ixp425_qmgr.c revision 1.11 1 1.11 andvar /* $NetBSD: ixp425_qmgr.c,v 1.11 2021/12/10 20:36:02 andvar Exp $ */
2 1.1 scw
3 1.1 scw /*-
4 1.1 scw * Copyright (c) 2006 Sam Leffler, Errno Consulting
5 1.1 scw * All rights reserved.
6 1.1 scw *
7 1.1 scw * Redistribution and use in source and binary forms, with or without
8 1.1 scw * modification, are permitted provided that the following conditions
9 1.1 scw * are met:
10 1.1 scw * 1. Redistributions of source code must retain the above copyright
11 1.1 scw * notice, this list of conditions and the following disclaimer,
12 1.1 scw * without modification.
13 1.1 scw * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 1.1 scw * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 1.1 scw * redistribution must be conditioned upon including a substantially
16 1.1 scw * similar Disclaimer requirement for further binary redistribution.
17 1.1 scw *
18 1.1 scw * NO WARRANTY
19 1.1 scw * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 1.1 scw * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 1.1 scw * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22 1.1 scw * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23 1.1 scw * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24 1.1 scw * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 scw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 scw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27 1.1 scw * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 scw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29 1.1 scw * THE POSSIBILITY OF SUCH DAMAGES.
30 1.1 scw */
31 1.1 scw
32 1.1 scw /*-
33 1.1 scw * Copyright (c) 2001-2005, Intel Corporation.
34 1.1 scw * All rights reserved.
35 1.1 scw *
36 1.1 scw * Redistribution and use in source and binary forms, with or without
37 1.1 scw * modification, are permitted provided that the following conditions
38 1.1 scw * are met:
39 1.1 scw * 1. Redistributions of source code must retain the above copyright
40 1.1 scw * notice, this list of conditions and the following disclaimer.
41 1.1 scw * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 scw * notice, this list of conditions and the following disclaimer in the
43 1.1 scw * documentation and/or other materials provided with the distribution.
44 1.1 scw * 3. Neither the name of the Intel Corporation nor the names of its contributors
45 1.1 scw * may be used to endorse or promote products derived from this software
46 1.1 scw * without specific prior written permission.
47 1.1 scw *
48 1.1 scw *
49 1.1 scw * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
50 1.1 scw * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 1.1 scw * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 1.1 scw * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
53 1.1 scw * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 1.1 scw * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 1.1 scw * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 1.1 scw * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 1.1 scw * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 1.1 scw * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 1.1 scw * SUCH DAMAGE.
60 1.1 scw */
61 1.1 scw #include <sys/cdefs.h>
62 1.1 scw /*__FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/ixp425_qmgr.c,v 1.1 2006/11/19 23:55:23 sam Exp $");*/
63 1.11 andvar __KERNEL_RCSID(0, "$NetBSD: ixp425_qmgr.c,v 1.11 2021/12/10 20:36:02 andvar Exp $");
64 1.1 scw
65 1.1 scw /*
66 1.1 scw * Intel XScale Queue Manager support.
67 1.1 scw *
68 1.1 scw * Each IXP4XXX device has a hardware block that implements a priority
69 1.1 scw * queue manager that is shared between the XScale cpu and the backend
70 1.1 scw * devices (such as the NPE). Queues are accessed by reading/writing
71 1.1 scw * special memory locations. The queue contents are mapped into a shared
72 1.1 scw * SRAM region with entries managed in a circular buffer. The XScale
73 1.1 scw * processor can receive interrupts based on queue contents (a condition
74 1.1 scw * code determines when interrupts should be delivered).
75 1.1 scw *
76 1.1 scw * The code here basically replaces the qmgr class in the Intel Access
77 1.1 scw * Library (IAL).
78 1.1 scw */
79 1.1 scw #include <sys/param.h>
80 1.1 scw #include <sys/systm.h>
81 1.1 scw #include <sys/kernel.h>
82 1.1 scw #include <sys/time.h>
83 1.1 scw #include <sys/malloc.h>
84 1.1 scw #include <sys/resource.h>
85 1.1 scw
86 1.7 dyoung #include <sys/bus.h>
87 1.1 scw #include <machine/cpu.h>
88 1.1 scw #include <machine/intr.h>
89 1.1 scw
90 1.1 scw #include <arm/xscale/ixp425reg.h>
91 1.1 scw #include <arm/xscale/ixp425var.h>
92 1.1 scw
93 1.1 scw #include <arm/xscale/ixp425_qmgr.h>
94 1.1 scw
95 1.1 scw /*
96 1.1 scw * State per AQM hw queue.
97 1.1 scw * This structure holds q configuration and dispatch state.
98 1.1 scw */
99 1.1 scw struct qmgrInfo {
100 1.1 scw int qSizeInWords; /* queue size in words */
101 1.1 scw
102 1.1 scw uint32_t qOflowStatBitMask; /* overflow status mask */
103 1.1 scw int qWriteCount; /* queue write count */
104 1.1 scw
105 1.1 scw bus_size_t qAccRegAddr; /* access register */
106 1.1 scw bus_size_t qUOStatRegAddr; /* status register */
107 1.1 scw bus_size_t qConfigRegAddr; /* config register */
108 1.1 scw int qSizeInEntries; /* queue size in entries */
109 1.1 scw
110 1.1 scw uint32_t qUflowStatBitMask; /* underflow status mask */
111 1.1 scw int qReadCount; /* queue read count */
112 1.1 scw
113 1.1 scw /* XXX union */
114 1.1 scw uint32_t qStatRegAddr;
115 1.1 scw uint32_t qStatBitsOffset;
116 1.1 scw uint32_t qStat0BitMask;
117 1.1 scw uint32_t qStat1BitMask;
118 1.1 scw
119 1.1 scw uint32_t intRegCheckMask; /* interrupt reg check mask */
120 1.1 scw void (*cb)(int, void *); /* callback function */
121 1.1 scw void *cbarg; /* callback argument */
122 1.1 scw int priority; /* dispatch priority */
123 1.1 scw #if 0
124 1.1 scw /* NB: needed only for A0 parts */
125 1.1 scw u_int statusWordOffset; /* status word offset */
126 1.1 scw uint32_t statusMask; /* status mask */
127 1.1 scw uint32_t statusCheckValue; /* status check value */
128 1.1 scw #endif
129 1.1 scw };
130 1.1 scw
131 1.1 scw struct ixpqmgr_softc {
132 1.1 scw #ifdef __FreeBSD__
133 1.1 scw device_t sc_dev;
134 1.1 scw bus_space_tag_t sc_iot;
135 1.1 scw bus_space_handle_t sc_ioh;
136 1.1 scw struct resource *sc_irq; /* IRQ resource */
137 1.1 scw int sc_rid; /* resource id for irq */
138 1.1 scw void *sc_ih; /* interrupt handler */
139 1.1 scw #else
140 1.1 scw bus_space_tag_t sc_iot;
141 1.1 scw bus_space_handle_t sc_ioh;
142 1.1 scw void *sc_ih[2]; /* interrupt handler */
143 1.1 scw #endif
144 1.1 scw
145 1.1 scw struct qmgrInfo qinfo[IX_QMGR_MAX_NUM_QUEUES];
146 1.1 scw /*
147 1.1 scw * This array contains a list of queue identifiers ordered by
148 1.1 scw * priority. The table is split logically between queue
149 1.1 scw * identifiers 0-31 and 32-63. To optimize lookups bit masks
150 1.1 scw * are kept for the first-32 and last-32 q's. When the
151 1.1 scw * table needs to be rebuilt mark rebuildTable and it'll
152 1.1 scw * happen after the next interrupt.
