEDL_REG_OFFSET_CTL,
    731 	(ixNpeConfigCtrlRegVal & IX_NPEDL_PARITY_BIT_MASK));
    732     DPRINTFn(2, sc->sc_dev, "%s: dis parity int, CTL => 0x%x\n",
    733 	__func__, ixNpeConfigCtrlRegVal & IX_NPEDL_PARITY_BIT_MASK);
    734 
    735     npe_cpu_step_save(sc);
    736 
    737     /*
    738      * Clear the FIFOs.
    739      */
    740     while (npe_checkbits(sc,
    741 	  IX_NPEDL_REG_OFFSET_WFIFO, IX_NPEDL_MASK_WFIFO_VALID)) {
    742 	/* read from the Watch-point FIFO until empty */
    743 	(void) npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WFIFO);
    744     }
    745 
    746     while (npe_checkbits(sc,
    747 	  IX_NPEDL_REG_OFFSET_STAT, IX_NPEDL_MASK_STAT_OFNE)) {
    748 	/* read from the outFIFO until empty */
    749 	(void) npe_reg_read(sc, IX_NPEDL_REG_OFFSET_FIFO);
    750     }
    751 
    752     while (npe_checkbits(sc,
    753 	  IX_NPEDL_REG_OFFSET_STAT, IX_NPEDL_MASK_STAT_IFNE)) {
    754 	/*
    755 	 * Step execution of the NPE intruction to read inFIFO using
    756 	 * the Debug Executing Context stack.
    757 	 */
    758 	error = npe_cpu_step(sc, IX_NPEDL_INSTR_RD_FIFO, 0, 0);
    759 	if (error != 0) {
    760 	    DPRINTF(sc->sc_dev, "%s: cannot step (1), error %u\n",
    761 		__func__, error);
    762 	    npe_cpu_step_restore(sc);
    763 	    return error;
    764 	}
    765     }
    766 
    767     /*
    768      * Reset the mailbox reg
    769      */
    770     /* ...from XScale side */
    771     npe_reg_write(sc, IX_NPEDL_REG_OFFSET_MBST, IX_NPEDL_REG_RESET_MBST);
    772     /* ...from NPE side */
    773     error = npe_cpu_step(sc, IX_NPEDL_INSTR_RESET_MBOX, 0, 0);
    774     if (error != 0) {
    775 	DPRINTF(sc->sc_dev, "%s: cannot step (2), error %u\n", __func__, error);
    776 	npe_cpu_step_restore(sc);
    777         return error;
    778     }
    779 
    780     /*
    781      * Reset the physical registers in the NPE register file:
    782      * Note: no need to save/restore REGMAP for Context 0 here
    783      * since all Context Store regs are reset in subsequent code.
    784      */
    785     for (regAddr = 0;
    786 	 regAddr < IX_NPEDL_TOTAL_NUM_PHYS_REG && error == 0;
    787 	 regAddr++) {
    788 	/* for each physical register in the NPE reg file, write 0 : */
    789 	error = npe_physical_reg_write(sc, regAddr, 0, true);
    790 	if (error != 0) {
    791 	    DPRINTF(sc->sc_dev, "%s: cannot write phy reg, error %u\n",
    792 		__func__, error);
    793 	    npe_cpu_step_restore(sc);
    794 	    return error;		/* abort reset */
    795 	}
    796     }
    797 
    798     /*
    799      * Reset the context store:
    800      */
    801     for (i = IX_NPEDL_CTXT_NUM_MIN; i <= IX_NPEDL_CTXT_NUM_MAX; i++) {
    802 	/* set each context's Context Store registers to reset values: */
    803 	for (ctxtReg = 0; ctxtReg < IX_NPEDL_CTXT_REG_MAX; ctxtReg++) {
    804 	    /* NOTE that there is no STEVT register for Context 0 */
    805 	    if (!(i == 0 && ctxtReg == IX_NPEDL_CTXT_REG_STEVT)) {
    806 		regVal = ixNpeDlCtxtRegResetValues[ctxtReg];
    807 		error = npe_ctx_reg_write(sc, i, ctxtReg, regVal, true);
    808 		if (error != 0) {
    809 		    DPRINTF(sc->sc_dev, "%s: cannot write ctx reg, error %u\n",
    810 			__func__, error);
    811 		    npe_cpu_step_restore(sc);
    812 		    return error;	 /* abort reset */
    813 		}
    814 	    }
    815 	}
    816     }
    817 
    818     npe_cpu_step_restore(sc);
    819 
    820     /* write Reset values to Execution Context Stack registers */
    821     for (i = 0; i < N(ixNpeDlEcsRegResetValues); i++)
    822 	npe_ecs_reg_write(sc,
    823 	    ixNpeDlEcsRegResetValues[i].regAddr,
    824 	    ixNpeDlEcsRegResetValues[i].regResetVal);
    825 
    826     /* clear the profile counter */
