ixp425_npe.c revision 1.12 1 /* $NetBSD: ixp425_npe.c,v 1.12 2021/04/24 23:36:29 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2006 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 *
18 * NO WARRANTY
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29 * THE POSSIBILITY OF SUCH DAMAGES.
30 */
31
32 /*-
33 * Copyright (c) 2001-2005, Intel Corporation.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the Intel Corporation nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
50 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 */
61 #include <sys/cdefs.h>
62 #if 0
63 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/ixp425_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
64 #endif
65 __KERNEL_RCSID(0, "$NetBSD: ixp425_npe.c,v 1.12 2021/04/24 23:36:29 thorpej Exp $");
66
67 /*
68 * Intel XScale Network Processing Engine (NPE) support.
69 *
70 * Each NPE has an ixpnpeX device associated with it that is
71 * attached at boot. Depending on the microcode loaded into
72 * an NPE there may be an Ethernet interface (npeX) or some
73 * other network interface (e.g. for ATM). This file has support
74 * for loading microcode images and the associated NPE CPU
75 * manipulations (start, stop, reset).
76 *
77 * The code here basically replaces the npeDl and npeMh classes
78 * in the Intel Access Library (IAL).
79 *
80 * NB: Microcode images are loaded with firmware(9). To
81 * include microcode in a static kernel include the
82 * ixpnpe_fw device. Otherwise the firmware will be
83 * automatically loaded from the filesystem.
84 */
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/kernel.h>
88 #include <sys/malloc.h>
89 #include <sys/mutex.h>
90 #include <sys/time.h>
91 #include <sys/proc.h>
92
93 #include <dev/firmload.h>
94
95 #include <sys/bus.h>
96 #include <machine/cpu.h>
97 #include <machine/intr.h>
98
99 #include <arm/xscale/ixp425reg.h>
100 #include <arm/xscale/ixp425var.h>
101 #include <arm/xscale/ixp425_ixmevar.h>
102
103 #include <arm/xscale/ixp425_npereg.h>
104 #include <arm/xscale/ixp425_npevar.h>
105 #include <arm/xscale/ixp425_if_npereg.h>
106
107 #include "locators.h"
108
109 /*
110 * IXP425_NPE_MICROCODE will be defined by ixp425-fw.mk IFF the
111 * microcode object file exists in sys/arch/arm/xscale.
112 *
113 * To permit building the NPE drivers without microcode (so they
114 * don't bitrot due to lack of use), we use "empty" microcode so
115 * that the NPE drivers will simply fail to start at runtime.
116 */
117 #ifdef IXP425_NPE_MICROCODE
118 extern char _binary_IxNpeMicrocode_dat_start[];
119 #else
120 static char _binary_IxNpeMicrocode_dat_start[] = {
121 0xfe, 0xed, 0xf0, 0x0d, 0xfe, 0xed, 0xf0, 0x0d
122 };
123 #endif
124
125 #define IX_NPEDL_NPEIMAGE_FIELD_MASK 0xff
126
127 /* used to read download map from version in microcode image */
128 #define IX_NPEDL_BLOCK_TYPE_INSTRUCTION 0x00000000
129 #define IX_NPEDL_BLOCK_TYPE_DATA 0x00000001
130 #define IX_NPEDL_BLOCK_TYPE_STATE 0x00000002
131 #define IX_NPEDL_END_OF_DOWNLOAD_MAP 0x0000000F
132
133 /*
134 * masks used to extract address info from State information context
135 * register addresses as read from microcode image
136 */
137 #define IX_NPEDL_MASK_STATE_ADDR_CTXT_REG 0x0000000F
138 #define IX_NPEDL_MASK_STATE_ADDR_CTXT_NUM 0x000000F0
139
140 /* LSB offset of Context Number field in State-Info Context Address */
141 #define IX_NPEDL_OFFSET_STATE_ADDR_CTXT_NUM 4
142
143 /* size (in words) of single State Information entry (ctxt reg address|data) */
144 #define IX_NPEDL_STATE_INFO_ENTRY_SIZE 2
145
146 typedef struct {
147 uint32_t type;
148 uint32_t offset;
149 } IxNpeDlNpeMgrDownloadMapBlockEntry;
150
151 typedef union {
152 IxNpeDlNpeMgrDownloadMapBlockEntry block;
153 uint32_t eodmMarker;
154 } IxNpeDlNpeMgrDownloadMapEntry;
155
156 typedef struct {
157 /* 1st entry in the download map (there may be more than one) */
158 IxNpeDlNpeMgrDownloadMapEntry entry[1];
159 } IxNpeDlNpeMgrDownloadMap;
160
161 /* used to access an instruction or data block in a microcode image */
162 typedef struct {
163 uint32_t npeMemAddress;
164 uint32_t size;
165 uint32_t data[1];
166 } IxNpeDlNpeMgrCodeBlock;
167
168 /* used to access each Context Reg entry state-information block */
169 typedef struct {
170 uint32_t addressInfo;
171 uint32_t value;
172 } IxNpeDlNpeMgrStateInfoCtxtRegEntry;
173
174 /* used to access a state-information block in a microcode image */
175 typedef struct {
176 uint32_t size;
177 IxNpeDlNpeMgrStateInfoCtxtRegEntry ctxtRegEntry[1];
178 } IxNpeDlNpeMgrStateInfoBlock;
179
180 static int npe_debug = 0;
181 #define DPRINTF(dev, fmt, ...) do { \
182 if (npe_debug) printf(fmt, __VA_ARGS__); \
183 } while (0)
184 #define DPRINTFn(n, dev, fmt, ...) do { \
185 if (npe_debug >= n) printf(fmt, __VA_ARGS__); \
186 } while (0)
187
188 static int npe_checkbits(struct ixpnpe_softc *, uint32_t reg, uint32_t);
189 static int npe_isstopped(struct ixpnpe_softc *);
190 static int npe_load_ins(struct ixpnpe_softc *,
191 const IxNpeDlNpeMgrCodeBlock *bp, int verify);
192 static int npe_load_data(struct ixpnpe_softc *,
193 const IxNpeDlNpeMgrCodeBlock *bp, int verify);
194 static int npe_load_stateinfo(struct ixpnpe_softc *,
195 const IxNpeDlNpeMgrStateInfoBlock *bp, int verify);
196 static int npe_load_image(struct ixpnpe_softc *,
197 const uint32_t *imageCodePtr, int verify);
198 static int npe_cpu_reset(struct ixpnpe_softc *);
199 static int npe_cpu_start(struct ixpnpe_softc *);
200 static int npe_cpu_stop(struct ixpnpe_softc *);
201 static void npe_cmd_issue_write(struct ixpnpe_softc *,
202 uint32_t cmd, uint32_t addr, uint32_t data);
203 static uint32_t npe_cmd_issue_read(struct ixpnpe_softc *,
204 uint32_t cmd, uint32_t addr);
205 static int npe_ins_write(struct ixpnpe_softc *,
206 uint32_t addr, uint32_t data, int verify);
207 static int npe_data_write(struct ixpnpe_softc *,
