ixp425_qmgr.c revision 1.8 1 1.8 msaitoh /* $NetBSD: ixp425_qmgr.c,v 1.8 2019/06/03 06:04:20 msaitoh Exp $ */
2 1.1 scw
3 1.1 scw /*-
4 1.1 scw * Copyright (c) 2006 Sam Leffler, Errno Consulting
5 1.1 scw * All rights reserved.
6 1.1 scw *
7 1.1 scw * Redistribution and use in source and binary forms, with or without
8 1.1 scw * modification, are permitted provided that the following conditions
9 1.1 scw * are met:
10 1.1 scw * 1. Redistributions of source code must retain the above copyright
11 1.1 scw * notice, this list of conditions and the following disclaimer,
12 1.1 scw * without modification.
13 1.1 scw * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 1.1 scw * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 1.1 scw * redistribution must be conditioned upon including a substantially
16 1.1 scw * similar Disclaimer requirement for further binary redistribution.
17 1.1 scw *
18 1.1 scw * NO WARRANTY
19 1.1 scw * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 1.1 scw * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 1.1 scw * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22 1.1 scw * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23 1.1 scw * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24 1.1 scw * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 scw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 scw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27 1.1 scw * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 scw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29 1.1 scw * THE POSSIBILITY OF SUCH DAMAGES.
30 1.1 scw */
31 1.1 scw
32 1.1 scw /*-
33 1.1 scw * Copyright (c) 2001-2005, Intel Corporation.
34 1.1 scw * All rights reserved.
35 1.1 scw *
36 1.1 scw * Redistribution and use in source and binary forms, with or without
37 1.1 scw * modification, are permitted provided that the following conditions
38 1.1 scw * are met:
39 1.1 scw * 1. Redistributions of source code must retain the above copyright
40 1.1 scw * notice, this list of conditions and the following disclaimer.
41 1.1 scw * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 scw * notice, this list of conditions and the following disclaimer in the
43 1.1 scw * documentation and/or other materials provided with the distribution.
44 1.1 scw * 3. Neither the name of the Intel Corporation nor the names of its contributors
45 1.1 scw * may be used to endorse or promote products derived from this software
46 1.1 scw * without specific prior written permission.
47 1.1 scw *
48 1.1 scw *
49 1.1 scw * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
50 1.1 scw * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 1.1 scw * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 1.1 scw * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
53 1.1 scw * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 1.1 scw * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 1.1 scw * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 1.1 scw * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 1.1 scw * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 1.1 scw * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 1.1 scw * SUCH DAMAGE.
60 1.1 scw */
61 1.1 scw #include <sys/cdefs.h>
62 1.1 scw /*__FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/ixp425_qmgr.c,v 1.1 2006/11/19 23:55:23 sam Exp $");*/
63 1.8 msaitoh __KERNEL_RCSID(0, "$NetBSD: ixp425_qmgr.c,v 1.8 2019/06/03 06:04:20 msaitoh Exp $");
64 1.1 scw
65 1.1 scw /*
66 1.1 scw * Intel XScale Queue Manager support.
67 1.1 scw *
68 1.1 scw * Each IXP4XXX device has a hardware block that implements a priority
69 1.1 scw * queue manager that is shared between the XScale cpu and the backend
70 1.1 scw * devices (such as the NPE). Queues are accessed by reading/writing
71 1.1 scw * special memory locations. The queue contents are mapped into a shared
72 1.1 scw * SRAM region with entries managed in a circular buffer. The XScale
73 1.1 scw * processor can receive interrupts based on queue contents (a condition
74 1.1 scw * code determines when interrupts should be delivered).
75 1.1 scw *
76 1.1 scw * The code here basically replaces the qmgr class in the Intel Access
77 1.1 scw * Library (IAL).
78 1.1 scw */
79 1.1 scw #include <sys/param.h>
80 1.1 scw #include <sys/systm.h>
81 1.1 scw #include <sys/kernel.h>
82 1.1 scw #include <sys/time.h>
83 1.1 scw #include <sys/malloc.h>
84 1.1 scw #include <sys/resource.h>
85 1.1 scw
86 1.7 dyoung #include <sys/bus.h>
87 1.1 scw #include <machine/cpu.h>
88 1.1 scw #include <machine/intr.h>
89 1.1 scw
90 1.1 scw #include <arm/xscale/ixp425reg.h>
91 1.1 scw #include <arm/xscale/ixp425var.h>
92 1.1 scw
93 1.1 scw #include <arm/xscale/ixp425_qmgr.h>
94 1.1 scw
95 1.1 scw /*
96 1.1 scw * State per AQM hw queue.
97 1.1 scw * This structure holds q configuration and dispatch state.
98 1.1 scw */
99 1.1 scw struct qmgrInfo {
100 1.1 scw int qSizeInWords; /* queue size in words */
101 1.1 scw
102 1.1 scw uint32_t qOflowStatBitMask; /* overflow status mask */
103 1.1 scw int qWriteCount; /* queue write count */
104 1.1 scw
105 1.1 scw bus_size_t qAccRegAddr; /* access register */
106 1.1 scw bus_size_t qUOStatRegAddr; /* status register */
107 1.1 scw bus_size_t qConfigRegAddr; /* config register */
108 1.1 scw int qSizeInEntries; /* queue size in entries */
109 1.1 scw
110 1.1 scw uint32_t qUflowStatBitMask; /* underflow status mask */
111 1.1 scw int qReadCount; /* queue read count */
112 1.1 scw
113 1.1 scw /* XXX union */
114 1.1 scw uint32_t qStatRegAddr;
115 1.1 scw uint32_t qStatBitsOffset;
116 1.1 scw uint32_t qStat0BitMask;
117 1.1 scw uint32_t qStat1BitMask;
118 1.1 scw
119 1.1 scw uint32_t intRegCheckMask; /* interrupt reg check mask */
120 1.1 scw void (*cb)(int, void *); /* callback function */
121 1.1 scw void *cbarg; /* callback argument */
122 1.1 scw int priority; /* dispatch priority */
123 1.1 scw #if 0
124 1.1 scw /* NB: needed only for A0 parts */
125 1.1 scw u_int statusWordOffset; /* status word offset */
126 1.1 scw uint32_t statusMask; /* status mask */
127 1.1 scw uint32_t statusCheckValue; /* status check value */
128 1.1 scw #endif
129 1.1 scw };
130 1.1 scw
131 1.1 scw struct ixpqmgr_softc {
132 1.1 scw #ifdef __FreeBSD__
133 1.1 scw device_t sc_dev;
134 1.1 scw bus_space_tag_t sc_iot;
135 1.1 scw bus_space_handle_t sc_ioh;
136 1.1 scw struct resource *sc_irq; /* IRQ resource */
137 1.1 scw int sc_rid; /* resource id for irq */
138 1.1 scw void *sc_ih; /* interrupt handler */
139 1.1 scw #else
140 1.1 scw bus_space_tag_t sc_iot;
141 1.1 scw bus_space_handle_t sc_ioh;
142 1.1 scw void *sc_ih[2]; /* interrupt handler */
143 1.1 scw #endif
144 1.1 scw
145 1.1 scw struct qmgrInfo qinfo[IX_QMGR_MAX_NUM_QUEUES];
146 1.1 scw /*
147 1.1 scw * This array contains a list of queue identifiers ordered by
148 1.1 scw * priority. The table is split logically between queue
149 1.1 scw * identifiers 0-31 and 32-63. To optimize lookups bit masks
150 1.1 scw * are kept for the first-32 and last-32 q's. When the
151 1.1 scw * table needs to be rebuilt mark rebuildTable and it'll
152 1.1 scw * happen after the next interrupt.