    827     npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_CLR_PROFILE_CNT);
    828 
    829     /* clear registers EXCT, AP0, AP1, AP2 and AP3 */
    830     for (regAddr = IX_NPEDL_REG_OFFSET_EXCT;
    831 	 regAddr <= IX_NPEDL_REG_OFFSET_AP3;
    832 	 regAddr += sizeof(uint32_t))
    833 	npe_reg_write(sc, regAddr, 0);
    834 
    835     /* Reset the Watch-count register */
    836     npe_reg_write(sc, IX_NPEDL_REG_OFFSET_WC, 0);
    837 
    838     /*
    839      * WR IXA00055043 - Remove IMEM Parity Introduced by NPE Reset Operation
    840      */
    841 
    842     /*
    843      * Reset the NPE and its coprocessor - to reset internal
    844      * states and remove parity error.  Note this makes no
    845      * sense based on the documentation.  The feature control
    846      * register always reads back as 0 on the ixp425 and further
    847      * the bit definition of NPEA/NPEB is off by 1 according to
    848      * the Intel documention--so we're blindly following the
    849      * Intel code w/o any real understanding.
    850      */
    851     regVal = EXP_BUS_READ_4(ixp425_softc, EXP_FCTRL_OFFSET);
    852     DPRINTFn(2, sc->sc_dev, "%s: FCTRL 0x%x\n", __func__, regVal);
    853     resetNpeParity =
    854 	IX_NPEDL_RESET_NPE_PARITY << (1 + sc->sc_unit);
    855     DPRINTFn(2, sc->sc_dev, "%s: FCTRL fuse parity, write 0x%x\n",
    856 	__func__, regVal | resetNpeParity);
    857     EXP_BUS_WRITE_4(ixp425_softc, EXP_FCTRL_OFFSET, regVal | resetNpeParity);
    858 
    859     /* un-fuse and un-reset the NPE & coprocessor */
    860     DPRINTFn(2, sc->sc_dev, "%s: FCTRL unfuse parity, write 0x%x\n",
    861 	__func__, regVal & ~resetNpeParity);
    862     EXP_BUS_WRITE_4(ixp425_softc, EXP_FCTRL_OFFSET, regVal &~ resetNpeParity);
    863 
    864     /*
    865      * Call NpeMgr function to stop the NPE again after the Feature Control
    866      * has unfused and Un-Reset the NPE and its associated Coprocessors.
    867      */
    868     error = npe_cpu_stop(sc);
    869 
    870     /* restore NPE configuration bus Control Register - Parity Settings  */
    871     npe_reg_write(sc, IX_NPEDL_REG_OFFSET_CTL,
    872         (ixNpeConfigCtrlRegVal & IX_NPEDL_CONFIG_CTRL_REG_MASK));
    873     DPRINTFn(2, sc->sc_dev, "%s: restore CTL => 0x%x\n",
    874 	__func__, npe_reg_read(sc, IX_NPEDL_REG_OFFSET_CTL));
    875 
    876     return error;
    877 #undef N
    878 }
    879 
    880 static int
    881 npe_cpu_start(struct ixpnpe_softc *sc)
    882 {
    883     uint32_t ecsRegVal;
    884 
    885     /*
    886      * Ensure only Background Context Stack Level is Active by turning off
    887      * the Active bit in each of the other Executing Context Stack levels.
    888      */
    889     ecsRegVal = npe_ecs_reg_read(sc, IX_NPEDL_ECS_PRI_1_CTXT_REG_0);
    890     ecsRegVal &= ~IX_NPEDL_MASK_ECS_REG_0_ACTIVE;
    891     npe_ecs_reg_write(sc, IX_NPEDL_ECS_PRI_1_CTXT_REG_0, ecsRegVal);
    892 
    893     ecsRegVal = npe_ecs_reg_read(sc, IX_NPEDL_ECS_PRI_2_CTXT_REG_0);
    894     ecsRegVal &= ~IX_NPEDL_MASK_ECS_REG_0_ACTIVE;
    895     npe_ecs_reg_write(sc, IX_NPEDL_ECS_PRI_2_CTXT_REG_0, ecsRegVal);
    896 
    897     ecsRegVal = npe_ecs_reg_read(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0);
    898     ecsRegVal &= ~IX_NPEDL_MASK_ECS_REG_0_ACTIVE;
    899     npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0, ecsRegVal);
    900 
    901     /* clear the pipeline */
    902     npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_CLR_PIPE);
    903 
    904     /* start NPE execution by issuing command through EXCTL register on NPE */
    905     npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_START);
    906 
    907     /*
    908      * Check execution status of NPE to verify operation was successful.
