Home | History | Annotate | Line # | Download | only in xscale
ixp425_qmgr.c revision 1.8
      1  1.8  msaitoh /*	$NetBSD: ixp425_qmgr.c,v 1.8 2019/06/03 06:04:20 msaitoh Exp $	*/
      2  1.1      scw 
      3  1.1      scw /*-
      4  1.1      scw  * Copyright (c) 2006 Sam Leffler, Errno Consulting
      5  1.1      scw  * All rights reserved.
      6  1.1      scw  *
      7  1.1      scw  * Redistribution and use in source and binary forms, with or without
      8  1.1      scw  * modification, are permitted provided that the following conditions
      9  1.1      scw  * are met:
     10  1.1      scw  * 1. Redistributions of source code must retain the above copyright
     11  1.1      scw  *    notice, this list of conditions and the following disclaimer,
     12  1.1      scw  *    without modification.
     13  1.1      scw  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  1.1      scw  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  1.1      scw  *    redistribution must be conditioned upon including a substantially
     16  1.1      scw  *    similar Disclaimer requirement for further binary redistribution.
     17  1.1      scw  *
     18  1.1      scw  * NO WARRANTY
     19  1.1      scw  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     20  1.1      scw  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     21  1.1      scw  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     22  1.1      scw  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     23  1.1      scw  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     24  1.1      scw  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.1      scw  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.1      scw  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     27  1.1      scw  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.1      scw  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     29  1.1      scw  * THE POSSIBILITY OF SUCH DAMAGES.
     30  1.1      scw  */
     31  1.1      scw 
     32  1.1      scw /*-
     33  1.1      scw  * Copyright (c) 2001-2005, Intel Corporation.
     34  1.1      scw  * All rights reserved.
     35  1.1      scw  *
     36  1.1      scw  * Redistribution and use in source and binary forms, with or without
     37  1.1      scw  * modification, are permitted provided that the following conditions
     38  1.1      scw  * are met:
     39  1.1      scw  * 1. Redistributions of source code must retain the above copyright
     40  1.1      scw  *    notice, this list of conditions and the following disclaimer.
     41  1.1      scw  * 2. Redistributions in binary form must reproduce the above copyright
     42  1.1      scw  *    notice, this list of conditions and the following disclaimer in the
     43  1.1      scw  *    documentation and/or other materials provided with the distribution.
     44  1.1      scw  * 3. Neither the name of the Intel Corporation nor the names of its contributors
     45  1.1      scw  *    may be used to endorse or promote products derived from this software
     46  1.1      scw  *    without specific prior written permission.
     47  1.1      scw  *
     48  1.1      scw  *
     49  1.1      scw  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
     50  1.1      scw  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  1.1      scw  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  1.1      scw  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
     53  1.1      scw  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  1.1      scw  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  1.1      scw  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  1.1      scw  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  1.1      scw  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  1.1      scw  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  1.1      scw  * SUCH DAMAGE.
     60  1.1      scw */
     61  1.1      scw #include <sys/cdefs.h>
     62  1.1      scw /*__FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/ixp425_qmgr.c,v 1.1 2006/11/19 23:55:23 sam Exp $");*/
     63  1.8  msaitoh __KERNEL_RCSID(0, "$NetBSD: ixp425_qmgr.c,v 1.8 2019/06/03 06:04:20 msaitoh Exp $");
     64  1.1      scw 
     65  1.1      scw /*
     66  1.1      scw  * Intel XScale Queue Manager support.
     67  1.1      scw  *
     68  1.1      scw  * Each IXP4XXX device has a hardware block that implements a priority
     69  1.1      scw  * queue manager that is shared between the XScale cpu and the backend
     70  1.1      scw  * devices (such as the NPE).  Queues are accessed by reading/writing
     71  1.1      scw  * special memory locations.  The queue contents are mapped into a shared
     72  1.1      scw  * SRAM region with entries managed in a circular buffer.  The XScale
     73  1.1      scw  * processor can receive interrupts based on queue contents (a condition
     74  1.1      scw  * code determines when interrupts should be delivered).
     75  1.1      scw  *
     76  1.1      scw  * The code here basically replaces the qmgr class in the Intel Access
     77  1.1      scw  * Library (IAL).