153 1.1 scw */
154 1.1 scw int priorityTable[IX_QMGR_MAX_NUM_QUEUES];
155 1.1 scw uint32_t lowPriorityTableFirstHalfMask;
156 1.1 scw uint32_t uppPriorityTableFirstHalfMask;
157 1.1 scw int rebuildTable; /* rebuild priorityTable */
158 1.1 scw
159 1.1 scw uint32_t aqmFreeSramAddress; /* SRAM free space */
160 1.1 scw };
161 1.1 scw
162 1.1 scw static int qmgr_debug = 0;
163 1.1 scw #define DPRINTF(dev, fmt, ...) do { \
164 1.1 scw if (qmgr_debug) printf(fmt, __VA_ARGS__); \
165 1.1 scw } while (0)
166 1.1 scw #define DPRINTFn(n, dev, fmt, ...) do { \
167 1.1 scw if (qmgr_debug >= n) printf(fmt, __VA_ARGS__); \
168 1.1 scw } while (0)
169 1.1 scw
170 1.1 scw static struct ixpqmgr_softc *ixpqmgr_sc = NULL;
171 1.1 scw
172 1.1 scw static void ixpqmgr_rebuild(struct ixpqmgr_softc *);
173 1.1 scw static int ixpqmgr_intr(void *);
174 1.1 scw
175 1.1 scw static void aqm_int_enable(struct ixpqmgr_softc *sc, int qId);
176 1.1 scw static void aqm_int_disable(struct ixpqmgr_softc *sc, int qId);
177 1.1 scw static void aqm_qcfg(struct ixpqmgr_softc *sc, int qId, u_int ne, u_int nf);
178 1.1 scw static void aqm_srcsel_write(struct ixpqmgr_softc *sc, int qId, int sourceId);
179 1.1 scw static void aqm_reset(struct ixpqmgr_softc *sc);
180 1.1 scw
181 1.1 scw static void
182 1.1 scw dummyCallback(int qId, void *arg)
183 1.1 scw {
184 1.1 scw /* XXX complain */
185 1.1 scw }
186 1.1 scw
187 1.1 scw static uint32_t
188 1.1 scw aqm_reg_read(struct ixpqmgr_softc *sc, bus_size_t off)
189 1.1 scw {
190 1.1 scw DPRINTFn(9, sc->sc_dev, "%s(0x%x)\n", __func__, (int)off);
191 1.1 scw return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
192 1.1 scw }
193 1.1 scw
194 1.1 scw static void
195 1.1 scw aqm_reg_write(struct ixpqmgr_softc *sc, bus_size_t off, uint32_t val)
196 1.1 scw {
197 1.1 scw DPRINTFn(9, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, (int)off, val);
198 1.1 scw bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
199 1.1 scw }
200 1.1 scw
201 1.1 scw #ifdef __FreeBSD__
202 1.1 scw static int
203 1.1 scw ixpqmgr_probe(device_t dev)
204 1.1 scw {
205 1.1 scw device_set_desc(dev, "IXP425 Q-Manager");
206 1.1 scw return 0;
207 1.1 scw }
208 1.1 scw #endif
209 1.1 scw
210 1.1 scw #ifdef __FreeBSD__
211 1.1 scw static void
212 1.1 scw ixpqmgr_attach(device_t dev)
213 1.1 scw #else
214 1.1 scw void *
215 1.1 scw ixpqmgr_init(bus_space_tag_t iot)
216 1.1 scw #endif
217 1.1 scw {
218 1.1 scw #ifdef __FreeBSD__
219 1.1 scw struct ixpqmgr_softc *sc = device_get_softc(dev);
220 1.1 scw struct ixp425_softc *sa = device_get_softc(device_get_parent(dev));
221 1.1 scw #else
222 1.1 scw struct ixpqmgr_softc *sc;
223 1.1 scw #endif
224 1.1 scw int i;
225 1.1 scw
226 1.1 scw #ifdef __FreeBSD__
227 1.1 scw ixpqmgr_sc = sc;
228 1.1 scw
229 1.1 scw sc->sc_dev = dev;
230 1.1 scw sc->sc_iot = sa->sc_iot;
231 1.1 scw #else
232 1.1 scw sc = malloc(sizeof(*sc), M_DEVBUF, M_NOWAIT | M_ZERO);
233 1.1 scw if (sc == NULL)
234 1.1 scw return (NULL);
235 1.1 scw
236 1.1 scw sc->sc_iot = iot;
237 1.1 scw #endif
238 1.1 scw
239 1.1 scw if (bus_space_map(sc->sc_iot, IXP425_QMGR_HWBASE, IXP425_QMGR_SIZE,
240 1.1 scw 0, &sc->sc_ioh))
241 1.1 scw panic("%s: Cannot map registers", __func__);
242 1.1 scw
243 1.1 scw #ifdef __FreeBSD__
244 1.1 scw /* NB: we only use the lower 32 q's */
245 1.1 scw sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->sc_rid,
246 1.1 scw IXP425_INT_QUE1_32, IXP425_INT_QUE33_64, 2, RF_ACTIVE);
247 1.1 scw if (!sc->sc_irq)
248 1.1 scw panic("Unable to allocate the qmgr irqs.\n");
249 1.1 scw /* XXX could be a source of entropy */
250 1.1 scw bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
251 1.1 scw ixpqmgr_intr, NULL, &sc->sc_ih);
252 1.1 scw #else
253 1.3 scw ixpqmgr_sc = sc;
254 1.1 scw sc->sc_ih[0] = ixp425_intr_establish(IXP425_INT_QUE1_32, IPL_NET,
255 1.1 scw ixpqmgr_intr, sc);
256 1.1 scw if (sc->sc_ih[0] == NULL) {
257 1.3 scw ixpqmgr_sc = NULL;
258 1.1 scw free(sc, M_DEVBUF);
259 1.1 scw return (NULL);
260 1.1 scw }
261 1.1 scw sc->sc_ih[1] = ixp425_intr_establish(IXP425_INT_QUE33_64, IPL_NET,
262 1.1 scw ixpqmgr_intr, sc);
263 1.1 scw if (sc->sc_ih[1] == NULL) {
264 1.1 scw ixp425_intr_disestablish(sc->sc_ih[0]);
265 1.3 scw ixpqmgr_sc = NULL;
266 1.1 scw free(sc, M_DEVBUF);
267 1.1 scw return (NULL);
268 1.1 scw }
269 1.1 scw #endif
270 1.1 scw
271 1.1 scw /* NB: softc is pre-zero'd */
272 1.1 scw for (i = 0; i < IX_QMGR_MAX_NUM_QUEUES; i++) {
273 1.1 scw struct qmgrInfo *qi = &sc->qinfo[i];
274 1.1 scw
275 1.1 scw qi->cb = dummyCallback;
276 1.1 scw qi->priority = IX_QMGR_Q_PRIORITY_0; /* default priority */
277 1.1 scw /*
278 1.1 scw * There are two interrupt registers, 32 bits each. One
279 1.1 scw * for the lower queues(0-31) and one for the upper
280 1.1 scw * queues(32-63). Therefore need to mod by 32 i.e the
281 1.1 scw * min upper queue identifier.
282 1.1 scw */
283 1.1 scw qi->intRegCheckMask = (1<<(i%(IX_QMGR_MIN_QUEUPP_QID)));
284 1.1 scw
285 1.1 scw /*
286 1.1 scw * Register addresses and bit masks are calculated and
287 1.1 scw * stored here to optimize QRead, QWrite and QStatusGet
288 1.1 scw * functions.