    909      */
    910     return npe_checkbits(sc,
    911 	IX_NPEDL_REG_OFFSET_EXCTL, IX_NPEDL_EXCTL_STATUS_RUN) ? 0 : EIO;
    912 }
    913 
    914 static int
    915 npe_cpu_stop(struct ixpnpe_softc *sc)
    916 {
    917     /* stop NPE execution by issuing command through EXCTL register on NPE */
    918     npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_STOP);
    919 
    920     /* verify that NPE Stop was successful */
    921     return npe_checkbits(sc,
    922 	IX_NPEDL_REG_OFFSET_EXCTL, IX_NPEDL_EXCTL_STATUS_STOP) ? 0 : EIO;
    923 }
    924 
    925 #define IX_NPEDL_REG_SIZE_BYTE            8
    926 #define IX_NPEDL_REG_SIZE_SHORT           16
    927 #define IX_NPEDL_REG_SIZE_WORD            32
    928 
    929 /*
    930  * Introduce extra read cycles after issuing read command to NPE
    931  * so that we read the register after the NPE has updated it
    932  * This is to overcome race condition between XScale and NPE
    933  */
    934 #define IX_NPEDL_DELAY_READ_CYCLES        2
    935 /*
    936  * To mask top three MSBs of 32bit word to download into NPE IMEM
    937  */
    938 #define IX_NPEDL_MASK_UNUSED_IMEM_BITS    0x1FFFFFFF;
    939 
    940 static void
    941 npe_cmd_issue_write(struct ixpnpe_softc *sc,
    942     uint32_t cmd, uint32_t addr, uint32_t data)
    943 {
    944     npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXDATA, data);
    945     npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXAD, addr);
    946     npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCTL, cmd);
    947 }
    948 
    949 static uint32_t
    950 npe_cmd_issue_read(struct ixpnpe_softc *sc, uint32_t cmd, uint32_t addr)
    951 {
    952     uint32_t data;
    953     int i;
    954 
    955     npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXAD, addr);
    956     npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCTL, cmd);
    957     for (i = 0; i <= IX_NPEDL_DELAY_READ_CYCLES; i++)
    958 	data = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_EXDATA);
    959     return data;
    960 }
    961 
    962 static int
    963 npe_ins_write(struct ixpnpe_softc *sc, uint32_t addr, uint32_t data, int verify)
    964 {
    965     DPRINTFn(4, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, addr, data);
    966     npe_cmd_issue_write(sc, IX_NPEDL_EXCTL_CMD_WR_INS_MEM, addr, data);
    967     if (verify) {
    968 	uint32_t rdata;
    969 
    970         /*
    971 	 * Write invalid data to this reg, so we can see if we're reading
    972 	 * the EXDATA register too early.
    973 	 */
    974 	npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXDATA, ~data);
    975 
    976         /* Disabled since top 3 MSB are not used for Azusa hardware Refer WR:IXA00053900*/
    977         data &= IX_NPEDL_MASK_UNUSED_IMEM_BITS;
    978 
    979         rdata = npe_cmd_issue_read(sc, IX_NPEDL_EXCTL_CMD_RD_INS_MEM, addr);
    980         rdata &= IX_NPEDL_MASK_UNUSED_IMEM_BITS;
    981 
    982 	if (data != rdata)
    983 	    return EIO;
    984     }
    985     return 0;
    986 }
    987 
    988 static int
    989 npe_data_write(struct ixpnpe_softc *sc, uint32_t addr, uint32_t data, int verify)
    990 {
    991     DPRINTFn(4, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, addr, data);
    992     npe_cmd_issue_write(sc, IX_NPEDL_EXCTL_CMD_WR_DATA_MEM, addr, data);
    993     if (verify) {
    994         /*
    995 	 * Write invalid data to this reg, so we can see if we're reading
    996 	 * the EXDATA register too early.