153 1.1 scw */
154 1.1 scw int priorityTable[IX_QMGR_MAX_NUM_QUEUES];
155 1.1 scw uint32_t lowPriorityTableFirstHalfMask;
156 1.1 scw uint32_t uppPriorityTableFirstHalfMask;
157 1.1 scw int rebuildTable; /* rebuild priorityTable */
158 1.1 scw
159 1.1 scw uint32_t aqmFreeSramAddress; /* SRAM free space */
160 1.1 scw };
161 1.1 scw
162 1.1 scw static int qmgr_debug = 0;
163 1.1 scw #define DPRINTF(dev, fmt, ...) do { \
164 1.1 scw if (qmgr_debug) printf(fmt, __VA_ARGS__); \
165 1.1 scw } while (0)
166 1.1 scw #define DPRINTFn(n, dev, fmt, ...) do { \
167 1.1 scw if (qmgr_debug >= n) printf(fmt, __VA_ARGS__); \
168 1.1 scw } while (0)
169 1.1 scw
170 1.1 scw static struct ixpqmgr_softc *ixpqmgr_sc = NULL;
171 1.1 scw
172 1.1 scw static void ixpqmgr_rebuild(struct ixpqmgr_softc *);
173 1.1 scw static int ixpqmgr_intr(void *);
174 1.1 scw
175 1.1 scw static void aqm_int_enable(struct ixpqmgr_softc *sc, int qId);
176 1.1 scw static void aqm_int_disable(struct ixpqmgr_softc *sc, int qId);
177 1.1 scw static void aqm_qcfg(struct ixpqmgr_softc *sc, int qId, u_int ne, u_int nf);
178 1.1 scw static void aqm_srcsel_write(struct ixpqmgr_softc *sc, int qId, int sourceId);
179 1.1 scw static void aqm_reset(struct ixpqmgr_softc *sc);
180 1.1 scw
181 1.1 scw static void
182 1.1 scw dummyCallback(int qId, void *arg)
183 1.1 scw {
184 1.1 scw /* XXX complain */
185 1.1 scw }
186 1.1 scw
187 1.1 scw static uint32_t
188 1.1 scw aqm_reg_read(struct ixpqmgr_softc *sc, bus_size_t off)
189 1.1 scw {
190 1.1 scw DPRINTFn(9, sc->sc_dev, "%s(0x%x)\n", __func__, (int)off);
191 1.1 scw return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
192 1.1 scw }
193 1.1 scw
194 1.1 scw static void
195 1.1 scw aqm_reg_write(struct ixpqmgr_softc *sc, bus_size_t off, uint32_t val)
196 1.1 scw {
197 1.1 scw DPRINTFn(9, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, (int)off, val);
198 1.1 scw bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
199 1.1 scw }
200 1.1 scw
201 1.1 scw #ifdef __FreeBSD__
202 1.1 scw static int
203 1.1 scw ixpqmgr_probe(device_t dev)
204 1.1 scw {
205 1.1 scw device_set_desc(dev, "IXP425 Q-Manager");
206 1.1 scw return 0;
207 1.1 scw }
208 1.1 scw #endif
209 1.1 scw
210 1.1 scw #ifdef __FreeBSD__
211 1.1 scw static void
212 1.1 scw ixpqmgr_attach(device_t dev)
213 1.1 scw #else
214 1.1 scw void *
215 1.1 scw ixpqmgr_init(bus_space_tag_t iot)
216 1.1 scw #endif
217 1.1 scw {
218 1.1 scw #ifdef __FreeBSD__
219 1.1 scw struct ixpqmgr_softc *sc = device_get_softc(dev);
220 1.1 scw struct ixp425_softc *sa = device_get_softc(device_get_parent(dev));
221 1.1 scw #else
222 1.1 scw struct ixpqmgr_softc *sc;
223 1.1 scw #endif
224 1.1 scw int i;
225 1.1 scw
226 1.1 scw #ifdef __FreeBSD__
227 1.1 scw ixpqmgr_sc = sc;
228 1.1 scw
229 1.1 scw sc->sc_dev = dev;
230 1.1 scw sc->sc_iot = sa->sc_iot;
231 1.1 scw #else
232 1.9 chs sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO);
233 1.1 scw sc->sc_iot = iot;
234 1.1 scw #endif
235 1.1 scw
236 1.1 scw if (bus_space_map(sc->sc_iot, IXP425_QMGR_HWBASE, IXP425_QMGR_SIZE,
237 1.1 scw 0, &sc->sc_ioh))
238 1.1 scw panic("%s: Cannot map registers", __func__);
239 1.1 scw
240 1.1 scw #ifdef __FreeBSD__
241 1.1 scw /* NB: we only use the lower 32 q's */
242 1.1 scw sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->sc_rid,
243 1.1 scw IXP425_INT_QUE1_32, IXP425_INT_QUE33_64, 2, RF_ACTIVE);
244 1.1 scw if (!sc->sc_irq)
245 1.1 scw panic("Unable to allocate the qmgr irqs.\n");
246 1.1 scw /* XXX could be a source of entropy */
247 1.1 scw bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
248 1.1 scw ixpqmgr_intr, NULL, &sc->sc_ih);
249 1.1 scw #else
250 1.3 scw ixpqmgr_sc = sc;
251 1.1 scw sc->sc_ih[0] = ixp425_intr_establish(IXP425_INT_QUE1_32, IPL_NET,
252 1.1 scw ixpqmgr_intr, sc);
253 1.1 scw if (sc->sc_ih[0] == NULL) {
254 1.3 scw ixpqmgr_sc = NULL;
255 1.1 scw free(sc, M_DEVBUF);
256 1.1 scw return (NULL);
257 1.1 scw }
258 1.1 scw sc->sc_ih[1] = ixp425_intr_establish(IXP425_INT_QUE33_64, IPL_NET,
259 1.1 scw ixpqmgr_intr, sc);
260 1.1 scw if (sc->sc_ih[1] == NULL) {
261 1.1 scw ixp425_intr_disestablish(sc->sc_ih[0]);
262 1.3 scw ixpqmgr_sc = NULL;
263 1.1 scw free(sc, M_DEVBUF);
264 1.1 scw return (NULL);
265 1.1 scw }
266 1.1 scw #endif
267 1.1 scw
268 1.1 scw /* NB: softc is pre-zero'd */
269 1.1 scw for (i = 0; i < IX_QMGR_MAX_NUM_QUEUES; i++) {
270 1.1 scw struct qmgrInfo *qi = &sc->qinfo[i];
271 1.1 scw
272 1.1 scw qi->cb = dummyCallback;
273 1.1 scw qi->priority = IX_QMGR_Q_PRIORITY_0; /* default priority */
274 1.1 scw /*
275 1.1 scw * There are two interrupt registers, 32 bits each. One
276 1.1 scw * for the lower queues(0-31) and one for the upper
277 1.1 scw * queues(32-63). Therefore need to mod by 32 i.e the
278 1.1 scw * min upper queue identifier.
279 1.1 scw */
280 1.1 scw qi->intRegCheckMask = (1<<(i%(IX_QMGR_MIN_QUEUPP_QID)));
281 1.1 scw
282 1.1 scw /*
283 1.1 scw * Register addresses and bit masks are calculated and
284 1.1 scw * stored here to optimize QRead, QWrite and QStatusGet
285 1.1 scw * functions.