289 1.1 scw */
290 1.1 scw
291 1.1 scw /* AQM Queue access reg addresses, per queue */
292 1.1 scw qi->qAccRegAddr = IX_QMGR_Q_ACCESS_ADDR_GET(i);
293 1.1 scw qi->qAccRegAddr = IX_QMGR_Q_ACCESS_ADDR_GET(i);
294 1.1 scw qi->qConfigRegAddr = IX_QMGR_Q_CONFIG_ADDR_GET(i);
295 1.1 scw
296 1.1 scw /* AQM Queue lower-group (0-31), only */
297 1.1 scw if (i < IX_QMGR_MIN_QUEUPP_QID) {
298 1.1 scw /* AQM Q underflow/overflow status reg address, per queue */
299 1.1 scw qi->qUOStatRegAddr = IX_QMGR_QUEUOSTAT0_OFFSET +
300 1.1 scw ((i / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD) *
301 1.1 scw sizeof(uint32_t));
302 1.1 scw
303 1.1 scw /* AQM Q underflow status bit masks for status reg per queue */
304 1.1 scw qi->qUflowStatBitMask =
305 1.1 scw (IX_QMGR_UNDERFLOW_BIT_OFFSET + 1) <<
306 1.1 scw ((i & (IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD - 1)) *
307 1.1 scw (32 / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD));
308 1.1 scw
309 1.1 scw /* AQM Q overflow status bit masks for status reg, per queue */
310 1.1 scw qi->qOflowStatBitMask =
311 1.1 scw (IX_QMGR_OVERFLOW_BIT_OFFSET + 1) <<
312 1.1 scw ((i & (IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD - 1)) *
313 1.1 scw (32 / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD));
314 1.1 scw
315 1.1 scw /* AQM Q lower-group (0-31) status reg addresses, per queue */
316 1.1 scw qi->qStatRegAddr = IX_QMGR_QUELOWSTAT0_OFFSET +
317 1.1 scw ((i / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD) *
318 1.1 scw sizeof(uint32_t));
319 1.1 scw
320 1.1 scw /* AQM Q lower-group (0-31) status register bit offset */
321 1.1 scw qi->qStatBitsOffset =
322 1.1 scw (i & (IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD - 1)) *
323 1.1 scw (32 / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD);
324 1.1 scw } else { /* AQM Q upper-group (32-63), only */
325 1.1 scw qi->qUOStatRegAddr = 0; /* XXX */
326 1.1 scw
327 1.1 scw /* AQM Q upper-group (32-63) Nearly Empty status reg bitmasks */
328 1.1 scw qi->qStat0BitMask = (1 << (i - IX_QMGR_MIN_QUEUPP_QID));
329 1.1 scw
330 1.1 scw /* AQM Q upper-group (32-63) Full status register bitmasks */
331 1.1 scw qi->qStat1BitMask = (1 << (i - IX_QMGR_MIN_QUEUPP_QID));
332 1.1 scw }
333 1.1 scw }
334 1.1 scw
335 1.1 scw sc->aqmFreeSramAddress = 0x100; /* Q buffer space starts at 0x2100 */
336 1.1 scw
337 1.1 scw ixpqmgr_rebuild(sc); /* build inital priority table */
338 1.1 scw aqm_reset(sc); /* reset h/w */
339 1.1 scw
340 1.1 scw return (sc);
341 1.1 scw }
342 1.1 scw
343 1.1 scw #ifdef __FreeBSD__
344 1.1 scw static void
345 1.1 scw ixpqmgr_detach(device_t dev)
346 1.1 scw {
347 1.1 scw struct ixpqmgr_softc *sc = device_get_softc(dev);
348 1.1 scw
349 1.1 scw aqm_reset(sc); /* disable interrupts */
350 1.1 scw bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
351 1.1 scw bus_release_resource(dev, SYS_RES_IRQ, sc->sc_rid, sc->sc_irq);
352 1.1 scw bus_space_unmap(sc->sc_iot, sc->sc_ioh, IXP425_QMGR_SIZE);
353 1.1 scw }
354 1.1 scw #endif
355 1.1 scw
356 1.1 scw int
357 1.1 scw ixpqmgr_qconfig(int qId, int qEntries, int ne, int nf, int srcSel,
358 1.1 scw void (*cb)(int, void *), void *cbarg)
359 1.1 scw {
360 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
361 1.1 scw struct qmgrInfo *qi = &sc->qinfo[qId];
362 1.1 scw
363 1.1 scw DPRINTF(sc->sc_dev, "%s(%u, %u, %u, %u, %u, %p, %p)\n",
364 1.1 scw __func__, qId, qEntries, ne, nf, srcSel, cb, cbarg);
365 1.1 scw
366 1.1 scw /* NB: entry size is always 1 */
367 1.1 scw qi->qSizeInWords = qEntries;
368 1.1 scw
369 1.1 scw qi->qReadCount = 0;
370 1.1 scw qi->qWriteCount = 0;
371 1.1 scw qi->qSizeInEntries = qEntries; /* XXX kept for code clarity */
372 1.1 scw
373 1.1 scw if (cb == NULL) {
374 1.1 scw /* Reset to dummy callback */
375 1.1 scw qi->cb = dummyCallback;
376 1.1 scw qi->cbarg = 0;
377 1.1 scw } else {
378 1.1 scw qi->cb = cb;
379 1.1 scw qi->cbarg = cbarg;
380 1.1 scw }
381 1.1 scw
382 1.1 scw /* Write the config register; NB must be AFTER qinfo setup */
383 1.1 scw aqm_qcfg(sc, qId, ne, nf);
384 1.1 scw /*
385 1.1 scw * Account for space just allocated to queue.
386 1.1 scw */
387 1.1 scw sc->aqmFreeSramAddress += (qi->qSizeInWords * sizeof(uint32_t));
388 1.1 scw
389 1.5 msaitoh /* Set the interrupt source if this queue is in the range 0-31 */
390 1.1 scw if (qId < IX_QMGR_MIN_QUEUPP_QID)
391 1.1 scw aqm_srcsel_write(sc, qId, srcSel);
392 1.1 scw
393 1.1 scw if (cb != NULL) /* Enable the interrupt */
394 1.1 scw aqm_int_enable(sc, qId);
395 1.1 scw
396 1.2 thorpej sc->rebuildTable = true;
397 1.1 scw
398 1.1 scw return 0; /* XXX */
399 1.1 scw }
400 1.1 scw
401 1.1 scw int
402 1.1 scw ixpqmgr_qwrite(int qId, uint32_t entry)
403 1.1 scw {
404 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
405 1.1 scw struct qmgrInfo *qi = &sc->qinfo[qId];
406 1.1 scw
407 1.1 scw DPRINTFn(3, sc->sc_dev, "%s(%u, 0x%x) writeCount %u size %u\n",
408 1.1 scw __func__, qId, entry, qi->qWriteCount, qi->qSizeInEntries);
409 1.1 scw
410 1.1 scw /* write the entry */
411 1.1 scw aqm_reg_write(sc, qi->qAccRegAddr, entry);
412 1.1 scw
413 1.1 scw /* NB: overflow is available for lower queues only */
414 1.1 scw if (qId < IX_QMGR_MIN_QUEUPP_QID) {
415 1.1 scw int qSize = qi->qSizeInEntries;
416 1.1 scw /*
417 1.1 scw * Increment the current number of entries in the queue
418 1.1 scw * and check for overflow .
419 1.1 scw */
420 1.1 scw if (qi->qWriteCount++ == qSize) { /* check for overflow */
421 1.1 scw uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
422 1.1 scw int qPtrs;
423 1.1 scw
424 1.1 scw /*
425 1.1 scw * Read the status twice because the status may
426 1.1 scw * not be immediately ready after the write operation
427 1.1 scw */
428 1.1 scw if ((status & qi->qOflowStatBitMask) ||
429 1.1 scw ((status = aqm_reg_read(sc, qi->qUOStatRegAddr)) & qi->qOflowStatBitMask)) {
430 1.1 scw /*
431 1.1 scw * The queue is full, clear the overflow status bit if set.