    997 	 */
    998 	npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXDATA, ~data);
    999 	if (data != npe_cmd_issue_read(sc, IX_NPEDL_EXCTL_CMD_RD_DATA_MEM, addr))
   1000 	    return EIO;
   1001     }
   1002     return 0;
   1003 }
   1004 
   1005 static void
   1006 npe_ecs_reg_write(struct ixpnpe_softc *sc, uint32_t reg, uint32_t data)
   1007 {
   1008     npe_cmd_issue_write(sc, IX_NPEDL_EXCTL_CMD_WR_ECS_REG, reg, data);
   1009 }
   1010 
   1011 static uint32_t
   1012 npe_ecs_reg_read(struct ixpnpe_softc *sc, uint32_t reg)
   1013 {
   1014     return npe_cmd_issue_read(sc, IX_NPEDL_EXCTL_CMD_RD_ECS_REG, reg);
   1015 }
   1016 
   1017 static void
   1018 npe_issue_cmd(struct ixpnpe_softc *sc, uint32_t command)
   1019 {
   1020     npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCTL, command);
   1021 }
   1022 
   1023 static void
   1024 npe_cpu_step_save(struct ixpnpe_softc *sc)
   1025 {
   1026     /* turn off the halt bit by clearing Execution Count register. */
   1027     /* save reg contents 1st and restore later */
   1028     sc->savedExecCount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_EXCT);
   1029     npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCT, 0);
   1030 
   1031     /* ensure that IF and IE are on (temporarily), so that we don't end up
   1032      * stepping forever */
   1033     sc->savedEcsDbgCtxtReg2 = npe_ecs_reg_read(sc, IX_NPEDL_ECS_DBG_CTXT_REG_2);
   1034 
   1035     npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_2,
   1036 	(sc->savedEcsDbgCtxtReg2 | IX_NPEDL_MASK_ECS_DBG_REG_2_IF |
   1037 	 IX_NPEDL_MASK_ECS_DBG_REG_2_IE));
   1038 }
   1039 
   1040 static int
   1041 npe_cpu_step(struct ixpnpe_softc *sc, uint32_t npeInstruction,
   1042     uint32_t ctxtNum, uint32_t ldur)
   1043 {
   1044 #define	IX_NPE_DL_MAX_NUM_OF_RETRIES	1000000
   1045     uint32_t ecsDbgRegVal;
   1046     uint32_t oldWatchcount, newWatchcount;
   1047     int tries;
   1048 
   1049     /* set the Active bit, and the LDUR, in the debug level */
   1050     ecsDbgRegVal = IX_NPEDL_MASK_ECS_REG_0_ACTIVE |
   1051 	(ldur << IX_NPEDL_OFFSET_ECS_REG_0_LDUR);
   1052 
   1053     npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0, ecsDbgRegVal);
   1054 
   1055     /*
   1056      * Set CCTXT at ECS DEBUG L3 to specify in which context to execute the
   1057      * instruction, and set SELCTXT at ECS DEBUG Level to specify which context
   1058      * store to access.
   1059      * Debug ECS Level Reg 1 has form  0x000n000n, where n = context number
   1060      */
   1061     ecsDbgRegVal = (ctxtNum << IX_NPEDL_OFFSET_ECS_REG_1_CCTXT) |
   1062 	(ctxtNum << IX_NPEDL_OFFSET_ECS_REG_1_SELCTXT);
   1063 
   1064     npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_1, ecsDbgRegVal);
   1065 
   1066     /* clear the pipeline */
   1067     npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_CLR_PIPE);
   1068 
   1069     /* load NPE instruction into the instruction register */
   1070     npe_ecs_reg_write(sc, IX_NPEDL_ECS_INSTRUCT_REG, npeInstruction);
   1071 
   1072     /* we need this value later to wait for completion of NPE execution step */
   1073     oldWatchcount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WC);
   1074 
   1075     /* issue a Step One command via the Execution Control register */
   1076     npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_STEP);
   1077 
   1078     /*
   1079      * Force the XScale to wait until the NPE has finished execution step
   1080      * NOTE that this delay will be very small, just long enough to allow a
   1081      * single NPE instruction to complete execution; if instruction execution
   1082      * is not completed before timeout retries, exit the while loop.