286 1.1 scw */
287 1.1 scw
288 1.1 scw /* AQM Queue access reg addresses, per queue */
289 1.1 scw qi->qAccRegAddr = IX_QMGR_Q_ACCESS_ADDR_GET(i);
290 1.1 scw qi->qAccRegAddr = IX_QMGR_Q_ACCESS_ADDR_GET(i);
291 1.1 scw qi->qConfigRegAddr = IX_QMGR_Q_CONFIG_ADDR_GET(i);
292 1.1 scw
293 1.1 scw /* AQM Queue lower-group (0-31), only */
294 1.1 scw if (i < IX_QMGR_MIN_QUEUPP_QID) {
295 1.1 scw /* AQM Q underflow/overflow status reg address, per queue */
296 1.1 scw qi->qUOStatRegAddr = IX_QMGR_QUEUOSTAT0_OFFSET +
297 1.1 scw ((i / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD) *
298 1.1 scw sizeof(uint32_t));
299 1.1 scw
300 1.1 scw /* AQM Q underflow status bit masks for status reg per queue */
301 1.1 scw qi->qUflowStatBitMask =
302 1.1 scw (IX_QMGR_UNDERFLOW_BIT_OFFSET + 1) <<
303 1.1 scw ((i & (IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD - 1)) *
304 1.1 scw (32 / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD));
305 1.1 scw
306 1.1 scw /* AQM Q overflow status bit masks for status reg, per queue */
307 1.1 scw qi->qOflowStatBitMask =
308 1.1 scw (IX_QMGR_OVERFLOW_BIT_OFFSET + 1) <<
309 1.1 scw ((i & (IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD - 1)) *
310 1.1 scw (32 / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD));
311 1.1 scw
312 1.1 scw /* AQM Q lower-group (0-31) status reg addresses, per queue */
313 1.1 scw qi->qStatRegAddr = IX_QMGR_QUELOWSTAT0_OFFSET +
314 1.1 scw ((i / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD) *
315 1.1 scw sizeof(uint32_t));
316 1.1 scw
317 1.1 scw /* AQM Q lower-group (0-31) status register bit offset */
318 1.1 scw qi->qStatBitsOffset =
319 1.1 scw (i & (IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD - 1)) *
320 1.1 scw (32 / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD);
321 1.1 scw } else { /* AQM Q upper-group (32-63), only */
322 1.1 scw qi->qUOStatRegAddr = 0; /* XXX */
323 1.1 scw
324 1.1 scw /* AQM Q upper-group (32-63) Nearly Empty status reg bitmasks */
325 1.1 scw qi->qStat0BitMask = (1 << (i - IX_QMGR_MIN_QUEUPP_QID));
326 1.1 scw
327 1.1 scw /* AQM Q upper-group (32-63) Full status register bitmasks */
328 1.1 scw qi->qStat1BitMask = (1 << (i - IX_QMGR_MIN_QUEUPP_QID));
329 1.1 scw }
330 1.1 scw }
331 1.1 scw
332 1.1 scw sc->aqmFreeSramAddress = 0x100; /* Q buffer space starts at 0x2100 */
333 1.1 scw
334 1.10 msaitoh ixpqmgr_rebuild(sc); /* build initial priority table */
335 1.1 scw aqm_reset(sc); /* reset h/w */
336 1.1 scw
337 1.1 scw return (sc);
338 1.1 scw }
339 1.1 scw
340 1.1 scw #ifdef __FreeBSD__
341 1.1 scw static void
342 1.1 scw ixpqmgr_detach(device_t dev)
343 1.1 scw {
344 1.1 scw struct ixpqmgr_softc *sc = device_get_softc(dev);
345 1.1 scw
346 1.1 scw aqm_reset(sc); /* disable interrupts */
347 1.1 scw bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
348 1.1 scw bus_release_resource(dev, SYS_RES_IRQ, sc->sc_rid, sc->sc_irq);
349 1.1 scw bus_space_unmap(sc->sc_iot, sc->sc_ioh, IXP425_QMGR_SIZE);
350 1.1 scw }
351 1.1 scw #endif
352 1.1 scw
353 1.1 scw int
354 1.1 scw ixpqmgr_qconfig(int qId, int qEntries, int ne, int nf, int srcSel,
355 1.1 scw void (*cb)(int, void *), void *cbarg)
356 1.1 scw {
357 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
358 1.1 scw struct qmgrInfo *qi = &sc->qinfo[qId];
359 1.1 scw
360 1.1 scw DPRINTF(sc->sc_dev, "%s(%u, %u, %u, %u, %u, %p, %p)\n",
361 1.1 scw __func__, qId, qEntries, ne, nf, srcSel, cb, cbarg);
362 1.1 scw
363 1.1 scw /* NB: entry size is always 1 */
364 1.1 scw qi->qSizeInWords = qEntries;
365 1.1 scw
366 1.1 scw qi->qReadCount = 0;
367 1.1 scw qi->qWriteCount = 0;
368 1.1 scw qi->qSizeInEntries = qEntries; /* XXX kept for code clarity */
369 1.1 scw
370 1.1 scw if (cb == NULL) {
371 1.1 scw /* Reset to dummy callback */
372 1.1 scw qi->cb = dummyCallback;
373 1.1 scw qi->cbarg = 0;
374 1.1 scw } else {
375 1.1 scw qi->cb = cb;
376 1.1 scw qi->cbarg = cbarg;
377 1.1 scw }
378 1.1 scw
379 1.1 scw /* Write the config register; NB must be AFTER qinfo setup */
380 1.1 scw aqm_qcfg(sc, qId, ne, nf);
381 1.1 scw /*
382 1.1 scw * Account for space just allocated to queue.
383 1.1 scw */
384 1.1 scw sc->aqmFreeSramAddress += (qi->qSizeInWords * sizeof(uint32_t));
385 1.1 scw
386 1.5 msaitoh /* Set the interrupt source if this queue is in the range 0-31 */
387 1.1 scw if (qId < IX_QMGR_MIN_QUEUPP_QID)
388 1.1 scw aqm_srcsel_write(sc, qId, srcSel);
389 1.1 scw
390 1.1 scw if (cb != NULL) /* Enable the interrupt */
391 1.1 scw aqm_int_enable(sc, qId);
392 1.1 scw
393 1.2 thorpej sc->rebuildTable = true;
394 1.1 scw
395 1.1 scw return 0; /* XXX */
396 1.1 scw }
397 1.1 scw
398 1.1 scw int
399 1.1 scw ixpqmgr_qwrite(int qId, uint32_t entry)
400 1.1 scw {
401 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
402 1.1 scw struct qmgrInfo *qi = &sc->qinfo[qId];
403 1.1 scw
404 1.1 scw DPRINTFn(3, sc->sc_dev, "%s(%u, 0x%x) writeCount %u size %u\n",
405 1.1 scw __func__, qId, entry, qi->qWriteCount, qi->qSizeInEntries);
406 1.1 scw
407 1.1 scw /* write the entry */
408 1.1 scw aqm_reg_write(sc, qi->qAccRegAddr, entry);
409 1.1 scw
410 1.1 scw /* NB: overflow is available for lower queues only */
411 1.1 scw if (qId < IX_QMGR_MIN_QUEUPP_QID) {
412 1.1 scw int qSize = qi->qSizeInEntries;
413 1.1 scw /*
414 1.1 scw * Increment the current number of entries in the queue
415 1.1 scw * and check for overflow .
416 1.1 scw */
417 1.1 scw if (qi->qWriteCount++ == qSize) { /* check for overflow */
418 1.1 scw uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
419 1.1 scw int qPtrs;
420 1.1 scw
421 1.1 scw /*
422 1.1 scw * Read the status twice because the status may
423 1.1 scw * not be immediately ready after the write operation
424 1.1 scw */
425 1.1 scw if ((status & qi->qOflowStatBitMask) ||
426 1.1 scw ((status = aqm_reg_read(sc, qi->qUOStatRegAddr)) & qi->qOflowStatBitMask)) {
427 1.1 scw /*
428 1.1 scw * The queue is full, clear the overflow status bit if set.