432 1.1 scw */
433 1.1 scw aqm_reg_write(sc, qi->qUOStatRegAddr,
434 1.1 scw status & ~qi->qOflowStatBitMask);
435 1.1 scw qi->qWriteCount = qSize;
436 1.1 scw DPRINTFn(5, sc->sc_dev,
437 1.1 scw "%s(%u, 0x%x) Q full, overflow status cleared\n",
438 1.1 scw __func__, qId, entry);
439 1.1 scw return ENOSPC;
440 1.1 scw }
441 1.1 scw /*
442 1.1 scw * No overflow occured : someone is draining the queue
443 1.1 scw * and the current counter needs to be
444 1.1 scw * updated from the current number of entries in the queue
445 1.1 scw */
446 1.1 scw
447 1.1 scw /* calculate number of words in q */
448 1.1 scw qPtrs = aqm_reg_read(sc, qi->qConfigRegAddr);
449 1.1 scw DPRINTFn(2, sc->sc_dev,
450 1.1 scw "%s(%u, 0x%x) Q full, no overflow status, qConfig 0x%x\n",
451 1.1 scw __func__, qId, entry, qPtrs);
452 1.1 scw qPtrs = (qPtrs - (qPtrs >> 7)) & 0x7f;
453 1.1 scw
454 1.1 scw if (qPtrs == 0) {
455 1.1 scw /*
456 1.1 scw * The queue may be full at the time of the
457 1.1 scw * snapshot. Next access will check
458 1.1 scw * the overflow status again.
459 1.1 scw */
460 1.1 scw qi->qWriteCount = qSize;
461 1.1 scw } else {
462 1.1 scw /* convert the number of words to a number of entries */
463 1.1 scw qi->qWriteCount = qPtrs & (qSize - 1);
464 1.1 scw }
465 1.1 scw }
466 1.1 scw }
467 1.1 scw return 0;
468 1.1 scw }
469 1.1 scw
470 1.1 scw int
471 1.1 scw ixpqmgr_qread(int qId, uint32_t *entry)
472 1.1 scw {
473 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
474 1.1 scw struct qmgrInfo *qi = &sc->qinfo[qId];
475 1.1 scw bus_size_t off = qi->qAccRegAddr;
476 1.1 scw
477 1.1 scw *entry = aqm_reg_read(sc, off);
478 1.1 scw
479 1.1 scw /*
480 1.1 scw * Reset the current read count : next access to the read function
481 1.1 scw * will force a underflow status check.
482 1.1 scw */
483 1.1 scw qi->qReadCount = 0;
484 1.1 scw
485 1.1 scw /* Check if underflow occurred on the read */
486 1.1 scw if (*entry == 0 && qId < IX_QMGR_MIN_QUEUPP_QID) {
487 1.1 scw /* get the queue status */
488 1.1 scw uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
489 1.1 scw
490 1.1 scw if (status & qi->qUflowStatBitMask) { /* clear underflow status */
491 1.1 scw aqm_reg_write(sc, qi->qUOStatRegAddr,
492 1.1 scw status &~ qi->qUflowStatBitMask);
493 1.1 scw return ENOSPC;
494 1.1 scw }
495 1.1 scw }
496 1.1 scw return 0;
497 1.1 scw }
498 1.1 scw
499 1.1 scw int
500 1.1 scw ixpqmgr_qreadm(int qId, uint32_t n, uint32_t *p)
501 1.1 scw {
502 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
503 1.1 scw struct qmgrInfo *qi = &sc->qinfo[qId];
504 1.1 scw uint32_t entry;
505 1.1 scw bus_size_t off = qi->qAccRegAddr;
506 1.1 scw
507 1.1 scw entry = aqm_reg_read(sc, off);
508 1.1 scw while (--n) {
509 1.1 scw if (entry == 0) {
510 1.1 scw /* if we read a NULL entry, stop. We have underflowed */
511 1.1 scw break;
512 1.1 scw }
513 1.1 scw *p++ = entry; /* store */
514 1.1 scw entry = aqm_reg_read(sc, off);
515 1.1 scw }
516 1.1 scw *p = entry;
517 1.1 scw
518 1.1 scw /*
519 1.1 scw * Reset the current read count : next access to the read function
520 1.1 scw * will force a underflow status check.
521 1.1 scw */
522 1.1 scw qi->qReadCount = 0;
523 1.1 scw
524 1.1 scw /* Check if underflow occurred on the read */
525 1.1 scw if (entry == 0 && qId < IX_QMGR_MIN_QUEUPP_QID) {
526 1.1 scw /* get the queue status */
527 1.1 scw uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
528 1.1 scw
529 1.1 scw if (status & qi->qUflowStatBitMask) { /* clear underflow status */
530 1.1 scw aqm_reg_write(sc, qi->qUOStatRegAddr,
531 1.1 scw status &~ qi->qUflowStatBitMask);
532 1.1 scw return ENOSPC;
533 1.1 scw }
534 1.1 scw }
535 1.1 scw return 0;
536 1.1 scw }
537 1.1 scw
538 1.1 scw uint32_t
539 1.1 scw ixpqmgr_getqstatus(int qId)
540 1.1 scw {
541 1.1 scw #define QLOWSTATMASK \
542 1.1 scw ((1 << (32 / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD)) - 1)
543 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
544 1.1 scw const struct qmgrInfo *qi = &sc->qinfo[qId];
545 1.1 scw uint32_t status;
546 1.1 scw
547 1.1 scw if (qId < IX_QMGR_MIN_QUEUPP_QID) {
548 1.1 scw /* read the status of a queue in the range 0-31 */
549 1.1 scw status = aqm_reg_read(sc, qi->qStatRegAddr);
550 1.1 scw
551 1.1 scw /* mask out the status bits relevant only to this queue */
552 1.1 scw status = (status >> qi->qStatBitsOffset) & QLOWSTATMASK;
553 1.1 scw } else { /* read status of a queue in the range 32-63 */
554 1.1 scw status = 0;
555 1.1 scw if (aqm_reg_read(sc, IX_QMGR_QUEUPPSTAT0_OFFSET)&qi->qStat0BitMask)
556 1.1 scw status |= IX_QMGR_Q_STATUS_NE_BIT_MASK; /* nearly empty */
557 1.1 scw if (aqm_reg_read(sc, IX_QMGR_QUEUPPSTAT1_OFFSET)&qi->qStat1BitMask)
558 1.1 scw status |= IX_QMGR_Q_STATUS_F_BIT_MASK; /* full */
559 1.1 scw }
560 1.1 scw return status;
561 1.1 scw #undef QLOWSTATMASK
562 1.1 scw }
563 1.1 scw
564 1.1 scw uint32_t
565 1.1 scw ixpqmgr_getqconfig(int qId)
566 1.1 scw {
567 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
568 1.1 scw
569 1.1 scw return aqm_reg_read(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId));
570 1.1 scw }
571 1.1 scw
572 1.1 scw void
573 1.1 scw ixpqmgr_dump(void)
574 1.1 scw {
575 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
576 1.1 scw int i, a;
577 1.1 scw
578 1.1 scw /* status registers */
579 1.1 scw printf("0x%04x: %08x %08x %08x %08x\n"
580 1.1 scw , 0x400
581 1.1 scw , aqm_reg_read(sc, 0x400)
582 1.1 scw , aqm_reg_read(sc, 0x400+4)