208 uint32_t addr, uint32_t data, int verify);
209 static void npe_ecs_reg_write(struct ixpnpe_softc *,
210 uint32_t reg, uint32_t data);
211 static uint32_t npe_ecs_reg_read(struct ixpnpe_softc *, uint32_t reg);
212 static void npe_issue_cmd(struct ixpnpe_softc *, uint32_t command);
213 static void npe_cpu_step_save(struct ixpnpe_softc *);
214 static int npe_cpu_step(struct ixpnpe_softc *, uint32_t npeInstruction,
215 uint32_t ctxtNum, uint32_t ldur);
216 static void npe_cpu_step_restore(struct ixpnpe_softc *);
217 static int npe_logical_reg_read(struct ixpnpe_softc *,
218 uint32_t regAddr, uint32_t regSize,
219 uint32_t ctxtNum, uint32_t *regVal);
220 static int npe_logical_reg_write(struct ixpnpe_softc *,
221 uint32_t regAddr, uint32_t regVal,
222 uint32_t regSize, uint32_t ctxtNum, int verify);
223 static int npe_physical_reg_write(struct ixpnpe_softc *,
224 uint32_t regAddr, uint32_t regValue, int verify);
225 static int npe_ctx_reg_write(struct ixpnpe_softc *, uint32_t ctxtNum,
226 uint32_t ctxtReg, uint32_t ctxtRegVal, int verify);
227
228 static int ixpnpe_intr(void *arg);
229
230 static uint32_t
231 npe_reg_read(struct ixpnpe_softc *sc, bus_size_t off)
232 {
233 uint32_t v = bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
234 DPRINTFn(9, sc->sc_dev, "%s(0x%lx) => 0x%x\n", __func__, off, v);
235 return v;
236 }
237
238 static void
239 npe_reg_write(struct ixpnpe_softc *sc, bus_size_t off, uint32_t val)
240 {
241 DPRINTFn(9, sc->sc_dev, "%s(0x%lx, 0x%x)\n", __func__, off, val);
242 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
243 }
244
245 static int ixpnpe_match(device_t, cfdata_t, void *);
246 static void ixpnpe_attach(device_t, device_t, void *);
247 static int ixpnpe_print(void *, const char *);
248 static int ixpnpe_search(device_t, cfdata_t, const int *, void *);
249
250 CFATTACH_DECL_NEW(ixpnpe, sizeof(struct ixpnpe_softc),
251 ixpnpe_match, ixpnpe_attach, NULL, NULL);
252
253 static int
254 ixpnpe_match(device_t parent, cfdata_t match, void *arg)
255 {
256 struct ixme_attach_args *ixa = arg;
257
258 return (ixa->ixa_npe == 1 || ixa->ixa_npe == 2);
259 }
260
261 static void
262 ixpnpe_attach(device_t parent, device_t self, void *arg)
263 {
264 struct ixpnpe_softc *sc = device_private(self);
265 struct ixme_attach_args *ixa = arg;
266 bus_addr_t base;
267 int irq;
268
269 aprint_naive("\n");
270 aprint_normal("\n");
271
272 sc->sc_dev = self;
273 sc->sc_iot = ixa->ixa_iot;
274 sc->sc_dt = ixa->ixa_dt;
275 sc->sc_unit = ixa->ixa_npe;
276
277 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_VM);
278
279 /* XXX: Check features to ensure this NPE is enabled */
280
281 switch (ixa->ixa_npe) {
282 default:
283 panic("%s: Invalid NPE!", device_xname(self));
284
285 case 1:
286 base = IXP425_NPE_B_HWBASE;
287 sc->sc_size = IXP425_NPE_B_SIZE;
288 irq = IXP425_INT_NPE_B;
289
290 /* size of instruction memory */
291 sc->insMemSize = IX_NPEDL_INS_MEMSIZE_WORDS_NPEB;
292 /* size of data memory */
293 sc->dataMemSize = IX_NPEDL_DATA_MEMSIZE_WORDS_NPEB;
294 break;
295
296 case 2:
297 base = IXP425_NPE_C_HWBASE;
298 sc->sc_size = IXP425_NPE_C_SIZE;
299 irq = IXP425_INT_NPE_C;
300
301 /* size of instruction memory */
302 sc->insMemSize = IX_NPEDL_INS_MEMSIZE_WORDS_NPEC;
303 /* size of data memory */
304 sc->dataMemSize = IX_NPEDL_DATA_MEMSIZE_WORDS_NPEC;
305 break;
306 }
307 if (bus_space_map(sc->sc_iot, base, sc->sc_size, 0, &sc->sc_ioh))
308 panic("%s: Cannot map registers", device_xname(self));
309
310 /*
311 * Setup IRQ and handler for NPE message support.
312 */
313 sc->sc_ih = ixp425_intr_establish(irq, IPL_NET, ixpnpe_intr, sc);
314 if (sc->sc_ih == NULL)
315 panic("%s: Unable to establish irq %u", device_xname(self), irq);
316 /* enable output fifo interrupts (NB: must also set OFIFO Write Enable) */
317 npe_reg_write(sc, IX_NPECTL,
318 npe_reg_read(sc, IX_NPECTL) | (IX_NPECTL_OFE | IX_NPECTL_OFWE));
319
320 config_search(self, ixa,
321 CFARG_SEARCH, ixpnpe_search,
322 CFARG_EOL);
323 }
324
325 static int
326 ixpnpe_print(void *arg, const char *name)
327 {
328
329 return (UNCONF);
330 }
331
332 static int
333 ixpnpe_search(device_t parent, cfdata_t cf, const int *ldesc, void *arg)
334 {
335 struct ixpnpe_softc *sc = device_private(parent);
336 struct ixme_attach_args *ixa = arg;
337 struct ixpnpe_attach_args na;
338
339 na.na_unit = ixa->ixa_npe;
340 na.na_phy = cf->cf_loc[IXPNPECF_PHY];
341 na.na_npe = sc;
342 na.na_iot = ixa->ixa_iot;
343 na.na_dt = ixa->ixa_dt;
344
345 if (config_probe(parent, cf, &na)) {
346 config_attach(parent, cf, &na, ixpnpe_print, CFARG_EOL);
347 return (1);
348 }
349
350 return (0);
351 }
352
353 int
354 ixpnpe_stopandreset(struct ixpnpe_softc *sc)
355 {
356 int error;
357
358 mutex_enter(&sc->sc_lock);
359 error = npe_cpu_stop(sc); /* stop NPE */
360 if (error == 0)
361 error = npe_cpu_reset(sc); /* reset it */
362 if (error == 0)
363 sc->started = 0; /* mark stopped */
364 mutex_exit(&sc->sc_lock);
365
366 DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
367 return error;
368 }
369
370 static int
371 ixpnpe_start_locked(struct ixpnpe_softc *sc)
372 {
373 int error;
374
375 if (!sc->started) {
376 error = npe_cpu_start(sc);
377 if (error == 0)
378 sc->started = 1;
379 } else
380 error = 0;
381
382 DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
383 return error;
384 }
385
386 int
387 ixpnpe_start(struct ixpnpe_softc *sc)
388 {
389 int ret;
390
391 mutex_enter(&sc->sc_lock);
392 ret = ixpnpe_start_locked(sc);
393 mutex_exit(&sc->sc_lock);
394 return (ret);
395 }
396
397 int
398 ixpnpe_stop(struct ixpnpe_softc *sc)
399 {
400 int error;
401
402 mutex_enter(&sc->sc_lock);
403 error = npe_cpu_stop(sc);
404 if (error == 0)
405 sc->started = 0;
406 mutex_exit(&sc->sc_lock);
407
408 DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
409 return error;
410 }
411
412 /*
413 * Indicates the start of an NPE Image, in new NPE Image Library format.