429 1.1 scw */
430 1.1 scw aqm_reg_write(sc, qi->qUOStatRegAddr,
431 1.1 scw status & ~qi->qOflowStatBitMask);
432 1.1 scw qi->qWriteCount = qSize;
433 1.1 scw DPRINTFn(5, sc->sc_dev,
434 1.1 scw "%s(%u, 0x%x) Q full, overflow status cleared\n",
435 1.1 scw __func__, qId, entry);
436 1.1 scw return ENOSPC;
437 1.1 scw }
438 1.1 scw /*
439 1.11 andvar * No overflow occurred : someone is draining the queue
440 1.1 scw * and the current counter needs to be
441 1.1 scw * updated from the current number of entries in the queue
442 1.1 scw */
443 1.1 scw
444 1.1 scw /* calculate number of words in q */
445 1.1 scw qPtrs = aqm_reg_read(sc, qi->qConfigRegAddr);
446 1.1 scw DPRINTFn(2, sc->sc_dev,
447 1.1 scw "%s(%u, 0x%x) Q full, no overflow status, qConfig 0x%x\n",
448 1.1 scw __func__, qId, entry, qPtrs);
449 1.1 scw qPtrs = (qPtrs - (qPtrs >> 7)) & 0x7f;
450 1.1 scw
451 1.1 scw if (qPtrs == 0) {
452 1.1 scw /*
453 1.1 scw * The queue may be full at the time of the
454 1.1 scw * snapshot. Next access will check
455 1.1 scw * the overflow status again.
456 1.1 scw */
457 1.1 scw qi->qWriteCount = qSize;
458 1.1 scw } else {
459 1.1 scw /* convert the number of words to a number of entries */
460 1.1 scw qi->qWriteCount = qPtrs & (qSize - 1);
461 1.1 scw }
462 1.1 scw }
463 1.1 scw }
464 1.1 scw return 0;
465 1.1 scw }
466 1.1 scw
467 1.1 scw int
468 1.1 scw ixpqmgr_qread(int qId, uint32_t *entry)
469 1.1 scw {
470 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
471 1.1 scw struct qmgrInfo *qi = &sc->qinfo[qId];
472 1.1 scw bus_size_t off = qi->qAccRegAddr;
473 1.1 scw
474 1.1 scw *entry = aqm_reg_read(sc, off);
475 1.1 scw
476 1.1 scw /*
477 1.1 scw * Reset the current read count : next access to the read function
478 1.1 scw * will force a underflow status check.
479 1.1 scw */
480 1.1 scw qi->qReadCount = 0;
481 1.1 scw
482 1.1 scw /* Check if underflow occurred on the read */
483 1.1 scw if (*entry == 0 && qId < IX_QMGR_MIN_QUEUPP_QID) {
484 1.1 scw /* get the queue status */
485 1.1 scw uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
486 1.1 scw
487 1.1 scw if (status & qi->qUflowStatBitMask) { /* clear underflow status */
488 1.1 scw aqm_reg_write(sc, qi->qUOStatRegAddr,
489 1.1 scw status &~ qi->qUflowStatBitMask);
490 1.1 scw return ENOSPC;
491 1.1 scw }
492 1.1 scw }
493 1.1 scw return 0;
494 1.1 scw }
495 1.1 scw
496 1.1 scw int
497 1.1 scw ixpqmgr_qreadm(int qId, uint32_t n, uint32_t *p)
498 1.1 scw {
499 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
500 1.1 scw struct qmgrInfo *qi = &sc->qinfo[qId];
501 1.1 scw uint32_t entry;
502 1.1 scw bus_size_t off = qi->qAccRegAddr;
503 1.1 scw
504 1.1 scw entry = aqm_reg_read(sc, off);
505 1.1 scw while (--n) {
506 1.1 scw if (entry == 0) {
507 1.1 scw /* if we read a NULL entry, stop. We have underflowed */
508 1.1 scw break;
509 1.1 scw }
510 1.1 scw *p++ = entry; /* store */
511 1.1 scw entry = aqm_reg_read(sc, off);
512 1.1 scw }
513 1.1 scw *p = entry;
514 1.1 scw
515 1.1 scw /*
516 1.1 scw * Reset the current read count : next access to the read function
517 1.1 scw * will force a underflow status check.
518 1.1 scw */
519 1.1 scw qi->qReadCount = 0;
520 1.1 scw
521 1.1 scw /* Check if underflow occurred on the read */
522 1.1 scw if (entry == 0 && qId < IX_QMGR_MIN_QUEUPP_QID) {
523 1.1 scw /* get the queue status */
524 1.1 scw uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
525 1.1 scw
526 1.1 scw if (status & qi->qUflowStatBitMask) { /* clear underflow status */
527 1.1 scw aqm_reg_write(sc, qi->qUOStatRegAddr,
528 1.1 scw status &~ qi->qUflowStatBitMask);
529 1.1 scw return ENOSPC;
530 1.1 scw }
531 1.1 scw }
532 1.1 scw return 0;
533 1.1 scw }
534 1.1 scw
535 1.1 scw uint32_t
536 1.1 scw ixpqmgr_getqstatus(int qId)
537 1.1 scw {
538 1.1 scw #define QLOWSTATMASK \
539 1.1 scw ((1 << (32 / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD)) - 1)
540 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
541 1.1 scw const struct qmgrInfo *qi = &sc->qinfo[qId];
542 1.1 scw uint32_t status;
543 1.1 scw
544 1.1 scw if (qId < IX_QMGR_MIN_QUEUPP_QID) {
545 1.1 scw /* read the status of a queue in the range 0-31 */
546 1.1 scw status = aqm_reg_read(sc, qi->qStatRegAddr);
547 1.1 scw
548 1.1 scw /* mask out the status bits relevant only to this queue */
549 1.1 scw status = (status >> qi->qStatBitsOffset) & QLOWSTATMASK;
550 1.1 scw } else { /* read status of a queue in the range 32-63 */
551 1.1 scw status = 0;
552 1.1 scw if (aqm_reg_read(sc, IX_QMGR_QUEUPPSTAT0_OFFSET)&qi->qStat0BitMask)
553 1.1 scw status |= IX_QMGR_Q_STATUS_NE_BIT_MASK; /* nearly empty */
554 1.1 scw if (aqm_reg_read(sc, IX_QMGR_QUEUPPSTAT1_OFFSET)&qi->qStat1BitMask)
555 1.1 scw status |= IX_QMGR_Q_STATUS_F_BIT_MASK; /* full */
556 1.1 scw }
557 1.1 scw return status;
558 1.1 scw #undef QLOWSTATMASK
559 1.1 scw }
560 1.1 scw
561 1.1 scw uint32_t
562 1.1 scw ixpqmgr_getqconfig(int qId)
563 1.1 scw {
564 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
565 1.1 scw
566 1.1 scw return aqm_reg_read(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId));
567 1.1 scw }
568 1.1 scw
569 1.1 scw void
570 1.1 scw ixpqmgr_dump(void)
571 1.1 scw {
572 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
573 1.1 scw int i, a;
574 1.1 scw
575 1.1 scw /* status registers */
576 1.1 scw printf("0x%04x: %08x %08x %08x %08x\n"
577 1.1 scw , 0x400
578 1.1 scw , aqm_reg_read(sc, 0x400)
579 1.1 scw , aqm_reg_read(sc, 0x400+4)