   1083      */
   1084     newWatchcount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WC);
   1085     for (tries = 0; tries < IX_NPE_DL_MAX_NUM_OF_RETRIES &&
   1086         newWatchcount == oldWatchcount; tries++) {
   1087 	/* Watch Count register increments when NPE completes an instruction */
   1088 	newWatchcount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WC);
   1089     }
   1090     return (tries < IX_NPE_DL_MAX_NUM_OF_RETRIES) ? 0 : EIO;
   1091 #undef IX_NPE_DL_MAX_NUM_OF_RETRIES
   1092 }
   1093 
   1094 static void
   1095 npe_cpu_step_restore(struct ixpnpe_softc *sc)
   1096 {
   1097     /* clear active bit in debug level */
   1098     npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0, 0);
   1099 
   1100     /* clear the pipeline */
   1101     npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_CLR_PIPE);
   1102 
   1103     /* restore Execution Count register contents. */
   1104     npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCT, sc->savedExecCount);
   1105 
   1106     /* restore IF and IE bits to original values */
   1107     npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_2, sc->savedEcsDbgCtxtReg2);
   1108 }
   1109 
   1110 static int
   1111 npe_logical_reg_read(struct ixpnpe_softc *sc,
   1112     uint32_t regAddr, uint32_t regSize,
   1113     uint32_t ctxtNum, uint32_t *regVal)
   1114 {
   1115     uint32_t npeInstruction, mask;
   1116     int error;
   1117 
   1118     switch (regSize) {
   1119     case IX_NPEDL_REG_SIZE_BYTE:
   1120 	npeInstruction = IX_NPEDL_INSTR_RD_REG_BYTE;
   1121 	mask = 0xff;
   1122 	break;
   1123     case IX_NPEDL_REG_SIZE_SHORT:
   1124 	npeInstruction = IX_NPEDL_INSTR_RD_REG_SHORT;
   1125 	mask = 0xffff;
   1126 	break;
   1127     case IX_NPEDL_REG_SIZE_WORD:
   1128 	npeInstruction = IX_NPEDL_INSTR_RD_REG_WORD;
   1129 	mask = 0xffffffff;
   1130 	break;
   1131     default:
   1132 	return EINVAL;
   1133     }
   1134 
   1135     /* make regAddr be the SRC and DEST operands (e.g. movX d0, d0) */
   1136     npeInstruction |= (regAddr << IX_NPEDL_OFFSET_INSTR_SRC) |
   1137 	(regAddr << IX_NPEDL_OFFSET_INSTR_DEST);
   1138 
   1139     /* step execution of NPE intruction using Debug Executing Context stack */
   1140     error = npe_cpu_step(sc, npeInstruction, ctxtNum, IX_NPEDL_RD_INSTR_LDUR);
   1141     if (error != 0) {
   1142 	DPRINTF(sc->sc_dev, "%s(0x%x, %u, %u), cannot step, error %d\n",
   1143 	    __func__, regAddr, regSize, ctxtNum, error);
   1144 	return error;
   1145     }
   1146     /* read value of register from Execution Data register */
   1147     *regVal = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_EXDATA);
   1148 
   1149     /* align value from left to right */
   1150     *regVal = (*regVal >> (IX_NPEDL_REG_SIZE_WORD - regSize)) & mask;
   1151 
   1152     return 0;
   1153 }
   1154 
   1155 static int
   1156 npe_logical_reg_write(struct ixpnpe_softc *sc, uint32_t regAddr, uint32_t regVal,
   1157     uint32_t regSize, uint32_t ctxtNum, int verify)
   1158 {
   1159     int error;
   1160 
   1161     DPRINTFn(4, sc->sc_dev, "%s(0x%x, 0x%x, %u, %u)\n",