414 * 2 consecutive occurances indicates the end of the NPE Image Library
415 */
416 #define NPE_IMAGE_MARKER 0xfeedf00d
417
418 /*
419 * NPE Image Header definition, used in new NPE Image Library format
420 */
421 typedef struct {
422 uint32_t marker;
423 uint32_t id;
424 uint32_t size;
425 } IxNpeDlImageMgrImageHeader;
426
427 static int
428 npe_findimage(struct ixpnpe_softc *sc,
429 const uint32_t *imageLibrary, uint32_t imageId,
430 const uint32_t **imagePtr, uint32_t *imageSize)
431 {
432 const IxNpeDlImageMgrImageHeader *image;
433 uint32_t offset = 0;
434
435 while (imageLibrary[offset] == NPE_IMAGE_MARKER) {
436 image = (const IxNpeDlImageMgrImageHeader *)&imageLibrary[offset];
437 offset += sizeof(IxNpeDlImageMgrImageHeader)/sizeof(uint32_t);
438
439 DPRINTF(sc->sc_dev, "%s: off %u mark 0x%x id 0x%x size %u\n",
440 __func__, offset, image->marker, image->id, image->size);
441 if (image->id == imageId) {
442 *imagePtr = imageLibrary + offset;
443 *imageSize = image->size;
444 return 0;
445 }
446 /* 2 consecutive NPE_IMAGE_MARKER's indicates end of library */
447 if (image->id == NPE_IMAGE_MARKER) {
448 printf("%s: imageId 0x%08x not found in image library header\n",
449 device_xname(sc->sc_dev), imageId);
450 /* reached end of library, image not found */
451 return EIO;
452 }
453 offset += image->size;
454 }
455 return EIO;
456 }
457
458 int
459 ixpnpe_init(struct ixpnpe_softc *sc, const char *imageName, uint32_t imageId)
460 {
461 uint32_t imageSize;
462 const uint32_t *imageCodePtr;
463 void *fw;
464 int error;
465
466 DPRINTF(sc->sc_dev, "load %s, imageId 0x%08x\n", imageName, imageId);
467
468 #if 0
469 IxFeatureCtrlDeviceId devid = IX_NPEDL_DEVICEID_FROM_IMAGEID_GET(imageId);
470 /*
471 * Checking if image being loaded is meant for device that is running.
472 * Image is forward compatible. i.e Image built for IXP42X should run
473 * on IXP46X but not vice versa.
474 */
475 if (devid > (ixFeatureCtrlDeviceRead() & IX_FEATURE_CTRL_DEVICE_TYPE_MASK))
476 return EINVAL;
477 #endif
478 error = ixpnpe_stopandreset(sc); /* stop and reset the NPE */
479 if (error != 0)
480 return error;
481
482 fw = (void *)_binary_IxNpeMicrocode_dat_start;
483
484 /* Locate desired image in files w/ combined images */
485 error = npe_findimage(sc, (void *)fw /*fw->data*/, imageId, &imageCodePtr, &imageSize);
486 if (error != 0)
487 goto done;
488
489 /*
490 * If download was successful, store image Id in list of
491 * currently loaded images. If a critical error occured
492 * during download, record that the NPE has an invalid image
493 */
494 mutex_enter(&sc->sc_lock);
495 error = npe_load_image(sc, imageCodePtr, 1 /*VERIFY*/);
496 if (error == 0) {
497 sc->validImage = 1;
498 error = ixpnpe_start_locked(sc);
499 } else {
500 sc->validImage = 0;
501 }
502 sc->functionalityId = IX_NPEDL_FUNCTIONID_FROM_IMAGEID_GET(imageId);
503 mutex_exit(&sc->sc_lock);
504 done:
505 DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
506 return error;
507 }
508
509 int
510 ixpnpe_getfunctionality(struct ixpnpe_softc *sc)
511 {
512 return (sc->validImage ? sc->functionalityId : 0);
513 }
514
515 static int
516 npe_checkbits(struct ixpnpe_softc *sc, uint32_t reg, uint32_t expectedBitsSet)
517 {
518 uint32_t val;
519
520 val = npe_reg_read(sc, reg);
521 DPRINTFn(5, sc->sc_dev, "%s(0x%x, 0x%x) => 0x%x (%u)\n",
522 __func__, reg, expectedBitsSet, val,
523 (val & expectedBitsSet) == expectedBitsSet);
524 return ((val & expectedBitsSet) == expectedBitsSet);
525 }
526
527 static int
528 npe_isstopped(struct ixpnpe_softc *sc)
529 {
530 return npe_checkbits(sc,
531 IX_NPEDL_REG_OFFSET_EXCTL, IX_NPEDL_EXCTL_STATUS_STOP);
532 }
533
534 static int
535 npe_load_ins(struct ixpnpe_softc *sc,
536 const IxNpeDlNpeMgrCodeBlock *bp, int verify)
537 {
538 uint32_t npeMemAddress;
539 int i, blockSize;
540
541 npeMemAddress = bp->npeMemAddress;
542 blockSize = bp->size; /* NB: instruction/data count */
543 if (npeMemAddress + blockSize > sc->insMemSize) {
544 printf("%s: Block size too big for NPE memory\n", device_xname(sc->sc_dev));
545 return EINVAL; /* XXX */
546 }
547 for (i = 0; i < blockSize; i++, npeMemAddress++) {
548 if (npe_ins_write(sc, npeMemAddress, bp->data[i], verify) != 0) {
549 printf("%s: NPE instruction write failed", device_xname(sc->sc_dev));
550 return EIO;
551 }
552 }
553 return 0;
554 }
555
556 static int
557 npe_load_data(struct ixpnpe_softc *sc,
558 const IxNpeDlNpeMgrCodeBlock *bp, int verify)
559 {
560 uint32_t npeMemAddress;
561 int i, blockSize;
562
563 npeMemAddress = bp->npeMemAddress;
564 blockSize = bp->size; /* NB: instruction/data count */
565 if (npeMemAddress + blockSize > sc->dataMemSize) {
566 printf("%s: Block size too big for NPE memory\n", device_xname(sc->sc_dev));
567 return EINVAL;
568 }
569 for (i = 0; i < blockSize; i++, npeMemAddress++) {
570 if (npe_data_write(sc, npeMemAddress, bp->data[i], verify) != 0) {
571 printf("%s: NPE data write failed\n", device_xname(sc->sc_dev));
572 return EIO;
573 }
574 }
575 return 0;
576 }
577
578 static int
579 npe_load_stateinfo(struct ixpnpe_softc *sc,
580 const IxNpeDlNpeMgrStateInfoBlock *bp, int verify)
581 {
582 int i, nentries, error;
583
584 npe_cpu_step_save(sc);
585
586 /* for each state-info context register entry in block */
587 nentries = bp->size / IX_NPEDL_STATE_INFO_ENTRY_SIZE;
588 error = 0;
589 for (i = 0; i < nentries; i++) {
590 /* each state-info entry is 2 words (address, value) in length */
591 uint32_t regVal = bp->ctxtRegEntry[i].value;
592 uint32_t addrInfo = bp->ctxtRegEntry[i].addressInfo;
593
594 uint32_t reg = (addrInfo & IX_NPEDL_MASK_STATE_ADDR_CTXT_REG);
595 uint32_t cNum = (addrInfo & IX_NPEDL_MASK_STATE_ADDR_CTXT_NUM) >>