580 1.1 scw , aqm_reg_read(sc, 0x400+8)
581 1.1 scw , aqm_reg_read(sc, 0x400+12)
582 1.1 scw );
583 1.1 scw printf("0x%04x: %08x %08x %08x %08x\n"
584 1.1 scw , 0x410
585 1.1 scw , aqm_reg_read(sc, 0x410)
586 1.1 scw , aqm_reg_read(sc, 0x410+4)
587 1.1 scw , aqm_reg_read(sc, 0x410+8)
588 1.1 scw , aqm_reg_read(sc, 0x410+12)
589 1.1 scw );
590 1.1 scw printf("0x%04x: %08x %08x %08x %08x\n"
591 1.1 scw , 0x420
592 1.1 scw , aqm_reg_read(sc, 0x420)
593 1.1 scw , aqm_reg_read(sc, 0x420+4)
594 1.1 scw , aqm_reg_read(sc, 0x420+8)
595 1.1 scw , aqm_reg_read(sc, 0x420+12)
596 1.1 scw );
597 1.1 scw printf("0x%04x: %08x %08x %08x %08x\n"
598 1.1 scw , 0x430
599 1.1 scw , aqm_reg_read(sc, 0x430)
600 1.1 scw , aqm_reg_read(sc, 0x430+4)
601 1.1 scw , aqm_reg_read(sc, 0x430+8)
602 1.1 scw , aqm_reg_read(sc, 0x430+12)
603 1.1 scw );
604 1.1 scw /* q configuration registers */
605 1.1 scw for (a = 0x2000; a < 0x20ff; a += 32)
606 1.1 scw printf("0x%04x: %08x %08x %08x %08x %08x %08x %08x %08x\n"
607 1.1 scw , a
608 1.1 scw , aqm_reg_read(sc, a)
609 1.1 scw , aqm_reg_read(sc, a+4)
610 1.1 scw , aqm_reg_read(sc, a+8)
611 1.1 scw , aqm_reg_read(sc, a+12)
612 1.1 scw , aqm_reg_read(sc, a+16)
613 1.1 scw , aqm_reg_read(sc, a+20)
614 1.1 scw , aqm_reg_read(sc, a+24)
615 1.1 scw , aqm_reg_read(sc, a+28)
616 1.1 scw );
617 1.1 scw /* allocated SRAM */
618 1.1 scw for (i = 0x100; i < sc->aqmFreeSramAddress; i += 32) {
619 1.1 scw a = 0x2000 + i;
620 1.1 scw printf("0x%04x: %08x %08x %08x %08x %08x %08x %08x %08x\n"
621 1.1 scw , a
622 1.1 scw , aqm_reg_read(sc, a)
623 1.1 scw , aqm_reg_read(sc, a+4)
624 1.1 scw , aqm_reg_read(sc, a+8)
625 1.1 scw , aqm_reg_read(sc, a+12)
626 1.1 scw , aqm_reg_read(sc, a+16)
627 1.1 scw , aqm_reg_read(sc, a+20)
628 1.1 scw , aqm_reg_read(sc, a+24)
629 1.1 scw , aqm_reg_read(sc, a+28)
630 1.1 scw );
631 1.1 scw }
632 1.1 scw for (i = 0; i < 16; i++) {
633 1.1 scw printf("Q[%2d] config 0x%08x status 0x%02x "
634 1.1 scw "Q[%2d] config 0x%08x status 0x%02x\n"
635 1.1 scw , i, ixpqmgr_getqconfig(i), ixpqmgr_getqstatus(i)
636 1.1 scw , i+16, ixpqmgr_getqconfig(i+16), ixpqmgr_getqstatus(i+16)
637 1.1 scw );
638 1.1 scw }
639 1.1 scw }
640 1.1 scw
641 1.1 scw void
642 1.1 scw ixpqmgr_notify_enable(int qId, int srcSel)
643 1.1 scw {
644 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
645 1.1 scw #if 0
646 1.1 scw /* Calculate the checkMask and checkValue for this q */
647 1.1 scw aqm_calc_statuscheck(sc, qId, srcSel);
648 1.1 scw #endif
649 1.6 msaitoh /* Set the interrupt source if this queue is in the range 0-31 */
650 1.1 scw if (qId < IX_QMGR_MIN_QUEUPP_QID)
651 1.1 scw aqm_srcsel_write(sc, qId, srcSel);
652 1.1 scw
653 1.1 scw /* Enable the interrupt */
654 1.1 scw aqm_int_enable(sc, qId);
655 1.1 scw }
656 1.1 scw
657 1.1 scw void
658 1.1 scw ixpqmgr_notify_disable(int qId)
659 1.1 scw {
660 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
661 1.1 scw
662 1.1 scw aqm_int_disable(sc, qId);
663 1.1 scw }
664 1.1 scw
665 1.1 scw /*
666 1.1 scw * Rebuild the priority table used by the dispatcher.
667 1.1 scw */
668 1.1 scw static void
669 1.1 scw ixpqmgr_rebuild(struct ixpqmgr_softc *sc)
670 1.1 scw {
671 1.1 scw int q, pri;
672 1.1 scw int lowQuePriorityTableIndex, uppQuePriorityTableIndex;
673 1.1 scw struct qmgrInfo *qi;
674 1.1 scw
675 1.1 scw sc->lowPriorityTableFirstHalfMask = 0;
676 1.1 scw sc->uppPriorityTableFirstHalfMask = 0;
677 1.1 scw
678 1.1 scw lowQuePriorityTableIndex = 0;
679 1.1 scw uppQuePriorityTableIndex = 32;
680 1.1 scw for (pri = 0; pri < IX_QMGR_NUM_PRIORITY_LEVELS; pri++) {
681 1.1 scw /* low priority q's */
682 1.1 scw for (q = 0; q < IX_QMGR_MIN_QUEUPP_QID; q++) {
683 1.1 scw qi = &sc->qinfo[q];
684 1.1 scw if (qi->priority == pri) {
685 1.1 scw /*
686 1.1 scw * Build the priority table bitmask which match the
687 1.1 scw * queues of the first half of the priority table.
688 1.1 scw */
689 1.1 scw if (lowQuePriorityTableIndex < 16) {
690 1.1 scw sc->lowPriorityTableFirstHalfMask |=
691 1.1 scw qi->intRegCheckMask;
692 1.1 scw }
693 1.1 scw sc->priorityTable[lowQuePriorityTableIndex++] = q;
694 1.1 scw }
695 1.1 scw }
696 1.1 scw /* high priority q's */
697 1.1 scw for (; q < IX_QMGR_MAX_NUM_QUEUES; q++) {
698 1.1 scw qi = &sc->qinfo[q];
699 1.1 scw if (qi->priority == pri) {
700 1.1 scw /*
701 1.1 scw * Build the priority table bitmask which match the
702 1.1 scw * queues of the first half of the priority table .
703 1.1 scw */
704 1.1 scw if (uppQuePriorityTableIndex < 48) {
705 1.1 scw sc->uppPriorityTableFirstHalfMask |=
706 1.1 scw qi->intRegCheckMask;
707 1.1 scw }
708 1.1 scw sc->priorityTable[uppQuePriorityTableIndex++] = q;
709 1.1 scw }
710 1.1 scw }
711 1.1 scw }
712 1.2 thorpej sc->rebuildTable = false;
713 1.1 scw }
714 1.1 scw
715 1.1 scw /*
716 1.1 scw * Count the number of leading zero bits in a word,
717 1.1 scw * and return the same value than the CLZ instruction.
718 1.1 scw * Note this is similar to the standard ffs function but
719 1.1 scw * it counts zero's from the MSB instead of the LSB.
720 1.1 scw *
721 1.1 scw * word (in) return value (out)
722 1.1 scw * 0x80000000 0
723 1.1 scw * 0x40000000 1
724 1.1 scw * ,,, ,,,
725 1.1 scw * 0x00000002 30
726 1.1 scw * 0x00000001 31
727 1.1 scw * 0x00000000 32
728 1.1 scw *
729 1.1 scw * The C version of this function is used as a replacement
730 1.1 scw * for system not providing the equivalent of the CLZ
731 1.1 scw * assembly language instruction.