   1162 	__func__, regAddr, regVal, regSize, ctxtNum);
   1163     if (regSize == IX_NPEDL_REG_SIZE_WORD) {
   1164 	/* NPE register addressing is left-to-right: e.g. |d0|d1|d2|d3| */
   1165 	/* Write upper half-word (short) to |d0|d1| */
   1166 	error = npe_logical_reg_write(sc, regAddr,
   1167 		     regVal >> IX_NPEDL_REG_SIZE_SHORT,
   1168 		     IX_NPEDL_REG_SIZE_SHORT, ctxtNum, verify);
   1169 	if (error != 0)
   1170 	    return error;
   1171 
   1172 	/* Write lower half-word (short) to |d2|d3| */
   1173 	error = npe_logical_reg_write(sc,
   1174 		     regAddr + sizeof(uint16_t),
   1175 		     regVal & 0xffff,
   1176 		     IX_NPEDL_REG_SIZE_SHORT, ctxtNum, verify);
   1177     } else {
   1178 	uint32_t npeInstruction;
   1179 
   1180         switch (regSize) {
   1181 	case IX_NPEDL_REG_SIZE_BYTE:
   1182 	    npeInstruction = IX_NPEDL_INSTR_WR_REG_BYTE;
   1183 	    regVal &= 0xff;
   1184 	    break;
   1185 	case IX_NPEDL_REG_SIZE_SHORT:
   1186             npeInstruction = IX_NPEDL_INSTR_WR_REG_SHORT;
   1187 	    regVal &= 0xffff;
   1188 	    break;
   1189 	default:
   1190 	    return EINVAL;
   1191 	}
   1192 	/* fill dest operand field of  instruction with destination reg addr */
   1193 	npeInstruction |= (regAddr << IX_NPEDL_OFFSET_INSTR_DEST);
   1194 
   1195 	/* fill src operand field of instruction with least-sig 5 bits of val*/
   1196 	npeInstruction |= ((regVal & IX_NPEDL_MASK_IMMED_INSTR_SRC_DATA) <<
   1197 			   IX_NPEDL_OFFSET_INSTR_SRC);
   1198 
   1199 	/* fill coprocessor field of instruction with most-sig 11 bits of val*/
   1200 	npeInstruction |= ((regVal & IX_NPEDL_MASK_IMMED_INSTR_COPROC_DATA) <<
   1201 			   IX_NPEDL_DISPLACE_IMMED_INSTR_COPROC_DATA);
   1202 
   1203 	/* step execution of NPE intruction using Debug ECS */
   1204 	error = npe_cpu_step(sc, npeInstruction,
   1205 					  ctxtNum, IX_NPEDL_WR_INSTR_LDUR);
   1206     }
   1207     if (error != 0) {
   1208 	DPRINTF(sc->sc_dev, "%s(0x%x, 0x%x, %u, %u), error %u writing reg\n",
   1209 	    __func__, regAddr, regVal, regSize, ctxtNum, error);
   1210 	return error;
   1211     }
   1212     if (verify) {
   1213 	uint32_t retRegVal;
   1214 
   1215     	error = npe_logical_reg_read(sc, regAddr, regSize, ctxtNum, &retRegVal);
   1216         if (error == 0 && regVal != retRegVal)
   1217 	    error = EIO;	/* XXX ambiguous */
   1218     }
   1219     return error;
   1220 }
   1221 
   1222 /*
   1223  * There are 32 physical registers used in an NPE.  These are
   1224  * treated as 16 pairs of 32-bit registers.  To write one of the pair,
   1225  * write the pair number (0-16) to the REGMAP for Context 0.  Then write
   1226  * the value to register  0 or 4 in the regfile, depending on which
   1227  * register of the pair is to be written
   1228  */
   1229 static int
   1230 npe_physical_reg_write(struct ixpnpe_softc *sc,
   1231     uint32_t regAddr, uint32_t regValue, int verify)
   1232 {
   1233     int error;
   1234 
   1235     /*
   1236      * Set REGMAP for context 0 to (regAddr >> 1) to choose which pair (0-16)
   1237      * of physical registers to write .