     78  1.1      scw  */
     79  1.1      scw #include <sys/param.h>
     80  1.1      scw #include <sys/systm.h>
     81  1.1      scw #include <sys/kernel.h>
     82  1.1      scw #include <sys/time.h>
     83  1.1      scw #include <sys/malloc.h>
     84  1.1      scw #include <sys/resource.h>
     85  1.1      scw 
     86  1.7   dyoung #include <sys/bus.h>
     87  1.1      scw #include <machine/cpu.h>
     88  1.1      scw #include <machine/intr.h>
     89  1.1      scw 
     90  1.1      scw #include <arm/xscale/ixp425reg.h>
     91  1.1      scw #include <arm/xscale/ixp425var.h>
     92  1.1      scw 
     93  1.1      scw #include <arm/xscale/ixp425_qmgr.h>
     94  1.1      scw 
     95  1.1      scw /*
     96  1.1      scw  * State per AQM hw queue.
     97  1.1      scw  * This structure holds q configuration and dispatch state.
     98  1.1      scw  */
     99  1.1      scw struct qmgrInfo {
    100  1.1      scw 	int		qSizeInWords;		/* queue size in words */
    101  1.1      scw 
    102  1.1      scw 	uint32_t	qOflowStatBitMask;	/* overflow status mask */
    103  1.1      scw 	int		qWriteCount;		/* queue write count */
    104  1.1      scw 
    105  1.1      scw 	bus_size_t	qAccRegAddr;		/* access register */
    106  1.1      scw 	bus_size_t	qUOStatRegAddr;		/* status register */
    107  1.1      scw 	bus_size_t	qConfigRegAddr;		/* config register */
    108  1.1      scw 	int		qSizeInEntries;		/* queue size in entries */
    109  1.1      scw 
    110  1.1      scw 	uint32_t	qUflowStatBitMask;	/* underflow status mask */
    111  1.1      scw 	int		qReadCount;		/* queue read count */
    112  1.1      scw 
    113  1.1      scw 	/* XXX union */
    114  1.1      scw 	uint32_t	qStatRegAddr;
    115  1.1      scw 	uint32_t	qStatBitsOffset;
    116  1.1      scw 	uint32_t	qStat0BitMask;
    117  1.1      scw 	uint32_t	qStat1BitMask;
    118  1.1      scw 
    119  1.1      scw 	uint32_t	intRegCheckMask;	/* interrupt reg check mask */
    120  1.1      scw 	void		(*cb)(int, void *);	/* callback function */
    121  1.1      scw 	void		*cbarg;			/* callback argument */
    122  1.1      scw 	int 		priority;		/* dispatch priority */
    123  1.1      scw #if 0
    124  1.1      scw 	/* NB: needed only for A0 parts */
    125  1.1      scw 	u_int		statusWordOffset;	/* status word offset */
    126  1.1      scw 	uint32_t	statusMask;             /* status mask */
    127  1.1      scw 	uint32_t	statusCheckValue;	/* status check value */
    128  1.1      scw #endif
    129  1.1      scw };
    130  1.1      scw 
    131  1.1      scw struct ixpqmgr_softc {
    132  1.1      scw #ifdef __FreeBSD__
    133  1.1      scw 	device_t		sc_dev;
    134  1.1      scw 	bus_space_tag_t		sc_iot;
    135  1.1      scw 	bus_space_handle_t	sc_ioh;
    136  1.1      scw 	struct resource		*sc_irq;	/* IRQ resource */
    137  1.1      scw 	int			sc_rid;		/* resource id for irq */
    138  1.1      scw 	void			*sc_ih;		/* interrupt handler */
    139  1.1      scw #else
    140  1.1      scw 	bus_space_tag_t		sc_iot;
    141  1.1      scw 	bus_space_handle_t	sc_ioh;
    142  1.1      scw 	void			*sc_ih[2];	/* interrupt handler */
    143  1.1      scw #endif
    144  1.1      scw 
    145  1.1      scw 	struct qmgrInfo		qinfo[IX_QMGR_MAX_NUM_QUEUES];
    146  1.1      scw 	/*
    147  1.1      scw 	 * This array contains a list of queue identifiers ordered by
    148  1.1      scw 	 * priority. The table is split logically between queue
    149  1.1      scw 	 * identifiers 0-31 and 32-63.  To optimize lookups bit masks
    150  1.1      scw 	 * are kept for the first-32 and last-32 q's.  When the
    151  1.1      scw 	 * table needs to be rebuilt mark rebuildTable and it'll
    152  1.1      scw 	 * happen after the next interrupt.