732 1.1 scw *
733 1.1 scw * Note that this version is big-endian
734 1.1 scw */
735 1.1 scw static unsigned int
736 1.1 scw _lzcount(uint32_t word)
737 1.1 scw {
738 1.1 scw unsigned int lzcount = 0;
739 1.1 scw
740 1.1 scw if (word == 0)
741 1.1 scw return 32;
742 1.1 scw while ((word & 0x80000000) == 0) {
743 1.1 scw word <<= 1;
744 1.1 scw lzcount++;
745 1.1 scw }
746 1.1 scw return lzcount;
747 1.1 scw }
748 1.1 scw
749 1.1 scw static int
750 1.1 scw ixpqmgr_intr(void *arg)
751 1.1 scw {
752 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
753 1.1 scw uint32_t intRegVal; /* Interrupt reg val */
754 1.1 scw struct qmgrInfo *qi;
755 1.1 scw int priorityTableIndex; /* Priority table index */
756 1.1 scw int qIndex; /* Current queue being processed */
757 1.1 scw
758 1.1 scw /* Read the interrupt register */
759 1.1 scw intRegVal = aqm_reg_read(sc, IX_QMGR_QINTREG0_OFFSET);
760 1.1 scw /* Write back to clear interrupt */
761 1.1 scw aqm_reg_write(sc, IX_QMGR_QINTREG0_OFFSET, intRegVal);
762 1.1 scw
763 1.1 scw DPRINTFn(5, sc->sc_dev, "%s: ISR0 0x%x ISR1 0x%x\n",
764 1.1 scw __func__, intRegVal, aqm_reg_read(sc, IX_QMGR_QINTREG1_OFFSET));
765 1.1 scw
766 1.1 scw /* No queue has interrupt register set */
767 1.1 scw if (intRegVal != 0) {
768 1.1 scw /* get the first queue Id from the interrupt register value */
769 1.1 scw qIndex = (32 - 1) - _lzcount(intRegVal);
770 1.1 scw
771 1.1 scw DPRINTFn(2, sc->sc_dev, "%s: ISR0 0x%x qIndex %u\n",
772 1.1 scw __func__, intRegVal, qIndex);
773 1.1 scw
774 1.1 scw /*
775 1.1 scw * Optimize for single callback case.
776 1.1 scw */
777 1.1 scw qi = &sc->qinfo[qIndex];
778 1.1 scw if (intRegVal == qi->intRegCheckMask) {
779 1.1 scw /*
780 1.1 scw * Only 1 queue event triggered a notification.
781 1.1 scw * Call the callback function for this queue
782 1.1 scw */
783 1.1 scw qi->cb(qIndex, qi->cbarg);
784 1.1 scw } else {
785 1.1 scw /*
786 1.1 scw * The event is triggered by more than 1 queue,
787 1.1 scw * the queue search will start from the beginning
788 1.1 scw * or the middle of the priority table.
789 1.1 scw *
790 1.1 scw * The search will end when all the bits of the interrupt
791 1.1 scw * register are cleared. There is no need to maintain
792 1.8 msaitoh * a separate value and test it at each iteration.
793 1.1 scw */
794 1.1 scw if (intRegVal & sc->lowPriorityTableFirstHalfMask) {
795 1.1 scw priorityTableIndex = 0;
796 1.1 scw } else {
797 1.1 scw priorityTableIndex = 16;
798 1.1 scw }
799 1.1 scw /*
800 1.1 scw * Iterate over the priority table until all the bits
801 1.1 scw * of the interrupt register are cleared.
802 1.1 scw */
803 1.1 scw do {
804 1.1 scw qIndex = sc->priorityTable[priorityTableIndex++];
805 1.3 scw if (qIndex >= IX_QMGR_MAX_NUM_QUEUES)
806 1.3 scw break;
807 1.1 scw qi = &sc->qinfo[qIndex];
808 1.1 scw
809 1.1 scw /* If this queue caused this interrupt to be raised */
810 1.1 scw if (intRegVal & qi->intRegCheckMask) {
811 1.1 scw /* Call the callback function for this queue */
812 1.1 scw qi->cb(qIndex, qi->cbarg);
813 1.1 scw /* Clear the interrupt register bit */
814 1.1 scw intRegVal &= ~qi->intRegCheckMask;
815 1.1 scw }
816 1.3 scw } while (intRegVal &&
817 1.3 scw priorityTableIndex < IX_QMGR_MAX_NUM_QUEUES);
818 1.1 scw }
819 1.1 scw }
820 1.1 scw
821 1.1 scw /* Rebuild the priority table if needed */
822 1.1 scw if (sc->rebuildTable)
823 1.1 scw ixpqmgr_rebuild(sc);
824 1.1 scw
825 1.1 scw return (1);
826 1.1 scw }
827 1.1 scw
828 1.1 scw #if 0
829 1.1 scw /*
830 1.1 scw * Generate the parameters used to check if a Q's status matches
831 1.1 scw * the specified source select. We calculate which status word
832 1.1 scw * to check (statusWordOffset), the value to check the status
833 1.1 scw * against (statusCheckValue) and the mask (statusMask) to mask
834 1.1 scw * out all but the bits to check in the status word.
835 1.1 scw */
836 1.1 scw static void
837 1.1 scw aqm_calc_statuscheck(int qId, IxQMgrSourceId srcSel)
838 1.1 scw {
839 1.1 scw struct qmgrInfo *qi = &qinfo[qId];
840 1.1 scw uint32_t shiftVal;
841 1.1 scw
842 1.1 scw if (qId < IX_QMGR_MIN_QUEUPP_QID) {
843 1.1 scw switch (srcSel) {
844 1.1 scw case IX_QMGR_Q_SOURCE_ID_E:
845 1.1 scw qi->statusCheckValue = IX_QMGR_Q_STATUS_E_BIT_MASK;
846 1.1 scw qi->statusMask = IX_QMGR_Q_STATUS_E_BIT_MASK;
847 1.1 scw break;
848 1.1 scw case IX_QMGR_Q_SOURCE_ID_NE:
849 1.1 scw qi->statusCheckValue = IX_QMGR_Q_STATUS_NE_BIT_MASK;
850 1.1 scw qi->statusMask = IX_QMGR_Q_STATUS_NE_BIT_MASK;
851 1.1 scw break;
852 1.1 scw case IX_QMGR_Q_SOURCE_ID_NF:
853 1.1 scw qi->statusCheckValue = IX_QMGR_Q_STATUS_NF_BIT_MASK;
854 1.1 scw qi->statusMask = IX_QMGR_Q_STATUS_NF_BIT_MASK;
855 1.1 scw break;
856 1.1 scw case IX_QMGR_Q_SOURCE_ID_F:
857 1.1 scw qi->statusCheckValue = IX_QMGR_Q_STATUS_F_BIT_MASK;
858 1.1 scw qi->statusMask = IX_QMGR_Q_STATUS_F_BIT_MASK;
859 1.1 scw break;
860 1.1 scw case IX_QMGR_Q_SOURCE_ID_NOT_E:
861 1.1 scw qi->statusCheckValue = 0;
862 1.1 scw qi->statusMask = IX_QMGR_Q_STATUS_E_BIT_MASK;
863 1.1 scw break;
864 1.1 scw case IX_QMGR_Q_SOURCE_ID_NOT_NE:
865 1.1 scw qi->statusCheckValue = 0;
866 1.1 scw qi->statusMask = IX_QMGR_Q_STATUS_NE_BIT_MASK;
867 1.1 scw break;
868 1.1 scw case IX_QMGR_Q_SOURCE_ID_NOT_NF:
869 1.1 scw qi->statusCheckValue = 0;
870 1.1 scw qi->statusMask = IX_QMGR_Q_STATUS_NF_BIT_MASK;
871 1.1 scw break;
872 1.1 scw case IX_QMGR_Q_SOURCE_ID_NOT_F:
873 1.1 scw qi->statusCheckValue = 0;
874 1.1 scw qi->statusMask = IX_QMGR_Q_STATUS_F_BIT_MASK;
875 1.1 scw break;
876 1.1 scw default:
877 1.1 scw /* Should never hit */
878 1.1 scw IX_OSAL_ASSERT(0);
879 1.1 scw break;
880 1.1 scw }
881 1.1 scw
882 1.1 scw /* One nibble of status per queue so need to shift the
883 1.1 scw * check value and mask out to the correct position.