   1238      */
   1239     error = npe_logical_reg_write(sc, IX_NPEDL_CTXT_REG_ADDR_REGMAP,
   1240 	       (regAddr >> IX_NPEDL_OFFSET_PHYS_REG_ADDR_REGMAP),
   1241 	       IX_NPEDL_REG_SIZE_SHORT, 0, verify);
   1242     if (error == 0) {
   1243 	/* regAddr = 0 or 4  */
   1244 	regAddr = (regAddr & IX_NPEDL_MASK_PHYS_REG_ADDR_LOGICAL_ADDR) *
   1245 	    sizeof(uint32_t);
   1246 	error = npe_logical_reg_write(sc, regAddr, regValue,
   1247 	    IX_NPEDL_REG_SIZE_WORD, 0, verify);
   1248     }
   1249     return error;
   1250 }
   1251 
   1252 static int
   1253 npe_ctx_reg_write(struct ixpnpe_softc *sc, uint32_t ctxtNum,
   1254     uint32_t ctxtReg, uint32_t ctxtRegVal, int verify)
   1255 {
   1256     DPRINTFn(4, sc->sc_dev, "%s(%u, %u, %u)\n",
   1257 	__func__, ctxtNum, ctxtReg, ctxtRegVal);
   1258     /*
   1259      * Context 0 has no STARTPC. Instead, this value is used to set
   1260      * NextPC for Background ECS, to set where NPE starts executing code
   1261      */
   1262     if (ctxtNum == 0 && ctxtReg == IX_NPEDL_CTXT_REG_STARTPC) {
   1263 	/* read BG_CTXT_REG_0, update NEXTPC bits, and write back to reg */
   1264 	uint32_t v = npe_ecs_reg_read(sc, IX_NPEDL_ECS_BG_CTXT_REG_0);
   1265 	v &= ~IX_NPEDL_MASK_ECS_REG_0_NEXTPC;
   1266 	v |= (ctxtRegVal << IX_NPEDL_OFFSET_ECS_REG_0_NEXTPC) &
   1267 	    IX_NPEDL_MASK_ECS_REG_0_NEXTPC;
   1268 
   1269 	npe_ecs_reg_write(sc, IX_NPEDL_ECS_BG_CTXT_REG_0, v);
   1270 	return 0;
   1271     } else {
   1272 	static const struct {
   1273 	    uint32_t regAddress;
   1274 	    uint32_t regSize;
   1275 	} regAccInfo[IX_NPEDL_CTXT_REG_MAX] = {
   1276 	    { IX_NPEDL_CTXT_REG_ADDR_STEVT,	IX_NPEDL_REG_SIZE_BYTE },
   1277 	    { IX_NPEDL_CTXT_REG_ADDR_STARTPC,	IX_NPEDL_REG_SIZE_SHORT },
   1278 	    { IX_NPEDL_CTXT_REG_ADDR_REGMAP,	IX_NPEDL_REG_SIZE_SHORT },
   1279 	    { IX_NPEDL_CTXT_REG_ADDR_CINDEX,	IX_NPEDL_REG_SIZE_BYTE }
   1280 	};
   1281 	return npe_logical_reg_write(sc, regAccInfo[ctxtReg].regAddress,
   1282 		ctxtRegVal, regAccInfo[ctxtReg].regSize, ctxtNum, verify);
   1283     }
   1284 }
   1285 
   1286 /*
   1287  * NPE Mailbox support.
   1288  */
   1289 #define	IX_NPEMH_MAXTRIES	100000
   1290 
   1291 static int
   1292 ixpnpe_ofifo_wait(struct ixpnpe_softc *sc)
   1293 {
   1294     int i;
   1295 
   1296     for (i = 0; i < IX_NPEMH_MAXTRIES; i++) {
   1297         if (npe_reg_read(sc, IX_NPESTAT) & IX_NPESTAT_OFNE)
   1298 	    return 1;
   1299 	DELAY(10);
   1300     }
   1301     printf("%s: %s: timeout, last status 0x%x\n", device_xname(sc->sc_dev),
   1302         __func__, npe_reg_read(sc, IX_NPESTAT));
   1303     return 0;
   1304 }
   1305 
   1306 static int
   1307 ixpnpe_intr(void *arg)
   1308 {
   1309     struct ixpnpe_softc *sc = arg;
   1310     uint32_t status;
   1311 
   1312     status = npe_reg_read(sc, IX_NPESTAT);
   1313     if ((status & IX_NPESTAT_OFINT) == 0) {
   1314 	/* NB: should not happen */
   1315 	printf("%s: %s: status 0x%x\n", device_xname(sc->sc_dev), __func__, status);
   1316 	/* XXX must silence interrupt? */
   1317 	return(1);
   1318     }
   1319     /*
   1320      * A message is waiting in the output FIFO, copy it so
   1321      * the interrupt will be silenced; then signal anyone
   1322      * waiting to collect the result.