596 IX_NPEDL_OFFSET_STATE_ADDR_CTXT_NUM;
597
598 /* error-check Context Register No. and Context Number values */
599 if (reg >= IX_NPEDL_CTXT_REG_MAX) {
600 printf("%s: invalid Context Register %u\n", device_xname(sc->sc_dev),
601 reg);
602 error = EINVAL;
603 break;
604 }
605 if (cNum >= IX_NPEDL_CTXT_NUM_MAX) {
606 printf("%s: invalid Context Number %u\n", device_xname(sc->sc_dev),
607 cNum);
608 error = EINVAL;
609 break;
610 }
611 /* NOTE that there is no STEVT register for Context 0 */
612 if (cNum == 0 && reg == IX_NPEDL_CTXT_REG_STEVT) {
613 printf("%s: no STEVT for Context 0\n", device_xname(sc->sc_dev));
614 error = EINVAL;
615 break;
616 }
617
618 if (npe_ctx_reg_write(sc, cNum, reg, regVal, verify) != 0) {
619 printf("%s: write of state-info to NPE failed\n",
620 device_xname(sc->sc_dev));
621 error = EIO;
622 break;
623 }
624 }
625
626 npe_cpu_step_restore(sc);
627 return error;
628 }
629
630 static int
631 npe_load_image(struct ixpnpe_softc *sc,
632 const uint32_t *imageCodePtr, int verify)
633 {
634 #define EOM(marker) ((marker) == IX_NPEDL_END_OF_DOWNLOAD_MAP)
635 const IxNpeDlNpeMgrDownloadMap *downloadMap;
636 int i, error;
637
638 if (!npe_isstopped(sc)) { /* verify NPE is stopped */
639 printf("%s: cannot load image, NPE not stopped\n", device_xname(sc->sc_dev));
640 return EIO;
641 }
642
643 /*
644 * Read Download Map, checking each block type and calling
645 * appropriate function to perform download
646 */
647 error = 0;
648 downloadMap = (const IxNpeDlNpeMgrDownloadMap *) imageCodePtr;
649 for (i = 0; !EOM(downloadMap->entry[i].eodmMarker); i++) {
650 /* calculate pointer to block to be downloaded */
651 const uint32_t *bp = imageCodePtr + downloadMap->entry[i].block.offset;
652 switch (downloadMap->entry[i].block.type) {
653 case IX_NPEDL_BLOCK_TYPE_INSTRUCTION:
654 error = npe_load_ins(sc,
655 (const IxNpeDlNpeMgrCodeBlock *) bp, verify);
656 DPRINTF(sc->sc_dev, "%s: inst, error %d\n", __func__, error);
657 break;
658 case IX_NPEDL_BLOCK_TYPE_DATA:
659 error = npe_load_data(sc,
660 (const IxNpeDlNpeMgrCodeBlock *) bp, verify);
661 DPRINTF(sc->sc_dev, "%s: data, error %d\n", __func__, error);
662 break;
663 case IX_NPEDL_BLOCK_TYPE_STATE:
664 error = npe_load_stateinfo(sc,
665 (const IxNpeDlNpeMgrStateInfoBlock *) bp, verify);
666 DPRINTF(sc->sc_dev, "%s: state, error %d\n", __func__, error);
667 break;
668 default:
669 printf("%s: unknown block type 0x%x in download map\n",
670 device_xname(sc->sc_dev), downloadMap->entry[i].block.type);
671 error = EIO; /* XXX */
672 break;
673 }
674 if (error != 0)
675 break;
676 }
677 return error;
678 #undef EOM
679 }
680
681 /* contains Reset values for Context Store Registers */
682 static const struct {
683 uint32_t regAddr;
684 uint32_t regResetVal;
685 } ixNpeDlEcsRegResetValues[] = {
686 { IX_NPEDL_ECS_BG_CTXT_REG_0, IX_NPEDL_ECS_BG_CTXT_REG_0_RESET },
687 { IX_NPEDL_ECS_BG_CTXT_REG_1, IX_NPEDL_ECS_BG_CTXT_REG_1_RESET },
688 { IX_NPEDL_ECS_BG_CTXT_REG_2, IX_NPEDL_ECS_BG_CTXT_REG_2_RESET },
689 { IX_NPEDL_ECS_PRI_1_CTXT_REG_0, IX_NPEDL_ECS_PRI_1_CTXT_REG_0_RESET },
690 { IX_NPEDL_ECS_PRI_1_CTXT_REG_1, IX_NPEDL_ECS_PRI_1_CTXT_REG_1_RESET },
691 { IX_NPEDL_ECS_PRI_1_CTXT_REG_2, IX_NPEDL_ECS_PRI_1_CTXT_REG_2_RESET },
692 { IX_NPEDL_ECS_PRI_2_CTXT_REG_0, IX_NPEDL_ECS_PRI_2_CTXT_REG_0_RESET },
693 { IX_NPEDL_ECS_PRI_2_CTXT_REG_1, IX_NPEDL_ECS_PRI_2_CTXT_REG_1_RESET },
694 { IX_NPEDL_ECS_PRI_2_CTXT_REG_2, IX_NPEDL_ECS_PRI_2_CTXT_REG_2_RESET },
695 { IX_NPEDL_ECS_DBG_CTXT_REG_0, IX_NPEDL_ECS_DBG_CTXT_REG_0_RESET },
696 { IX_NPEDL_ECS_DBG_CTXT_REG_1, IX_NPEDL_ECS_DBG_CTXT_REG_1_RESET },
697 { IX_NPEDL_ECS_DBG_CTXT_REG_2, IX_NPEDL_ECS_DBG_CTXT_REG_2_RESET },
698 { IX_NPEDL_ECS_INSTRUCT_REG, IX_NPEDL_ECS_INSTRUCT_REG_RESET }
699 };
700
701 /* contains Reset values for Context Store Registers */
702 static const uint32_t ixNpeDlCtxtRegResetValues[] = {
703 IX_NPEDL_CTXT_REG_RESET_STEVT,
704 IX_NPEDL_CTXT_REG_RESET_STARTPC,
705 IX_NPEDL_CTXT_REG_RESET_REGMAP,
706 IX_NPEDL_CTXT_REG_RESET_CINDEX,
707 };
708
709 #define IX_NPEDL_RESET_NPE_PARITY 0x0800
710 #define IX_NPEDL_PARITY_BIT_MASK 0x3F00FFFF
711 #define IX_NPEDL_CONFIG_CTRL_REG_MASK 0x3F3FFFFF
712
713 static int
714 npe_cpu_reset(struct ixpnpe_softc *sc)
715 {
716 #define N(a) (sizeof(a) / sizeof(a[0]))
717 uint32_t ctxtReg; /* identifies Context Store reg (0-3) */
718 uint32_t regAddr;
719 uint32_t regVal;
720 uint32_t resetNpeParity;
721 uint32_t ixNpeConfigCtrlRegVal;
722 int i, error = 0;
723
724 /* pre-store the NPE Config Control Register Value */
725 ixNpeConfigCtrlRegVal = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_CTL);
726 ixNpeConfigCtrlRegVal |= 0x3F000000;
727
728 /* disable the parity interrupt */
729 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_CTL,
730 (ixNpeConfigCtrlRegVal & IX_NPEDL_PARITY_BIT_MASK));
731 DPRINTFn(2, sc->sc_dev, "%s: dis parity int, CTL => 0x%x\n",
732 __func__, ixNpeConfigCtrlRegVal & IX_NPEDL_PARITY_BIT_MASK);
733
734 npe_cpu_step_save(sc);
735
736 /*
737 * Clear the FIFOs.
738 */
739 while (npe_checkbits(sc,
740 IX_NPEDL_REG_OFFSET_WFIFO, IX_NPEDL_MASK_WFIFO_VALID)) {
741 /* read from the Watch-point FIFO until empty */
742 (void) npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WFIFO);
743 }
744
745 while (npe_checkbits(sc,
746 IX_NPEDL_REG_OFFSET_STAT, IX_NPEDL_MASK_STAT_OFNE)) {
747 /* read from the outFIFO until empty */
748 (void) npe_reg_read(sc, IX_NPEDL_REG_OFFSET_FIFO);
749 }
750
751 while (npe_checkbits(sc,
752 IX_NPEDL_REG_OFFSET_STAT, IX_NPEDL_MASK_STAT_IFNE)) {
753 /*
754 * Step execution of the NPE intruction to read inFIFO using
755 * the Debug Executing Context stack.