884 1.1 scw */
885 1.1 scw shiftVal = (qId % IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD) *
886 1.1 scw IX_QMGR_QUELOWSTAT_BITS_PER_Q;
887 1.1 scw
888 1.1 scw /* Calculate the which status word to check from the qId,
889 1.1 scw * 8 Qs status per word
890 1.1 scw */
891 1.1 scw qi->statusWordOffset = qId / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD;
892 1.1 scw
893 1.1 scw qi->statusCheckValue <<= shiftVal;
894 1.1 scw qi->statusMask <<= shiftVal;
895 1.1 scw } else {
896 1.1 scw /* One status word */
897 1.1 scw qi->statusWordOffset = 0;
898 1.1 scw /* Single bits per queue and int source bit hardwired NE,
899 1.1 scw * Qs start at 32.
900 1.1 scw */
901 1.1 scw qi->statusMask = 1 << (qId - IX_QMGR_MIN_QUEUPP_QID);
902 1.1 scw qi->statusCheckValue = qi->statusMask;
903 1.1 scw }
904 1.1 scw }
905 1.1 scw #endif
906 1.1 scw
907 1.1 scw static void
908 1.1 scw aqm_int_enable(struct ixpqmgr_softc *sc, int qId)
909 1.1 scw {
910 1.1 scw bus_size_t reg;
911 1.1 scw uint32_t v;
912 1.1 scw
913 1.1 scw if (qId < IX_QMGR_MIN_QUEUPP_QID)
914 1.1 scw reg = IX_QMGR_QUEIEREG0_OFFSET;
915 1.1 scw else
916 1.1 scw reg = IX_QMGR_QUEIEREG1_OFFSET;
917 1.1 scw v = aqm_reg_read(sc, reg);
918 1.1 scw aqm_reg_write(sc, reg, v | (1 << (qId % IX_QMGR_MIN_QUEUPP_QID)));
919 1.1 scw
920 1.1 scw DPRINTF(sc->sc_dev, "%s(%u) 0x%lx: 0x%x => 0x%x\n",
921 1.1 scw __func__, qId, reg, v, aqm_reg_read(sc, reg));
922 1.1 scw }
923 1.1 scw
924 1.1 scw static void
925 1.1 scw aqm_int_disable(struct ixpqmgr_softc *sc, int qId)
926 1.1 scw {
927 1.1 scw bus_size_t reg;
928 1.1 scw uint32_t v;
929 1.1 scw
930 1.1 scw if (qId < IX_QMGR_MIN_QUEUPP_QID)
931 1.1 scw reg = IX_QMGR_QUEIEREG0_OFFSET;
932 1.1 scw else
933 1.1 scw reg = IX_QMGR_QUEIEREG1_OFFSET;
934 1.1 scw v = aqm_reg_read(sc, reg);
935 1.1 scw aqm_reg_write(sc, reg, v &~ (1 << (qId % IX_QMGR_MIN_QUEUPP_QID)));
936 1.1 scw
937 1.1 scw DPRINTF(sc->sc_dev, "%s(%u) 0x%lx: 0x%x => 0x%x\n",
938 1.1 scw __func__, qId, reg, v, aqm_reg_read(sc, reg));
939 1.1 scw }
940 1.1 scw
941 1.1 scw static unsigned
942 1.1 scw log2(unsigned n)
943 1.1 scw {
944 1.1 scw unsigned count;
945 1.1 scw /*
946 1.1 scw * N.B. this function will return 0 if supplied 0.
947 1.1 scw */
948 1.1 scw for (count = 0; n/2; count++)
949 1.1 scw n /= 2;
950 1.1 scw return count;
951 1.1 scw }
952 1.1 scw
953 1.1 scw static __inline unsigned
954 1.1 scw toAqmEntrySize(int entrySize)
955 1.1 scw {
956 1.1 scw /* entrySize 1("00"),2("01"),4("10") */
957 1.1 scw return log2(entrySize);
958 1.1 scw }
959 1.1 scw
960 1.1 scw static __inline unsigned
961 1.1 scw toAqmBufferSize(unsigned bufferSizeInWords)
962 1.1 scw {
963 1.1 scw /* bufferSize 16("00"),32("01),64("10"),128("11") */
964 1.1 scw return log2(bufferSizeInWords / IX_QMGR_MIN_BUFFER_SIZE);
965 1.1 scw }
966 1.1 scw
967 1.1 scw static __inline unsigned
968 1.1 scw toAqmWatermark(int watermark)
969 1.1 scw {
970 1.1 scw /*
971 1.1 scw * Watermarks 0("000"),1("001"),2("010"),4("011"),
972 1.1 scw * 8("100"),16("101"),32("110"),64("111")
973 1.1 scw */
974 1.1 scw return log2(2 * watermark);
975 1.1 scw }
976 1.1 scw
977 1.1 scw static void
978 1.1 scw aqm_qcfg(struct ixpqmgr_softc *sc, int qId, u_int ne, u_int nf)
979 1.1 scw {
980 1.1 scw const struct qmgrInfo *qi = &sc->qinfo[qId];
981 1.1 scw uint32_t qCfg;
982 1.1 scw uint32_t baseAddress;
983 1.1 scw
984 1.1 scw /* Build config register */
985 1.1 scw qCfg = ((toAqmEntrySize(1) & IX_QMGR_ENTRY_SIZE_MASK) <<
986 1.1 scw IX_QMGR_Q_CONFIG_ESIZE_OFFSET)
987 1.1 scw | ((toAqmBufferSize(qi->qSizeInWords) & IX_QMGR_SIZE_MASK) <<
988 1.1 scw IX_QMGR_Q_CONFIG_BSIZE_OFFSET);
989 1.1 scw
990 1.1 scw /* baseAddress, calculated relative to start address */
991 1.1 scw baseAddress = sc->aqmFreeSramAddress;
992 1.1 scw
993 1.1 scw /* base address must be word-aligned */
994 1.1 scw KASSERT((baseAddress % IX_QMGR_BASE_ADDR_16_WORD_ALIGN) == 0);
995 1.1 scw
996 1.1 scw /* Now convert to a 16 word pointer as required by QUECONFIG register */
997 1.1 scw baseAddress >>= IX_QMGR_BASE_ADDR_16_WORD_SHIFT;
998 1.1 scw qCfg |= baseAddress << IX_QMGR_Q_CONFIG_BADDR_OFFSET;
999 1.1 scw
1000 1.1 scw /* set watermarks */
1001 1.1 scw qCfg |= (toAqmWatermark(ne) << IX_QMGR_Q_CONFIG_NE_OFFSET)
1002 1.1 scw | (toAqmWatermark(nf) << IX_QMGR_Q_CONFIG_NF_OFFSET);
1003 1.1 scw
1004 1.1 scw DPRINTF(sc->sc_dev, "%s(%u, %u, %u) 0x%x => 0x%x @ 0x%x\n",
1005 1.1 scw __func__, qId, ne, nf,
1006 1.1 scw aqm_reg_read(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId)),
1007 1.1 scw qCfg, (u_int)IX_QMGR_Q_CONFIG_ADDR_GET(qId));
1008 1.1 scw
1009 1.1 scw aqm_reg_write(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId), qCfg);
1010 1.1 scw }
1011 1.1 scw
1012 1.1 scw static void
1013 1.1 scw aqm_srcsel_write(struct ixpqmgr_softc *sc, int qId, int sourceId)
1014 1.1 scw {
1015 1.1 scw bus_size_t off;
1016 1.1 scw uint32_t v;
1017 1.1 scw
1018 1.1 scw /*
1019 1.1 scw * Calculate the register offset; multiple queues split across registers
1020 1.1 scw */
1021 1.1 scw off = IX_QMGR_INT0SRCSELREG0_OFFSET +
1022 1.1 scw ((qId / IX_QMGR_INTSRC_NUM_QUE_PER_WORD) * sizeof(uint32_t));
1023 1.1 scw
1024 1.1 scw v = aqm_reg_read(sc, off);
1025 1.1 scw if (off == IX_QMGR_INT0SRCSELREG0_OFFSET && qId == 0) {
1026 1.1 scw /* Queue 0 at INT0SRCSELREG should not corrupt the value bit-3 */
1027 1.1 scw v |= 0x7;
1028 1.1 scw } else {
1029 1.1 scw const uint32_t bpq = 32 / IX_QMGR_INTSRC_NUM_QUE_PER_WORD;
1030 1.1 scw uint32_t mask;
1031 1.1 scw int qshift;
1032 1.1 scw
1033 1.1 scw qshift = (qId & (IX_QMGR_INTSRC_NUM_QUE_PER_WORD-1)) * bpq;
1034 1.1 scw mask = ((1 << bpq) - 1) << qshift; /* q's status mask */
1035 1.1 scw
1036 1.1 scw /* merge sourceId */
1037 1.1 scw v = (v &~ mask) | ((sourceId << qshift) & mask);
1038 1.1 scw }
1039 1.1 scw
1040 1.1 scw DPRINTF(sc->sc_dev, "%s(%u, %u) 0x%x => 0x%x @ 0x%lx\n",
1041 1.1 scw __func__, qId, sourceId, aqm_reg_read(sc, off), v, off);
1042 1.1 scw aqm_reg_write(sc, off, v);
1043 1.1 scw }
1044 1.1 scw
1045 1.1 scw /*
1046 1.1 scw * Reset AQM registers to default values.