   1323      */
   1324     sc->sc_msgwaiting = -1;		/* NB: error indicator */
   1325     if (ixpnpe_ofifo_wait(sc)) {
   1326 	sc->sc_msg[0] = npe_reg_read(sc, IX_NPEFIFO);
   1327 	if (ixpnpe_ofifo_wait(sc)) {
   1328 	    sc->sc_msg[1] = npe_reg_read(sc, IX_NPEFIFO);
   1329 	    sc->sc_msgwaiting = 1;	/* successful fetch */
   1330 	}
   1331     }
   1332     if (sc->sc_msg[0] == (NPE_MACRECOVERYSTART << NPE_MAC_MSGID_SHL)) {
   1333 	    int s;
   1334 
   1335 	    s = splnet();
   1336 	    delay(100); /* delay 100usec */
   1337 	    if (sc->macresetcbfunc != NULL)
   1338 		    sc->macresetcbfunc(sc->macresetcbarg);
   1339 	    splx(s);
   1340     }
   1341 
   1342 #if 0
   1343     /* XXX Too dangerous! see ixpnpe_recvmsg_locked() */
   1344     wakeup(sc);
   1345 #endif
   1346 
   1347     return (1);
   1348 }
   1349 
   1350 static int
   1351 ixpnpe_ififo_wait(struct ixpnpe_softc *sc)
   1352 {
   1353     int i;
   1354 
   1355     for (i = 0; i < IX_NPEMH_MAXTRIES; i++) {
   1356 	if (npe_reg_read(sc, IX_NPESTAT) & IX_NPESTAT_IFNF)
   1357 	    return 1;
   1358 	DELAY(10);
   1359     }
   1360     return 0;
   1361 }
   1362 
   1363 static int
   1364 ixpnpe_sendmsg_locked(struct ixpnpe_softc *sc, const uint32_t msg[2])
   1365 {
   1366     int error = 0;
   1367 
   1368     sc->sc_msgwaiting = 0;
   1369     if (ixpnpe_ififo_wait(sc)) {
   1370 	npe_reg_write(sc, IX_NPEFIFO, msg[0]);
   1371 	if (ixpnpe_ififo_wait(sc))
   1372 	    npe_reg_write(sc, IX_NPEFIFO, msg[1]);
   1373 	else
   1374 	    error = EIO;
   1375     } else
   1376 	error = EIO;
   1377 
   1378     if (error)
   1379 	printf("%s: input FIFO timeout, msg [0x%x,0x%x]\n",
   1380 	    device_xname(sc->sc_dev), msg[0], msg[1]);
   1381     return error;
   1382 }
   1383 
   1384 static int
   1385 ixpnpe_recvmsg_locked(struct ixpnpe_softc *sc, uint32_t msg[2])
   1386 {
   1387 
   1388 	if (!sc->sc_msgwaiting) {
   1389 		/* XXX interrupt context - cannot sleep */
   1390 		delay(1000);	/* wait 1ms (is it ok?)*/
   1391 	}
   1392 	memcpy(msg, sc->sc_msg, sizeof(sc->sc_msg));
   1393 	/* NB: sc_msgwaiting != 1 means the ack fetch failed */
   1394 	return sc->sc_msgwaiting != 1 ? EIO : 0;
   1395 }
   1396 
   1397 /*
   1398  * Send a msg to the NPE and wait for a reply.  We use the
   1399  * private mutex and sleep until an interrupt is received
   1400  * signalling the availability of data in the output FIFO
   1401  * so the caller cannot be holding a mutex.  May be better
   1402  * piggyback on the caller's mutex instead but that would
   1403  * make other locking confusing.
   1404  */
   1405 int
   1406 ixpnpe_sendandrecvmsg(struct ixpnpe_softc *sc,
   1407 	const uint32_t send[2], uint32_t recv[2])
   1408 {
   1409     int error;
   1410 
   1411     mutex_enter(&sc->sc_lock);
   1412     error = ixpnpe_sendmsg_locked(sc, send);
   1413     if (error == 0)
   1414 	error = ixpnpe_recvmsg_locked(sc, recv);
   1415     mutex_exit(&sc->sc_lock);
   1416 
   1417     return error;
   1418 }
   1419 
   1420 /* XXX temporary, not reliable */
   1421 
   1422 int
   1423 ixpnpe_sendmsg(struct ixpnpe_softc *sc, const uint32_t msg[2])
   1424 {
   1425     int error;
   1426 
   1427     mutex_enter(&sc->sc_lock);
   1428     error = ixpnpe_sendmsg_locked(sc, msg);
   1429     mutex_exit(&sc->sc_lock);
   1430 
   1431     return error;
   1432 }
   1433 
   1434 int
   1435 ixpnpe_recvmsg(struct ixpnpe_softc *sc, uint32_t msg[2])
   1436 {
   1437     int error;
   1438 
   1439     mutex_enter(&sc->sc_lock);
   1440     if (sc->sc_msgwaiting)
   1441 	memcpy(msg, sc->sc_msg, sizeof(sc->sc_msg));
   1442     /* NB: sc_msgwaiting != 1 means the ack fetch failed */
   1443     error = sc->sc_msgwaiting != 1 ? EIO : 0;
   1444     mutex_exit(&sc->sc_lock);
   1445 
   1446     return error;
   1447 }
   1448