583 1.1 scw , aqm_reg_read(sc, 0x400+8)
584 1.1 scw , aqm_reg_read(sc, 0x400+12)
585 1.1 scw );
586 1.1 scw printf("0x%04x: %08x %08x %08x %08x\n"
587 1.1 scw , 0x410
588 1.1 scw , aqm_reg_read(sc, 0x410)
589 1.1 scw , aqm_reg_read(sc, 0x410+4)
590 1.1 scw , aqm_reg_read(sc, 0x410+8)
591 1.1 scw , aqm_reg_read(sc, 0x410+12)
592 1.1 scw );
593 1.1 scw printf("0x%04x: %08x %08x %08x %08x\n"
594 1.1 scw , 0x420
595 1.1 scw , aqm_reg_read(sc, 0x420)
596 1.1 scw , aqm_reg_read(sc, 0x420+4)
597 1.1 scw , aqm_reg_read(sc, 0x420+8)
598 1.1 scw , aqm_reg_read(sc, 0x420+12)
599 1.1 scw );
600 1.1 scw printf("0x%04x: %08x %08x %08x %08x\n"
601 1.1 scw , 0x430
602 1.1 scw , aqm_reg_read(sc, 0x430)
603 1.1 scw , aqm_reg_read(sc, 0x430+4)
604 1.1 scw , aqm_reg_read(sc, 0x430+8)
605 1.1 scw , aqm_reg_read(sc, 0x430+12)
606 1.1 scw );
607 1.1 scw /* q configuration registers */
608 1.1 scw for (a = 0x2000; a < 0x20ff; a += 32)
609 1.1 scw printf("0x%04x: %08x %08x %08x %08x %08x %08x %08x %08x\n"
610 1.1 scw , a
611 1.1 scw , aqm_reg_read(sc, a)
612 1.1 scw , aqm_reg_read(sc, a+4)
613 1.1 scw , aqm_reg_read(sc, a+8)
614 1.1 scw , aqm_reg_read(sc, a+12)
615 1.1 scw , aqm_reg_read(sc, a+16)
616 1.1 scw , aqm_reg_read(sc, a+20)
617 1.1 scw , aqm_reg_read(sc, a+24)
618 1.1 scw , aqm_reg_read(sc, a+28)
619 1.1 scw );
620 1.1 scw /* allocated SRAM */
621 1.1 scw for (i = 0x100; i < sc->aqmFreeSramAddress; i += 32) {
622 1.1 scw a = 0x2000 + i;
623 1.1 scw printf("0x%04x: %08x %08x %08x %08x %08x %08x %08x %08x\n"
624 1.1 scw , a
625 1.1 scw , aqm_reg_read(sc, a)
626 1.1 scw , aqm_reg_read(sc, a+4)
627 1.1 scw , aqm_reg_read(sc, a+8)
628 1.1 scw , aqm_reg_read(sc, a+12)
629 1.1 scw , aqm_reg_read(sc, a+16)
630 1.1 scw , aqm_reg_read(sc, a+20)
631 1.1 scw , aqm_reg_read(sc, a+24)
632 1.1 scw , aqm_reg_read(sc, a+28)
633 1.1 scw );
634 1.1 scw }
635 1.1 scw for (i = 0; i < 16; i++) {
636 1.1 scw printf("Q[%2d] config 0x%08x status 0x%02x "
637 1.1 scw "Q[%2d] config 0x%08x status 0x%02x\n"
638 1.1 scw , i, ixpqmgr_getqconfig(i), ixpqmgr_getqstatus(i)
639 1.1 scw , i+16, ixpqmgr_getqconfig(i+16), ixpqmgr_getqstatus(i+16)
640 1.1 scw );
641 1.1 scw }
642 1.1 scw }
643 1.1 scw
644 1.1 scw void
645 1.1 scw ixpqmgr_notify_enable(int qId, int srcSel)
646 1.1 scw {
647 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
648 1.1 scw #if 0
649 1.1 scw /* Calculate the checkMask and checkValue for this q */
650 1.1 scw aqm_calc_statuscheck(sc, qId, srcSel);
651 1.1 scw #endif
652 1.6 msaitoh /* Set the interrupt source if this queue is in the range 0-31 */
653 1.1 scw if (qId < IX_QMGR_MIN_QUEUPP_QID)
654 1.1 scw aqm_srcsel_write(sc, qId, srcSel);
655 1.1 scw
656 1.1 scw /* Enable the interrupt */
657 1.1 scw aqm_int_enable(sc, qId);
658 1.1 scw }
659 1.1 scw
660 1.1 scw void
661 1.1 scw ixpqmgr_notify_disable(int qId)
662 1.1 scw {
663 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
664 1.1 scw
665 1.1 scw aqm_int_disable(sc, qId);
666 1.1 scw }
667 1.1 scw
668 1.1 scw /*
669 1.1 scw * Rebuild the priority table used by the dispatcher.
670 1.1 scw */
671 1.1 scw static void
672 1.1 scw ixpqmgr_rebuild(struct ixpqmgr_softc *sc)
673 1.1 scw {
674 1.1 scw int q, pri;
675 1.1 scw int lowQuePriorityTableIndex, uppQuePriorityTableIndex;
676 1.1 scw struct qmgrInfo *qi;
677 1.1 scw
678 1.1 scw sc->lowPriorityTableFirstHalfMask = 0;
679 1.1 scw sc->uppPriorityTableFirstHalfMask = 0;
680 1.1 scw
681 1.1 scw lowQuePriorityTableIndex = 0;
682 1.1 scw uppQuePriorityTableIndex = 32;
683 1.1 scw for (pri = 0; pri < IX_QMGR_NUM_PRIORITY_LEVELS; pri++) {
684 1.1 scw /* low priority q's */
685 1.1 scw for (q = 0; q < IX_QMGR_MIN_QUEUPP_QID; q++) {
686 1.1 scw qi = &sc->qinfo[q];
687 1.1 scw if (qi->priority == pri) {
688 1.1 scw /*
689 1.1 scw * Build the priority table bitmask which match the
690 1.1 scw * queues of the first half of the priority table.
691 1.1 scw */
692 1.1 scw if (lowQuePriorityTableIndex < 16) {
693 1.1 scw sc->lowPriorityTableFirstHalfMask |=
694 1.1 scw qi->intRegCheckMask;
695 1.1 scw }
696 1.1 scw sc->priorityTable[lowQuePriorityTableIndex++] = q;
697 1.1 scw }
698 1.1 scw }
699 1.1 scw /* high priority q's */
700 1.1 scw for (; q < IX_QMGR_MAX_NUM_QUEUES; q++) {
701 1.1 scw qi = &sc->qinfo[q];
702 1.1 scw if (qi->priority == pri) {
703 1.1 scw /*
704 1.1 scw * Build the priority table bitmask which match the
705 1.1 scw * queues of the first half of the priority table .
706 1.1 scw */
707 1.1 scw if (uppQuePriorityTableIndex < 48) {
708 1.1 scw sc->uppPriorityTableFirstHalfMask |=
709 1.1 scw qi->intRegCheckMask;
710 1.1 scw }
711 1.1 scw sc->priorityTable[uppQuePriorityTableIndex++] = q;
712 1.1 scw }
713 1.1 scw }
714 1.1 scw }
715 1.2 thorpej sc->rebuildTable = false;
716 1.1 scw }
717 1.1 scw
718 1.1 scw /*
719 1.1 scw * Count the number of leading zero bits in a word,
720 1.1 scw * and return the same value than the CLZ instruction.
721 1.1 scw * Note this is similar to the standard ffs function but
722 1.1 scw * it counts zero's from the MSB instead of the LSB.
723 1.1 scw *
724 1.1 scw * word (in) return value (out)
725 1.1 scw * 0x80000000 0
726 1.1 scw * 0x40000000 1
727 1.1 scw * ,,, ,,,
728 1.1 scw * 0x00000002 30
729 1.1 scw * 0x00000001 31
730 1.1 scw * 0x00000000 32
731 1.1 scw *
732 1.1 scw * The C version of this function is used as a replacement
733 1.1 scw * for system not providing the equivalent of the CLZ
734 1.1 scw * assembly language instruction.