756 */
757 error = npe_cpu_step(sc, IX_NPEDL_INSTR_RD_FIFO, 0, 0);
758 if (error != 0) {
759 DPRINTF(sc->sc_dev, "%s: cannot step (1), error %u\n",
760 __func__, error);
761 npe_cpu_step_restore(sc);
762 return error;
763 }
764 }
765
766 /*
767 * Reset the mailbox reg
768 */
769 /* ...from XScale side */
770 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_MBST, IX_NPEDL_REG_RESET_MBST);
771 /* ...from NPE side */
772 error = npe_cpu_step(sc, IX_NPEDL_INSTR_RESET_MBOX, 0, 0);
773 if (error != 0) {
774 DPRINTF(sc->sc_dev, "%s: cannot step (2), error %u\n", __func__, error);
775 npe_cpu_step_restore(sc);
776 return error;
777 }
778
779 /*
780 * Reset the physical registers in the NPE register file:
781 * Note: no need to save/restore REGMAP for Context 0 here
782 * since all Context Store regs are reset in subsequent code.
783 */
784 for (regAddr = 0;
785 regAddr < IX_NPEDL_TOTAL_NUM_PHYS_REG && error == 0;
786 regAddr++) {
787 /* for each physical register in the NPE reg file, write 0 : */
788 error = npe_physical_reg_write(sc, regAddr, 0, true);
789 if (error != 0) {
790 DPRINTF(sc->sc_dev, "%s: cannot write phy reg, error %u\n",
791 __func__, error);
792 npe_cpu_step_restore(sc);
793 return error; /* abort reset */
794 }
795 }
796
797 /*
798 * Reset the context store:
799 */
800 for (i = IX_NPEDL_CTXT_NUM_MIN; i <= IX_NPEDL_CTXT_NUM_MAX; i++) {
801 /* set each context's Context Store registers to reset values: */
802 for (ctxtReg = 0; ctxtReg < IX_NPEDL_CTXT_REG_MAX; ctxtReg++) {
803 /* NOTE that there is no STEVT register for Context 0 */
804 if (!(i == 0 && ctxtReg == IX_NPEDL_CTXT_REG_STEVT)) {
805 regVal = ixNpeDlCtxtRegResetValues[ctxtReg];
806 error = npe_ctx_reg_write(sc, i, ctxtReg, regVal, true);
807 if (error != 0) {
808 DPRINTF(sc->sc_dev, "%s: cannot write ctx reg, error %u\n",
809 __func__, error);
810 npe_cpu_step_restore(sc);
811 return error; /* abort reset */
812 }
813 }
814 }
815 }
816
817 npe_cpu_step_restore(sc);
818
819 /* write Reset values to Execution Context Stack registers */
820 for (i = 0; i < N(ixNpeDlEcsRegResetValues); i++)
821 npe_ecs_reg_write(sc,
822 ixNpeDlEcsRegResetValues[i].regAddr,
823 ixNpeDlEcsRegResetValues[i].regResetVal);
824
825 /* clear the profile counter */
826 npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_CLR_PROFILE_CNT);
827
828 /* clear registers EXCT, AP0, AP1, AP2 and AP3 */
829 for (regAddr = IX_NPEDL_REG_OFFSET_EXCT;
830 regAddr <= IX_NPEDL_REG_OFFSET_AP3;
831 regAddr += sizeof(uint32_t))
832 npe_reg_write(sc, regAddr, 0);
833
834 /* Reset the Watch-count register */
835 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_WC, 0);
836
837 /*
838 * WR IXA00055043 - Remove IMEM Parity Introduced by NPE Reset Operation
839 */
840
841 /*
842 * Reset the NPE and its coprocessor - to reset internal
843 * states and remove parity error. Note this makes no
844 * sense based on the documentation. The feature control
845 * register always reads back as 0 on the ixp425 and further
846 * the bit definition of NPEA/NPEB is off by 1 according to
847 * the Intel documention--so we're blindly following the
848 * Intel code w/o any real understanding.
849 */
850 regVal = EXP_BUS_READ_4(ixp425_softc, EXP_FCTRL_OFFSET);
851 DPRINTFn(2, sc->sc_dev, "%s: FCTRL 0x%x\n", __func__, regVal);
852 resetNpeParity =
853 IX_NPEDL_RESET_NPE_PARITY << (1 + sc->sc_unit);
854 DPRINTFn(2, sc->sc_dev, "%s: FCTRL fuse parity, write 0x%x\n",
855 __func__, regVal | resetNpeParity);
856 EXP_BUS_WRITE_4(ixp425_softc, EXP_FCTRL_OFFSET, regVal | resetNpeParity);
857
858 /* un-fuse and un-reset the NPE & coprocessor */
859 DPRINTFn(2, sc->sc_dev, "%s: FCTRL unfuse parity, write 0x%x\n",
860 __func__, regVal & ~resetNpeParity);
861 EXP_BUS_WRITE_4(ixp425_softc, EXP_FCTRL_OFFSET, regVal &~ resetNpeParity);
862
863 /*
864 * Call NpeMgr function to stop the NPE again after the Feature Control
865 * has unfused and Un-Reset the NPE and its associated Coprocessors.
866 */
867 error = npe_cpu_stop(sc);
868
869 /* restore NPE configuration bus Control Register - Parity Settings */
870 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_CTL,
871 (ixNpeConfigCtrlRegVal & IX_NPEDL_CONFIG_CTRL_REG_MASK));
872 DPRINTFn(2, sc->sc_dev, "%s: restore CTL => 0x%x\n",
873 __func__, npe_reg_read(sc, IX_NPEDL_REG_OFFSET_CTL));
874
875 return error;
876 #undef N
877 }
878
879 static int
880 npe_cpu_start(struct ixpnpe_softc *sc)
881 {
882 uint32_t ecsRegVal;
883
884 /*
885 * Ensure only Background Context Stack Level is Active by turning off
886 * the Active bit in each of the other Executing Context Stack levels.
887 */
888 ecsRegVal = npe_ecs_reg_read(sc, IX_NPEDL_ECS_PRI_1_CTXT_REG_0);
889 ecsRegVal &= ~IX_NPEDL_MASK_ECS_REG_0_ACTIVE;
890 npe_ecs_reg_write(sc, IX_NPEDL_ECS_PRI_1_CTXT_REG_0, ecsRegVal);
891
892 ecsRegVal = npe_ecs_reg_read(sc, IX_NPEDL_ECS_PRI_2_CTXT_REG_0);
893 ecsRegVal &= ~IX_NPEDL_MASK_ECS_REG_0_ACTIVE;
894 npe_ecs_reg_write(sc, IX_NPEDL_ECS_PRI_2_CTXT_REG_0, ecsRegVal);
895
896 ecsRegVal = npe_ecs_reg_read(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0);
897 ecsRegVal &= ~IX_NPEDL_MASK_ECS_REG_0_ACTIVE;
898 npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0, ecsRegVal);
899
900 /* clear the pipeline */
901 npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_CLR_PIPE);
902
903 /* start NPE execution by issuing command through EXCTL register on NPE */
904 npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_START);
905
906 /*
907 * Check execution status of NPE to verify operation was successful.