1047 1.1 scw */
1048 1.1 scw static void
1049 1.1 scw aqm_reset(struct ixpqmgr_softc *sc)
1050 1.1 scw {
1051 1.1 scw int i;
1052 1.1 scw
1053 1.1 scw /* Reset queues 0..31 status registers 0..3 */
1054 1.1 scw aqm_reg_write(sc, IX_QMGR_QUELOWSTAT0_OFFSET,
1055 1.1 scw IX_QMGR_QUELOWSTAT_RESET_VALUE);
1056 1.1 scw aqm_reg_write(sc, IX_QMGR_QUELOWSTAT1_OFFSET,
1057 1.1 scw IX_QMGR_QUELOWSTAT_RESET_VALUE);
1058 1.1 scw aqm_reg_write(sc, IX_QMGR_QUELOWSTAT2_OFFSET,
1059 1.1 scw IX_QMGR_QUELOWSTAT_RESET_VALUE);
1060 1.1 scw aqm_reg_write(sc, IX_QMGR_QUELOWSTAT3_OFFSET,
1061 1.1 scw IX_QMGR_QUELOWSTAT_RESET_VALUE);
1062 1.1 scw
1063 1.1 scw /* Reset underflow/overflow status registers 0..1 */
1064 1.1 scw aqm_reg_write(sc, IX_QMGR_QUEUOSTAT0_OFFSET,
1065 1.1 scw IX_QMGR_QUEUOSTAT_RESET_VALUE);
1066 1.1 scw aqm_reg_write(sc, IX_QMGR_QUEUOSTAT1_OFFSET,
1067 1.1 scw IX_QMGR_QUEUOSTAT_RESET_VALUE);
1068 1.1 scw
1069 1.1 scw /* Reset queues 32..63 nearly empty status registers */
1070 1.1 scw aqm_reg_write(sc, IX_QMGR_QUEUPPSTAT0_OFFSET,
1071 1.1 scw IX_QMGR_QUEUPPSTAT0_RESET_VALUE);
1072 1.1 scw
1073 1.1 scw /* Reset queues 32..63 full status registers */
1074 1.1 scw aqm_reg_write(sc, IX_QMGR_QUEUPPSTAT1_OFFSET,
1075 1.1 scw IX_QMGR_QUEUPPSTAT1_RESET_VALUE);
1076 1.1 scw
1077 1.1 scw /* Reset int0 status flag source select registers 0..3 */
1078 1.1 scw aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG0_OFFSET,
1079 1.1 scw IX_QMGR_INT0SRCSELREG_RESET_VALUE);
1080 1.1 scw aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG1_OFFSET,
1081 1.1 scw IX_QMGR_INT0SRCSELREG_RESET_VALUE);
1082 1.1 scw aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG2_OFFSET,
1083 1.1 scw IX_QMGR_INT0SRCSELREG_RESET_VALUE);
1084 1.1 scw aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG3_OFFSET,
1085 1.1 scw IX_QMGR_INT0SRCSELREG_RESET_VALUE);
1086 1.1 scw
1087 1.1 scw /* Reset queue interrupt enable register 0..1 */
1088 1.1 scw aqm_reg_write(sc, IX_QMGR_QUEIEREG0_OFFSET,
1089 1.1 scw IX_QMGR_QUEIEREG_RESET_VALUE);
1090 1.1 scw aqm_reg_write(sc, IX_QMGR_QUEIEREG1_OFFSET,
1091 1.1 scw IX_QMGR_QUEIEREG_RESET_VALUE);
1092 1.1 scw
1093 1.1 scw /* Reset queue interrupt register 0..1 */
1094 1.1 scw aqm_reg_write(sc, IX_QMGR_QINTREG0_OFFSET, IX_QMGR_QINTREG_RESET_VALUE);
1095 1.1 scw aqm_reg_write(sc, IX_QMGR_QINTREG1_OFFSET, IX_QMGR_QINTREG_RESET_VALUE);
1096 1.1 scw
1097 1.1 scw /* Reset queue configuration words 0..63 */
1098 1.1 scw for (i = 0; i < IX_QMGR_MAX_NUM_QUEUES; i++)
1099 1.1 scw aqm_reg_write(sc, sc->qinfo[i].qConfigRegAddr,
1100 1.1 scw IX_QMGR_QUECONFIG_RESET_VALUE);
1101 1.1 scw
1102 1.1 scw /* XXX zero SRAM to simplify debugging */
1103 1.1 scw for (i = IX_QMGR_QUEBUFFER_SPACE_OFFSET;
1104 1.1 scw i < IX_QMGR_AQM_SRAM_SIZE_IN_BYTES; i += sizeof(uint32_t))
1105 1.1 scw aqm_reg_write(sc, i, 0);
1106 1.1 scw }
1107 1.1 scw
1108 1.1 scw #ifdef __FreeBSD__
1109 1.1 scw static device_method_t ixpqmgr_methods[] = {
1110 1.1 scw DEVMETHOD(device_probe, ixpqmgr_probe),
1111 1.1 scw DEVMETHOD(device_attach, ixpqmgr_attach),
1112 1.1 scw DEVMETHOD(device_detach, ixpqmgr_detach),
1113 1.1 scw
1114 1.1 scw { 0, 0 }
1115 1.1 scw };
1116 1.1 scw
1117 1.1 scw static driver_t ixpqmgr_driver = {
1118 1.1 scw "ixpqmgr",
1119 1.1 scw ixpqmgr_methods,
1120 1.1 scw sizeof(struct ixpqmgr_softc),
1121 1.1 scw };
1122 1.1 scw static devclass_t ixpqmgr_devclass;
1123 1.1 scw
1124 1.1 scw DRIVER_MODULE(ixpqmgr, ixp, ixpqmgr_driver, ixpqmgr_devclass, 0, 0);
1125 1.1 scw #endif
1126