735 1.1 scw *
736 1.1 scw * Note that this version is big-endian
737 1.1 scw */
738 1.1 scw static unsigned int
739 1.1 scw _lzcount(uint32_t word)
740 1.1 scw {
741 1.1 scw unsigned int lzcount = 0;
742 1.1 scw
743 1.1 scw if (word == 0)
744 1.1 scw return 32;
745 1.1 scw while ((word & 0x80000000) == 0) {
746 1.1 scw word <<= 1;
747 1.1 scw lzcount++;
748 1.1 scw }
749 1.1 scw return lzcount;
750 1.1 scw }
751 1.1 scw
752 1.1 scw static int
753 1.1 scw ixpqmgr_intr(void *arg)
754 1.1 scw {
755 1.1 scw struct ixpqmgr_softc *sc = ixpqmgr_sc;
756 1.1 scw uint32_t intRegVal; /* Interrupt reg val */
757 1.1 scw struct qmgrInfo *qi;
758 1.1 scw int priorityTableIndex; /* Priority table index */
759 1.1 scw int qIndex; /* Current queue being processed */
760 1.1 scw
761 1.1 scw /* Read the interrupt register */
762 1.1 scw intRegVal = aqm_reg_read(sc, IX_QMGR_QINTREG0_OFFSET);
763 1.1 scw /* Write back to clear interrupt */
764 1.1 scw aqm_reg_write(sc, IX_QMGR_QINTREG0_OFFSET, intRegVal);
765 1.1 scw
766 1.1 scw DPRINTFn(5, sc->sc_dev, "%s: ISR0 0x%x ISR1 0x%x\n",
767 1.1 scw __func__, intRegVal, aqm_reg_read(sc, IX_QMGR_QINTREG1_OFFSET));
768 1.1 scw
769 1.1 scw /* No queue has interrupt register set */
770 1.1 scw if (intRegVal != 0) {
771 1.1 scw /* get the first queue Id from the interrupt register value */
772 1.1 scw qIndex = (32 - 1) - _lzcount(intRegVal);
773 1.1 scw
774 1.1 scw DPRINTFn(2, sc->sc_dev, "%s: ISR0 0x%x qIndex %u\n",
775 1.1 scw __func__, intRegVal, qIndex);
776 1.1 scw
777 1.1 scw /*
778 1.1 scw * Optimize for single callback case.
779 1.1 scw */
780 1.1 scw qi = &sc->qinfo[qIndex];
781 1.1 scw if (intRegVal == qi->intRegCheckMask) {
782 1.1 scw /*
783 1.1 scw * Only 1 queue event triggered a notification.
784 1.1 scw * Call the callback function for this queue
785 1.1 scw */
786 1.1 scw qi->cb(qIndex, qi->cbarg);
787 1.1 scw } else {
788 1.1 scw /*
789 1.1 scw * The event is triggered by more than 1 queue,
790 1.1 scw * the queue search will start from the beginning
791 1.1 scw * or the middle of the priority table.
792 1.1 scw *
793 1.1 scw * The search will end when all the bits of the interrupt
794 1.1 scw * register are cleared. There is no need to maintain
795 1.8 msaitoh * a separate value and test it at each iteration.
796 1.1 scw */
797 1.1 scw if (intRegVal & sc->lowPriorityTableFirstHalfMask) {
798 1.1 scw priorityTableIndex = 0;
799 1.1 scw } else {
800 1.1 scw priorityTableIndex = 16;
801 1.1 scw }
802 1.1 scw /*
803 1.1 scw * Iterate over the priority table until all the bits
804 1.1 scw * of the interrupt register are cleared.
805 1.1 scw */
806 1.1 scw do {
807 1.1 scw qIndex = sc->priorityTable[priorityTableIndex++];
808 1.3 scw if (qIndex >= IX_QMGR_MAX_NUM_QUEUES)
809 1.3 scw break;
810 1.1 scw qi = &sc->qinfo[qIndex];
811 1.1 scw
812 1.1 scw /* If this queue caused this interrupt to be raised */
813 1.1 scw if (intRegVal & qi->intRegCheckMask) {
814 1.1 scw /* Call the callback function for this queue */
815 1.1 scw qi->cb(qIndex, qi->cbarg);
816 1.1 scw /* Clear the interrupt register bit */
817 1.1 scw intRegVal &= ~qi->intRegCheckMask;
818 1.1 scw }
819 1.3 scw } while (intRegVal &&
820 1.3 scw priorityTableIndex < IX_QMGR_MAX_NUM_QUEUES);
821 1.1 scw }
822 1.1 scw }
823 1.1 scw
824 1.1 scw /* Rebuild the priority table if needed */
825 1.1 scw if (sc->rebuildTable)
826 1.1 scw ixpqmgr_rebuild(sc);
827 1.1 scw
828 1.1 scw return (1);
829 1.1 scw }
830 1.1 scw
831 1.1 scw #if 0
832 1.1 scw /*
833 1.1 scw * Generate the parameters used to check if a Q's status matches
834 1.1 scw * the specified source select. We calculate which status word
835 1.1 scw * to check (statusWordOffset), the value to check the status
836 1.1 scw * against (statusCheckValue) and the mask (statusMask) to mask
837 1.1 scw * out all but the bits to check in the status word.
838 1.1 scw */
839 1.1 scw static void
840 1.1 scw aqm_calc_statuscheck(int qId, IxQMgrSourceId srcSel)
841 1.1 scw {
842 1.1 scw struct qmgrInfo *qi = &qinfo[qId];
843 1.1 scw uint32_t shiftVal;
844 1.1 scw
845 1.1 scw if (qId < IX_QMGR_MIN_QUEUPP_QID) {
846 1.1 scw switch (srcSel) {
847 1.1 scw case IX_QMGR_Q_SOURCE_ID_E:
848 1.1 scw qi->statusCheckValue = IX_QMGR_Q_STATUS_E_BIT_MASK;
849 1.1 scw qi->statusMask = IX_QMGR_Q_STATUS_E_BIT_MASK;
850 1.1 scw break;
851 1.1 scw case IX_QMGR_Q_SOURCE_ID_NE:
852 1.1 scw qi->statusCheckValue = IX_QMGR_Q_STATUS_NE_BIT_MASK;
853 1.1 scw qi->statusMask = IX_QMGR_Q_STATUS_NE_BIT_MASK;
854 1.1 scw break;
855 1.1 scw case IX_QMGR_Q_SOURCE_ID_NF:
856 1.1 scw qi->statusCheckValue = IX_QMGR_Q_STATUS_NF_BIT_MASK;
857 1.1 scw qi->statusMask = IX_QMGR_Q_STATUS_NF_BIT_MASK;
858 1.1 scw break;
859 1.1 scw case IX_QMGR_Q_SOURCE_ID_F:
860 1.1 scw qi->statusCheckValue = IX_QMGR_Q_STATUS_F_BIT_MASK;
861 1.1 scw qi->statusMask = IX_QMGR_Q_STATUS_F_BIT_MASK;
862 1.1 scw break;
863 1.1 scw case IX_QMGR_Q_SOURCE_ID_NOT_E:
864 1.1 scw qi->statusCheckValue = 0;
865 1.1 scw qi->statusMask = IX_QMGR_Q_STATUS_E_BIT_MASK;
866 1.1 scw break;
867 1.1 scw case IX_QMGR_Q_SOURCE_ID_NOT_NE:
868 1.1 scw qi->statusCheckValue = 0;
869 1.1 scw qi->statusMask = IX_QMGR_Q_STATUS_NE_BIT_MASK;
870 1.1 scw break;
871 1.1 scw case IX_QMGR_Q_SOURCE_ID_NOT_NF:
872 1.1 scw qi->statusCheckValue = 0;
873 1.1 scw qi->statusMask = IX_QMGR_Q_STATUS_NF_BIT_MASK;
874 1.1 scw break;
875 1.1 scw case IX_QMGR_Q_SOURCE_ID_NOT_F:
876 1.1 scw qi->statusCheckValue = 0;
877 1.1 scw qi->statusMask = IX_QMGR_Q_STATUS_F_BIT_MASK;
878 1.1 scw break;
879 1.1 scw default:
880 1.1 scw /* Should never hit */
881 1.1 scw IX_OSAL_ASSERT(0);
882 1.1 scw break;
883 1.1 scw }
884 1.1 scw
885 1.1 scw /* One nibble of status per queue so need to shift the
886 1.1 scw * check value and mask out to the correct position.