908 */
909 return npe_checkbits(sc,
910 IX_NPEDL_REG_OFFSET_EXCTL, IX_NPEDL_EXCTL_STATUS_RUN) ? 0 : EIO;
911 }
912
913 static int
914 npe_cpu_stop(struct ixpnpe_softc *sc)
915 {
916 /* stop NPE execution by issuing command through EXCTL register on NPE */
917 npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_STOP);
918
919 /* verify that NPE Stop was successful */
920 return npe_checkbits(sc,
921 IX_NPEDL_REG_OFFSET_EXCTL, IX_NPEDL_EXCTL_STATUS_STOP) ? 0 : EIO;
922 }
923
924 #define IX_NPEDL_REG_SIZE_BYTE 8
925 #define IX_NPEDL_REG_SIZE_SHORT 16
926 #define IX_NPEDL_REG_SIZE_WORD 32
927
928 /*
929 * Introduce extra read cycles after issuing read command to NPE
930 * so that we read the register after the NPE has updated it
931 * This is to overcome race condition between XScale and NPE
932 */
933 #define IX_NPEDL_DELAY_READ_CYCLES 2
934 /*
935 * To mask top three MSBs of 32bit word to download into NPE IMEM
936 */
937 #define IX_NPEDL_MASK_UNUSED_IMEM_BITS 0x1FFFFFFF;
938
939 static void
940 npe_cmd_issue_write(struct ixpnpe_softc *sc,
941 uint32_t cmd, uint32_t addr, uint32_t data)
942 {
943 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXDATA, data);
944 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXAD, addr);
945 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCTL, cmd);
946 }
947
948 static uint32_t
949 npe_cmd_issue_read(struct ixpnpe_softc *sc, uint32_t cmd, uint32_t addr)
950 {
951 uint32_t data;
952 int i;
953
954 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXAD, addr);
955 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCTL, cmd);
956 for (i = 0; i <= IX_NPEDL_DELAY_READ_CYCLES; i++)
957 data = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_EXDATA);
958 return data;
959 }
960
961 static int
962 npe_ins_write(struct ixpnpe_softc *sc, uint32_t addr, uint32_t data, int verify)
963 {
964 DPRINTFn(4, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, addr, data);
965 npe_cmd_issue_write(sc, IX_NPEDL_EXCTL_CMD_WR_INS_MEM, addr, data);
966 if (verify) {
967 uint32_t rdata;
968
969 /*
970 * Write invalid data to this reg, so we can see if we're reading
971 * the EXDATA register too early.
972 */
973 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXDATA, ~data);
974
975 /* Disabled since top 3 MSB are not used for Azusa hardware Refer WR:IXA00053900*/
976 data &= IX_NPEDL_MASK_UNUSED_IMEM_BITS;
977
978 rdata = npe_cmd_issue_read(sc, IX_NPEDL_EXCTL_CMD_RD_INS_MEM, addr);
979 rdata &= IX_NPEDL_MASK_UNUSED_IMEM_BITS;
980
981 if (data != rdata)
982 return EIO;
983 }
984 return 0;
985 }
986
987 static int
988 npe_data_write(struct ixpnpe_softc *sc, uint32_t addr, uint32_t data, int verify)
989 {
990 DPRINTFn(4, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, addr, data);
991 npe_cmd_issue_write(sc, IX_NPEDL_EXCTL_CMD_WR_DATA_MEM, addr, data);
992 if (verify) {
993 /*
994 * Write invalid data to this reg, so we can see if we're reading
995 * the EXDATA register too early.
996 */
997 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXDATA, ~data);
998 if (data != npe_cmd_issue_read(sc, IX_NPEDL_EXCTL_CMD_RD_DATA_MEM, addr))
999 return EIO;
1000 }
1001 return 0;
1002 }
1003
1004 static void
1005 npe_ecs_reg_write(struct ixpnpe_softc *sc, uint32_t reg, uint32_t data)
1006 {
1007 npe_cmd_issue_write(sc, IX_NPEDL_EXCTL_CMD_WR_ECS_REG, reg, data);
1008 }
1009
1010 static uint32_t
1011 npe_ecs_reg_read(struct ixpnpe_softc *sc, uint32_t reg)
1012 {
1013 return npe_cmd_issue_read(sc, IX_NPEDL_EXCTL_CMD_RD_ECS_REG, reg);
1014 }
1015
1016 static void
1017 npe_issue_cmd(struct ixpnpe_softc *sc, uint32_t command)
1018 {
1019 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCTL, command);
1020 }
1021
1022 static void
1023 npe_cpu_step_save(struct ixpnpe_softc *sc)
1024 {
1025 /* turn off the halt bit by clearing Execution Count register. */
1026 /* save reg contents 1st and restore later */
1027 sc->savedExecCount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_EXCT);
1028 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCT, 0);
1029
1030 /* ensure that IF and IE are on (temporarily), so that we don't end up
1031 * stepping forever */
1032 sc->savedEcsDbgCtxtReg2 = npe_ecs_reg_read(sc, IX_NPEDL_ECS_DBG_CTXT_REG_2);
1033
1034 npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_2,
1035 (sc->savedEcsDbgCtxtReg2 | IX_NPEDL_MASK_ECS_DBG_REG_2_IF |
1036 IX_NPEDL_MASK_ECS_DBG_REG_2_IE));
1037 }
1038
1039 static int
1040 npe_cpu_step(struct ixpnpe_softc *sc, uint32_t npeInstruction,
1041 uint32_t ctxtNum, uint32_t ldur)
1042 {
1043 #define IX_NPE_DL_MAX_NUM_OF_RETRIES 1000000
1044 uint32_t ecsDbgRegVal;
1045 uint32_t oldWatchcount, newWatchcount;
1046 int tries;
1047
1048 /* set the Active bit, and the LDUR, in the debug level */
1049 ecsDbgRegVal = IX_NPEDL_MASK_ECS_REG_0_ACTIVE |
1050 (ldur << IX_NPEDL_OFFSET_ECS_REG_0_LDUR);
1051
1052 npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0, ecsDbgRegVal);
1053
1054 /*
1055 * Set CCTXT at ECS DEBUG L3 to specify in which context to execute the
1056 * instruction, and set SELCTXT at ECS DEBUG Level to specify which context
1057 * store to access.
1058 * Debug ECS Level Reg 1 has form 0x000n000n, where n = context number
1059 */
1060 ecsDbgRegVal = (ctxtNum << IX_NPEDL_OFFSET_ECS_REG_1_CCTXT) |
1061 (ctxtNum << IX_NPEDL_OFFSET_ECS_REG_1_SELCTXT);
1062
1063 npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_1, ecsDbgRegVal);
1064
1065 /* clear the pipeline */
1066 npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_CLR_PIPE);
1067
1068 /* load NPE instruction into the instruction register */
1069 npe_ecs_reg_write(sc, IX_NPEDL_ECS_INSTRUCT_REG, npeInstruction);
1070
1071 /* we need this value later to wait for completion of NPE execution step */
1072 oldWatchcount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WC);
1073
1074 /* issue a Step One command via the Execution Control register */
1075 npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_STEP);
1076
1077 /*
1078 * Force the XScale to wait until the NPE has finished execution step
1079 * NOTE that this delay will be very small, just long enough to allow a
1080 * single NPE instruction to complete execution; if instruction execution
1081 * is not completed before timeout retries, exit the while loop.