887 1.1 scw */
888 1.1 scw shiftVal = (qId % IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD) *
889 1.1 scw IX_QMGR_QUELOWSTAT_BITS_PER_Q;
890 1.1 scw
891 1.1 scw /* Calculate the which status word to check from the qId,
892 1.1 scw * 8 Qs status per word
893 1.1 scw */
894 1.1 scw qi->statusWordOffset = qId / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD;
895 1.1 scw
896 1.1 scw qi->statusCheckValue <<= shiftVal;
897 1.1 scw qi->statusMask <<= shiftVal;
898 1.1 scw } else {
899 1.1 scw /* One status word */
900 1.1 scw qi->statusWordOffset = 0;
901 1.1 scw /* Single bits per queue and int source bit hardwired NE,
902 1.1 scw * Qs start at 32.
903 1.1 scw */
904 1.1 scw qi->statusMask = 1 << (qId - IX_QMGR_MIN_QUEUPP_QID);
905 1.1 scw qi->statusCheckValue = qi->statusMask;
906 1.1 scw }
907 1.1 scw }
908 1.1 scw #endif
909 1.1 scw
910 1.1 scw static void
911 1.1 scw aqm_int_enable(struct ixpqmgr_softc *sc, int qId)
912 1.1 scw {
913 1.1 scw bus_size_t reg;
914 1.1 scw uint32_t v;
915 1.1 scw
916 1.1 scw if (qId < IX_QMGR_MIN_QUEUPP_QID)
917 1.1 scw reg = IX_QMGR_QUEIEREG0_OFFSET;
918 1.1 scw else
919 1.1 scw reg = IX_QMGR_QUEIEREG1_OFFSET;
920 1.1 scw v = aqm_reg_read(sc, reg);
921 1.1 scw aqm_reg_write(sc, reg, v | (1 << (qId % IX_QMGR_MIN_QUEUPP_QID)));
922 1.1 scw
923 1.1 scw DPRINTF(sc->sc_dev, "%s(%u) 0x%lx: 0x%x => 0x%x\n",
924 1.1 scw __func__, qId, reg, v, aqm_reg_read(sc, reg));
925 1.1 scw }
926 1.1 scw
927 1.1 scw static void
928 1.1 scw aqm_int_disable(struct ixpqmgr_softc *sc, int qId)
929 1.1 scw {
930 1.1 scw bus_size_t reg;
931 1.1 scw uint32_t v;
932 1.1 scw
933 1.1 scw if (qId < IX_QMGR_MIN_QUEUPP_QID)
934 1.1 scw reg = IX_QMGR_QUEIEREG0_OFFSET;
935 1.1 scw else
936 1.1 scw reg = IX_QMGR_QUEIEREG1_OFFSET;
937 1.1 scw v = aqm_reg_read(sc, reg);
938 1.1 scw aqm_reg_write(sc, reg, v &~ (1 << (qId % IX_QMGR_MIN_QUEUPP_QID)));
939 1.1 scw
940 1.1 scw DPRINTF(sc->sc_dev, "%s(%u) 0x%lx: 0x%x => 0x%x\n",
941 1.1 scw __func__, qId, reg, v, aqm_reg_read(sc, reg));
942 1.1 scw }
943 1.1 scw
944 1.1 scw static unsigned
945 1.1 scw log2(unsigned n)
946 1.1 scw {
947 1.1 scw unsigned count;
948 1.1 scw /*
949 1.1 scw * N.B. this function will return 0 if supplied 0.
950 1.1 scw */
951 1.1 scw for (count = 0; n/2; count++)
952 1.1 scw n /= 2;
953 1.1 scw return count;
954 1.1 scw }
955 1.1 scw
956 1.1 scw static __inline unsigned
957 1.1 scw toAqmEntrySize(int entrySize)
958 1.1 scw {
959 1.1 scw /* entrySize 1("00"),2("01"),4("10") */
960 1.1 scw return log2(entrySize);
961 1.1 scw }
962 1.1 scw
963 1.1 scw static __inline unsigned
964 1.1 scw toAqmBufferSize(unsigned bufferSizeInWords)
965 1.1 scw {
966 1.1 scw /* bufferSize 16("00"),32("01),64("10"),128("11") */
967 1.1 scw return log2(bufferSizeInWords / IX_QMGR_MIN_BUFFER_SIZE);
968 1.1 scw }
969 1.1 scw
970 1.1 scw static __inline unsigned
971 1.1 scw toAqmWatermark(int watermark)
972 1.1 scw {
973 1.1 scw /*
974 1.1 scw * Watermarks 0("000"),1("001"),2("010"),4("011"),
975 1.1 scw * 8("100"),16("101"),32("110"),64("111")
976 1.1 scw */
977 1.1 scw return log2(2 * watermark);
978 1.1 scw }
979 1.1 scw
980 1.1 scw static void
981 1.1 scw aqm_qcfg(struct ixpqmgr_softc *sc, int qId, u_int ne, u_int nf)
982 1.1 scw {
983 1.1 scw const struct qmgrInfo *qi = &sc->qinfo[qId];
984 1.1 scw uint32_t qCfg;
985 1.1 scw uint32_t baseAddress;
986 1.1 scw
987 1.1 scw /* Build config register */
988 1.1 scw qCfg = ((toAqmEntrySize(1) & IX_QMGR_ENTRY_SIZE_MASK) <<
989 1.1 scw IX_QMGR_Q_CONFIG_ESIZE_OFFSET)
990 1.1 scw | ((toAqmBufferSize(qi->qSizeInWords) & IX_QMGR_SIZE_MASK) <<
991 1.1 scw IX_QMGR_Q_CONFIG_BSIZE_OFFSET);
992 1.1 scw
993 1.1 scw /* baseAddress, calculated relative to start address */
994 1.1 scw baseAddress = sc->aqmFreeSramAddress;
995 1.1 scw
996 1.1 scw /* base address must be word-aligned */
997 1.1 scw KASSERT((baseAddress % IX_QMGR_BASE_ADDR_16_WORD_ALIGN) == 0);
998 1.1 scw
999 1.1 scw /* Now convert to a 16 word pointer as required by QUECONFIG register */
1000 1.1 scw baseAddress >>= IX_QMGR_BASE_ADDR_16_WORD_SHIFT;
1001 1.1 scw qCfg |= baseAddress << IX_QMGR_Q_CONFIG_BADDR_OFFSET;
1002 1.1 scw
1003 1.1 scw /* set watermarks */
1004 1.1 scw qCfg |= (toAqmWatermark(ne) << IX_QMGR_Q_CONFIG_NE_OFFSET)
1005 1.1 scw | (toAqmWatermark(nf) << IX_QMGR_Q_CONFIG_NF_OFFSET);
1006 1.1 scw
1007 1.1 scw DPRINTF(sc->sc_dev, "%s(%u, %u, %u) 0x%x => 0x%x @ 0x%x\n",
1008 1.1 scw __func__, qId, ne, nf,
1009 1.1 scw aqm_reg_read(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId)),
1010 1.1 scw qCfg, (u_int)IX_QMGR_Q_CONFIG_ADDR_GET(qId));
1011 1.1 scw
1012 1.1 scw aqm_reg_write(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId), qCfg);
1013 1.1 scw }
1014 1.1 scw
1015 1.1 scw static void
1016 1.1 scw aqm_srcsel_write(struct ixpqmgr_softc *sc, int qId, int sourceId)
1017 1.1 scw {
1018 1.1 scw bus_size_t off;
1019 1.1 scw uint32_t v;
1020 1.1 scw
1021 1.1 scw /*
1022 1.1 scw * Calculate the register offset; multiple queues split across registers
1023 1.1 scw */
1024 1.1 scw off = IX_QMGR_INT0SRCSELREG0_OFFSET +
1025 1.1 scw ((qId / IX_QMGR_INTSRC_NUM_QUE_PER_WORD) * sizeof(uint32_t));
1026 1.1 scw
1027 1.1 scw v = aqm_reg_read(sc, off);
1028 1.1 scw if (off == IX_QMGR_INT0SRCSELREG0_OFFSET && qId == 0) {
1029 1.1 scw /* Queue 0 at INT0SRCSELREG should not corrupt the value bit-3 */
1030 1.1 scw v |= 0x7;
1031 1.1 scw } else {
1032 1.1 scw const uint32_t bpq = 32 / IX_QMGR_INTSRC_NUM_QUE_PER_WORD;
1033 1.1 scw uint32_t mask;
1034 1.1 scw int qshift;
1035 1.1 scw
1036 1.1 scw qshift = (qId & (IX_QMGR_INTSRC_NUM_QUE_PER_WORD-1)) * bpq;
1037 1.1 scw mask = ((1 << bpq) - 1) << qshift; /* q's status mask */
1038 1.1 scw
1039 1.1 scw /* merge sourceId */
1040 1.1 scw v = (v &~ mask) | ((sourceId << qshift) & mask);
1041 1.1 scw }
1042 1.1 scw
1043 1.1 scw DPRINTF(sc->sc_dev, "%s(%u, %u) 0x%x => 0x%x @ 0x%lx\n",
1044 1.1 scw __func__, qId, sourceId, aqm_reg_read(sc, off), v, off);
1045 1.1 scw aqm_reg_write(sc, off, v);
1046 1.1 scw }
1047 1.1 scw
1048 1.1 scw /*
1049 1.1 scw * Reset AQM registers to default values.