1082 */
1083 newWatchcount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WC);
1084 for (tries = 0; tries < IX_NPE_DL_MAX_NUM_OF_RETRIES &&
1085 newWatchcount == oldWatchcount; tries++) {
1086 /* Watch Count register increments when NPE completes an instruction */
1087 newWatchcount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WC);
1088 }
1089 return (tries < IX_NPE_DL_MAX_NUM_OF_RETRIES) ? 0 : EIO;
1090 #undef IX_NPE_DL_MAX_NUM_OF_RETRIES
1091 }
1092
1093 static void
1094 npe_cpu_step_restore(struct ixpnpe_softc *sc)
1095 {
1096 /* clear active bit in debug level */
1097 npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0, 0);
1098
1099 /* clear the pipeline */
1100 npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_CLR_PIPE);
1101
1102 /* restore Execution Count register contents. */
1103 npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCT, sc->savedExecCount);
1104
1105 /* restore IF and IE bits to original values */
1106 npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_2, sc->savedEcsDbgCtxtReg2);
1107 }
1108
1109 static int
1110 npe_logical_reg_read(struct ixpnpe_softc *sc,
1111 uint32_t regAddr, uint32_t regSize,
1112 uint32_t ctxtNum, uint32_t *regVal)
1113 {
1114 uint32_t npeInstruction, mask;
1115 int error;
1116
1117 switch (regSize) {
1118 case IX_NPEDL_REG_SIZE_BYTE:
1119 npeInstruction = IX_NPEDL_INSTR_RD_REG_BYTE;
1120 mask = 0xff;
1121 break;
1122 case IX_NPEDL_REG_SIZE_SHORT:
1123 npeInstruction = IX_NPEDL_INSTR_RD_REG_SHORT;
1124 mask = 0xffff;
1125 break;
1126 case IX_NPEDL_REG_SIZE_WORD:
1127 npeInstruction = IX_NPEDL_INSTR_RD_REG_WORD;
1128 mask = 0xffffffff;
1129 break;
1130 default:
1131 return EINVAL;
1132 }
1133
1134 /* make regAddr be the SRC and DEST operands (e.g. movX d0, d0) */
1135 npeInstruction |= (regAddr << IX_NPEDL_OFFSET_INSTR_SRC) |
1136 (regAddr << IX_NPEDL_OFFSET_INSTR_DEST);
1137
1138 /* step execution of NPE intruction using Debug Executing Context stack */
1139 error = npe_cpu_step(sc, npeInstruction, ctxtNum, IX_NPEDL_RD_INSTR_LDUR);
1140 if (error != 0) {
1141 DPRINTF(sc->sc_dev, "%s(0x%x, %u, %u), cannot step, error %d\n",
1142 __func__, regAddr, regSize, ctxtNum, error);
1143 return error;
1144 }
1145 /* read value of register from Execution Data register */
1146 *regVal = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_EXDATA);
1147
1148 /* align value from left to right */
1149 *regVal = (*regVal >> (IX_NPEDL_REG_SIZE_WORD - regSize)) & mask;
1150
1151 return 0;
1152 }
1153
1154 static int
1155 npe_logical_reg_write(struct ixpnpe_softc *sc, uint32_t regAddr, uint32_t regVal,
1156 uint32_t regSize, uint32_t ctxtNum, int verify)
1157 {
1158 int error;
1159
1160 DPRINTFn(4, sc->sc_dev, "%s(0x%x, 0x%x, %u, %u)\n",
1161 __func__, regAddr, regVal, regSize, ctxtNum);
1162 if (regSize == IX_NPEDL_REG_SIZE_WORD) {
1163 /* NPE register addressing is left-to-right: e.g. |d0|d1|d2|d3| */
1164 /* Write upper half-word (short) to |d0|d1| */
1165 error = npe_logical_reg_write(sc, regAddr,
1166 regVal >> IX_NPEDL_REG_SIZE_SHORT,
1167 IX_NPEDL_REG_SIZE_SHORT, ctxtNum, verify);
1168 if (error != 0)
1169 return error;
1170
1171 /* Write lower half-word (short) to |d2|d3| */
1172 error = npe_logical_reg_write(sc,
1173 regAddr + sizeof(uint16_t),
1174 regVal & 0xffff,
1175 IX_NPEDL_REG_SIZE_SHORT, ctxtNum, verify);
1176 } else {
1177 uint32_t npeInstruction;
1178
1179 switch (regSize) {
1180 case IX_NPEDL_REG_SIZE_BYTE:
1181 npeInstruction = IX_NPEDL_INSTR_WR_REG_BYTE;
1182 regVal &= 0xff;
1183 break;
1184 case IX_NPEDL_REG_SIZE_SHORT:
1185 npeInstruction = IX_NPEDL_INSTR_WR_REG_SHORT;
1186 regVal &= 0xffff;
1187 break;
1188 default:
1189 return EINVAL;
1190 }
1191 /* fill dest operand field of instruction with destination reg addr */
1192 npeInstruction |= (regAddr << IX_NPEDL_OFFSET_INSTR_DEST);
1193
1194 /* fill src operand field of instruction with least-sig 5 bits of val*/
1195 npeInstruction |= ((regVal & IX_NPEDL_MASK_IMMED_INSTR_SRC_DATA) <<
1196 IX_NPEDL_OFFSET_INSTR_SRC);
1197
1198 /* fill coprocessor field of instruction with most-sig 11 bits of val*/
1199 npeInstruction |= ((regVal & IX_NPEDL_MASK_IMMED_INSTR_COPROC_DATA) <<
1200 IX_NPEDL_DISPLACE_IMMED_INSTR_COPROC_DATA);
1201
1202 /* step execution of NPE intruction using Debug ECS */
1203 error = npe_cpu_step(sc, npeInstruction,
1204 ctxtNum, IX_NPEDL_WR_INSTR_LDUR);
1205 }
1206 if (error != 0) {
1207 DPRINTF(sc->sc_dev, "%s(0x%x, 0x%x, %u, %u), error %u writing reg\n",
1208 __func__, regAddr, regVal, regSize, ctxtNum, error);
1209 return error;
1210 }
1211 if (verify) {
1212 uint32_t retRegVal;
1213
1214 error = npe_logical_reg_read(sc, regAddr, regSize, ctxtNum, &retRegVal);
1215 if (error == 0 && regVal != retRegVal)
1216 error = EIO; /* XXX ambiguous */
1217 }
1218 return error;
1219 }
1220
1221 /*
1222 * There are 32 physical registers used in an NPE. These are
1223 * treated as 16 pairs of 32-bit registers. To write one of the pair,
1224 * write the pair number (0-16) to the REGMAP for Context 0. Then write
1225 * the value to register 0 or 4 in the regfile, depending on which
1226 * register of the pair is to be written
1227 */
1228 static int
1229 npe_physical_reg_write(struct ixpnpe_softc *sc,
1230 uint32_t regAddr, uint32_t regValue, int verify)
1231 {
1232 int error;
1233
1234 /*
1235 * Set REGMAP for context 0 to (regAddr >> 1) to choose which pair (0-16)
1236 * of physical registers to write .
1237 */
1238 error = npe_logical_reg_write(sc, IX_NPEDL_CTXT_REG_ADDR_REGMAP,
1239 (regAddr >> IX_NPEDL_OFFSET_PHYS_REG_ADDR_REGMAP),
1240 IX_NPEDL_REG_SIZE_SHORT, 0, verify);
1241 if (error == 0) {
1242 /* regAddr = 0 or 4 */
1243 regAddr = (regAddr & IX_NPEDL_MASK_PHYS_REG_ADDR_LOGICAL_ADDR) *
1244 sizeof(uint32_t);
1245 error = npe_logical_reg_write(sc, regAddr, regValue,
1246 IX_NPEDL_REG_SIZE_WORD, 0, verify);
1247 }
1248 return error;
1249 }
1250
1251 static int
1252 npe_ctx_reg_write(struct ixpnpe_softc *sc, uint32_t ctxtNum,
1253 uint32_t ctxtReg, uint32_t ctxtRegVal, int verify)
1254 {
1255 DPRINTFn(4, sc->sc_dev, "%s(%u, %u, %u)\n",
1256 __func__, ctxtNum, ctxtReg, ctxtRegVal);
1257 /*
1258 * Context 0 has no STARTPC. Instead, this value is used to set
1259 * NextPC for Background ECS, to set where NPE starts executing code
1260 */
1261 if (ctxtNum == 0 && ctxtReg == IX_NPEDL_CTXT_REG_STARTPC) {
1262 /* read BG_CTXT_REG_0, update NEXTPC bits, and write back to reg */
1263 uint32_t v = npe_ecs_reg_read(sc, IX_NPEDL_ECS_BG_CTXT_REG_0);
1264 v &= ~IX_NPEDL_MASK_ECS_REG_0_NEXTPC;
1265 v |= (ctxtRegVal << IX_NPEDL_OFFSET_ECS_REG_0_NEXTPC) &
1266 IX_NPEDL_MASK_ECS_REG_0_NEXTPC;
1267
1268 npe_ecs_reg_write(sc, IX_NPEDL_ECS_BG_CTXT_REG_0, v);
1269 return 0;
1270 } else {
1271 static const struct {
1272 uint32_t regAddress;
1273 uint32_t regSize;
1274 } regAccInfo[IX_NPEDL_CTXT_REG_MAX] = {
1275 { IX_NPEDL_CTXT_REG_ADDR_STEVT, IX_NPEDL_REG_SIZE_BYTE },
1276 { IX_NPEDL_CTXT_REG_ADDR_STARTPC, IX_NPEDL_REG_SIZE_SHORT },
1277 { IX_NPEDL_CTXT_REG_ADDR_REGMAP, IX_NPEDL_REG_SIZE_SHORT },
1278 { IX_NPEDL_CTXT_REG_ADDR_CINDEX, IX_NPEDL_REG_SIZE_BYTE }
1279 };
1280 return npe_logical_reg_write(sc, regAccInfo[ctxtReg].regAddress,
1281 ctxtRegVal, regAccInfo[ctxtReg].regSize, ctxtNum, verify);
1282 }
1283 }
1284
1285 /*
1286 * NPE Mailbox support.