1050 1.1 scw */
1051 1.1 scw static void
1052 1.1 scw aqm_reset(struct ixpqmgr_softc *sc)
1053 1.1 scw {
1054 1.1 scw int i;
1055 1.1 scw
1056 1.1 scw /* Reset queues 0..31 status registers 0..3 */
1057 1.1 scw aqm_reg_write(sc, IX_QMGR_QUELOWSTAT0_OFFSET,
1058 1.1 scw IX_QMGR_QUELOWSTAT_RESET_VALUE);
1059 1.1 scw aqm_reg_write(sc, IX_QMGR_QUELOWSTAT1_OFFSET,
1060 1.1 scw IX_QMGR_QUELOWSTAT_RESET_VALUE);
1061 1.1 scw aqm_reg_write(sc, IX_QMGR_QUELOWSTAT2_OFFSET,
1062 1.1 scw IX_QMGR_QUELOWSTAT_RESET_VALUE);
1063 1.1 scw aqm_reg_write(sc, IX_QMGR_QUELOWSTAT3_OFFSET,
1064 1.1 scw IX_QMGR_QUELOWSTAT_RESET_VALUE);
1065 1.1 scw
1066 1.1 scw /* Reset underflow/overflow status registers 0..1 */
1067 1.1 scw aqm_reg_write(sc, IX_QMGR_QUEUOSTAT0_OFFSET,
1068 1.1 scw IX_QMGR_QUEUOSTAT_RESET_VALUE);
1069 1.1 scw aqm_reg_write(sc, IX_QMGR_QUEUOSTAT1_OFFSET,
1070 1.1 scw IX_QMGR_QUEUOSTAT_RESET_VALUE);
1071 1.1 scw
1072 1.1 scw /* Reset queues 32..63 nearly empty status registers */
1073 1.1 scw aqm_reg_write(sc, IX_QMGR_QUEUPPSTAT0_OFFSET,
1074 1.1 scw IX_QMGR_QUEUPPSTAT0_RESET_VALUE);
1075 1.1 scw
1076 1.1 scw /* Reset queues 32..63 full status registers */
1077 1.1 scw aqm_reg_write(sc, IX_QMGR_QUEUPPSTAT1_OFFSET,
1078 1.1 scw IX_QMGR_QUEUPPSTAT1_RESET_VALUE);
1079 1.1 scw
1080 1.1 scw /* Reset int0 status flag source select registers 0..3 */
1081 1.1 scw aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG0_OFFSET,
1082 1.1 scw IX_QMGR_INT0SRCSELREG_RESET_VALUE);
1083 1.1 scw aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG1_OFFSET,
1084 1.1 scw IX_QMGR_INT0SRCSELREG_RESET_VALUE);
1085 1.1 scw aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG2_OFFSET,
1086 1.1 scw IX_QMGR_INT0SRCSELREG_RESET_VALUE);
1087 1.1 scw aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG3_OFFSET,
1088 1.1 scw IX_QMGR_INT0SRCSELREG_RESET_VALUE);
1089 1.1 scw
1090 1.1 scw /* Reset queue interrupt enable register 0..1 */
1091 1.1 scw aqm_reg_write(sc, IX_QMGR_QUEIEREG0_OFFSET,
1092 1.1 scw IX_QMGR_QUEIEREG_RESET_VALUE);
1093 1.1 scw aqm_reg_write(sc, IX_QMGR_QUEIEREG1_OFFSET,
1094 1.1 scw IX_QMGR_QUEIEREG_RESET_VALUE);
1095 1.1 scw
1096 1.1 scw /* Reset queue interrupt register 0..1 */
1097 1.1 scw aqm_reg_write(sc, IX_QMGR_QINTREG0_OFFSET, IX_QMGR_QINTREG_RESET_VALUE);
1098 1.1 scw aqm_reg_write(sc, IX_QMGR_QINTREG1_OFFSET, IX_QMGR_QINTREG_RESET_VALUE);
1099 1.1 scw
1100 1.1 scw /* Reset queue configuration words 0..63 */
1101 1.1 scw for (i = 0; i < IX_QMGR_MAX_NUM_QUEUES; i++)
1102 1.1 scw aqm_reg_write(sc, sc->qinfo[i].qConfigRegAddr,
1103 1.1 scw IX_QMGR_QUECONFIG_RESET_VALUE);
1104 1.1 scw
1105 1.1 scw /* XXX zero SRAM to simplify debugging */
1106 1.1 scw for (i = IX_QMGR_QUEBUFFER_SPACE_OFFSET;
1107 1.1 scw i < IX_QMGR_AQM_SRAM_SIZE_IN_BYTES; i += sizeof(uint32_t))
1108 1.1 scw aqm_reg_write(sc, i, 0);
1109 1.1 scw }
1110 1.1 scw
1111 1.1 scw #ifdef __FreeBSD__
1112 1.1 scw static device_method_t ixpqmgr_methods[] = {
1113 1.1 scw DEVMETHOD(device_probe, ixpqmgr_probe),
1114 1.1 scw DEVMETHOD(device_attach, ixpqmgr_attach),
1115 1.1 scw DEVMETHOD(device_detach, ixpqmgr_detach),
1116 1.1 scw
1117 1.1 scw { 0, 0 }
1118 1.1 scw };
1119 1.1 scw
1120 1.1 scw static driver_t ixpqmgr_driver = {
1121 1.1 scw "ixpqmgr",
1122 1.1 scw ixpqmgr_methods,
1123 1.1 scw sizeof(struct ixpqmgr_softc),
1124 1.1 scw };
1125 1.1 scw static devclass_t ixpqmgr_devclass;
1126 1.1 scw
1127 1.1 scw DRIVER_MODULE(ixpqmgr, ixp, ixpqmgr_driver, ixpqmgr_devclass, 0, 0);
1128 1.1 scw #endif
1129