1287 */
1288 #define IX_NPEMH_MAXTRIES 100000
1289
1290 static int
1291 ixpnpe_ofifo_wait(struct ixpnpe_softc *sc)
1292 {
1293 int i;
1294
1295 for (i = 0; i < IX_NPEMH_MAXTRIES; i++) {
1296 if (npe_reg_read(sc, IX_NPESTAT) & IX_NPESTAT_OFNE)
1297 return 1;
1298 DELAY(10);
1299 }
1300 printf("%s: %s: timeout, last status 0x%x\n", device_xname(sc->sc_dev),
1301 __func__, npe_reg_read(sc, IX_NPESTAT));
1302 return 0;
1303 }
1304
1305 static int
1306 ixpnpe_intr(void *arg)
1307 {
1308 struct ixpnpe_softc *sc = arg;
1309 uint32_t status;
1310
1311 status = npe_reg_read(sc, IX_NPESTAT);
1312 if ((status & IX_NPESTAT_OFINT) == 0) {
1313 /* NB: should not happen */
1314 printf("%s: %s: status 0x%x\n", device_xname(sc->sc_dev), __func__, status);
1315 /* XXX must silence interrupt? */
1316 return(1);
1317 }
1318 /*
1319 * A message is waiting in the output FIFO, copy it so
1320 * the interrupt will be silenced; then signal anyone
1321 * waiting to collect the result.
1322 */
1323 sc->sc_msgwaiting = -1; /* NB: error indicator */
1324 if (ixpnpe_ofifo_wait(sc)) {
1325 sc->sc_msg[0] = npe_reg_read(sc, IX_NPEFIFO);
1326 if (ixpnpe_ofifo_wait(sc)) {
1327 sc->sc_msg[1] = npe_reg_read(sc, IX_NPEFIFO);
1328 sc->sc_msgwaiting = 1; /* successful fetch */
1329 }
1330 }
1331 if (sc->sc_msg[0] == (NPE_MACRECOVERYSTART << NPE_MAC_MSGID_SHL)) {
1332 int s;
1333
1334 s = splnet();
1335 delay(100); /* delay 100usec */
1336 if (sc->macresetcbfunc != NULL)
1337 sc->macresetcbfunc(sc->macresetcbarg);
1338 splx(s);
1339 }
1340
1341 #if 0
1342 /* XXX Too dangerous! see ixpnpe_recvmsg_locked() */
1343 wakeup(sc);
1344 #endif
1345
1346 return (1);
1347 }
1348
1349 static int
1350 ixpnpe_ififo_wait(struct ixpnpe_softc *sc)
1351 {
1352 int i;
1353
1354 for (i = 0; i < IX_NPEMH_MAXTRIES; i++) {
1355 if (npe_reg_read(sc, IX_NPESTAT) & IX_NPESTAT_IFNF)
1356 return 1;
1357 DELAY(10);
1358 }
1359 return 0;
1360 }
1361
1362 static int
1363 ixpnpe_sendmsg_locked(struct ixpnpe_softc *sc, const uint32_t msg[2])
1364 {
1365 int error = 0;
1366
1367 sc->sc_msgwaiting = 0;
1368 if (ixpnpe_ififo_wait(sc)) {
1369 npe_reg_write(sc, IX_NPEFIFO, msg[0]);
1370 if (ixpnpe_ififo_wait(sc))
1371 npe_reg_write(sc, IX_NPEFIFO, msg[1]);
1372 else
1373 error = EIO;
1374 } else
1375 error = EIO;
1376
1377 if (error)
1378 printf("%s: input FIFO timeout, msg [0x%x,0x%x]\n",
1379 device_xname(sc->sc_dev), msg[0], msg[1]);
1380 return error;
1381 }
1382
1383 static int
1384 ixpnpe_recvmsg_locked(struct ixpnpe_softc *sc, uint32_t msg[2])
1385 {
1386
1387 if (!sc->sc_msgwaiting) {
1388 /* XXX interrupt context - cannot sleep */
1389 delay(1000); /* wait 1ms (is it ok?)*/
1390 }
1391 memcpy(msg, sc->sc_msg, sizeof(sc->sc_msg));
1392 /* NB: sc_msgwaiting != 1 means the ack fetch failed */
1393 return sc->sc_msgwaiting != 1 ? EIO : 0;
1394 }
1395
1396 /*
1397 * Send a msg to the NPE and wait for a reply. We use the
1398 * private mutex and sleep until an interrupt is received
1399 * signalling the availability of data in the output FIFO
1400 * so the caller cannot be holding a mutex. May be better
1401 * piggyback on the caller's mutex instead but that would
1402 * make other locking confusing.
1403 */
1404 int
1405 ixpnpe_sendandrecvmsg(struct ixpnpe_softc *sc,
1406 const uint32_t send[2], uint32_t recv[2])
1407 {
1408 int error;
1409
1410 mutex_enter(&sc->sc_lock);
1411 error = ixpnpe_sendmsg_locked(sc, send);
1412 if (error == 0)
1413 error = ixpnpe_recvmsg_locked(sc, recv);
1414 mutex_exit(&sc->sc_lock);
1415
1416 return error;
1417 }
1418
1419 /* XXX temporary, not reliable */
1420
1421 int
1422 ixpnpe_sendmsg(struct ixpnpe_softc *sc, const uint32_t msg[2])
1423 {
1424 int error;
1425
1426 mutex_enter(&sc->sc_lock);
1427 error = ixpnpe_sendmsg_locked(sc, msg);
1428 mutex_exit(&sc->sc_lock);
1429
1430 return error;
1431 }
1432
1433 int
1434 ixpnpe_recvmsg(struct ixpnpe_softc *sc, uint32_t msg[2])
1435 {
1436 int error;
1437
1438 mutex_enter(&sc->sc_lock);
1439 if (sc->sc_msgwaiting)
1440 memcpy(msg, sc->sc_msg, sizeof(sc->sc_msg));
1441 /* NB: sc_msgwaiting != 1 means the ack fetch failed */
1442 error = sc->sc_msgwaiting != 1 ? EIO : 0;
1443 mutex_exit(&sc->sc_lock);
1444
1445 return error;
1446 }
1447