    153  1.1      scw 	 */
    154  1.1      scw 	int			priorityTable[IX_QMGR_MAX_NUM_QUEUES];
    155  1.1      scw 	uint32_t		lowPriorityTableFirstHalfMask;
    156  1.1      scw 	uint32_t		uppPriorityTableFirstHalfMask;
    157  1.1      scw 	int			rebuildTable;	/* rebuild priorityTable */
    158  1.1      scw 
    159  1.1      scw 	uint32_t		aqmFreeSramAddress;	/* SRAM free space */
    160  1.1      scw };
    161  1.1      scw 
    162  1.1      scw static int qmgr_debug = 0;
    163  1.1      scw #define	DPRINTF(dev, fmt, ...) do {					\
    164  1.1      scw 	if (qmgr_debug) printf(fmt, __VA_ARGS__);			\
    165  1.1      scw } while (0)
    166  1.1      scw #define	DPRINTFn(n, dev, fmt, ...) do {					\
    167  1.1      scw 	if (qmgr_debug >= n) printf(fmt, __VA_ARGS__);			\
    168  1.1      scw } while (0)
    169  1.1      scw 
    170  1.1      scw static struct ixpqmgr_softc *ixpqmgr_sc = NULL;
    171  1.1      scw 
    172  1.1      scw static void ixpqmgr_rebuild(struct ixpqmgr_softc *);
    173  1.1      scw static int ixpqmgr_intr(void *);
    174  1.1      scw 
    175  1.1      scw static void aqm_int_enable(struct ixpqmgr_softc *sc, int qId);
    176  1.1      scw static void aqm_int_disable(struct ixpqmgr_softc *sc, int qId);
    177  1.1      scw static void aqm_qcfg(struct ixpqmgr_softc *sc, int qId, u_int ne, u_int nf);
    178  1.1      scw static void aqm_srcsel_write(struct ixpqmgr_softc *sc, int qId, int sourceId);
    179  1.1      scw static void aqm_reset(struct ixpqmgr_softc *sc);
    180  1.1      scw 
    181  1.1      scw static void
    182  1.1      scw dummyCallback(int qId, void *arg)
    183  1.1      scw {
    184  1.1      scw 	/* XXX complain */
    185  1.1      scw }
    186  1.1      scw 
    187  1.1      scw static uint32_t
    188  1.1      scw aqm_reg_read(struct ixpqmgr_softc *sc, bus_size_t off)
    189  1.1      scw {
    190  1.1      scw 	DPRINTFn(9, sc->sc_dev, "%s(0x%x)\n", __func__, (int)off);
    191  1.1      scw 	return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
    192  1.1      scw }
    193  1.1      scw 
    194  1.1      scw static void
    195  1.1      scw aqm_reg_write(struct ixpqmgr_softc *sc, bus_size_t off, uint32_t val)
    196  1.1      scw {
    197  1.1      scw 	DPRINTFn(9, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, (int)off, val);
    198  1.1      scw 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
    199  1.1      scw }
    200  1.1      scw 
    201  1.1      scw #ifdef __FreeBSD__
    202  1.1      scw static int
    203  1.1      scw ixpqmgr_probe(device_t dev)
    204  1.1      scw {
    205  1.1      scw 	device_set_desc(dev, "IXP425 Q-Manager");
    206  1.1      scw 	return 0;
    207  1.1      scw }
    208  1.1      scw #endif
    209  1.1      scw 
    210  1.1      scw #ifdef __FreeBSD__
    211  1.1      scw static void
    212  1.1      scw ixpqmgr_attach(device_t dev)
    213  1.1      scw #else
    214  1.1      scw void *
    215  1.1      scw ixpqmgr_init(bus_space_tag_t iot)
    216  1.1      scw #endif
    217  1.1      scw {
    218  1.1      scw #ifdef __FreeBSD__
    219  1.1      scw 	struct ixpqmgr_softc *sc = device_get_softc(dev);
    220  1.1      scw 	struct ixp425_softc *sa = device_get_softc(device_get_parent(dev));
    221  1.1      scw #else
    222  1.1      scw 	struct ixpqmgr_softc *sc;
    223  1.1      scw #endif
    224  1.1      scw 	int i;
    225  1.1      scw 
    226  1.1      scw #ifdef __FreeBSD__
    227  1.1      scw 	ixpqmgr_sc = sc;
    228  1.1      scw 
    229  1.1      scw 	sc->sc_dev = dev;
    230  1.1      scw 	sc->sc_iot = sa->sc_iot;
    231  1.1      scw #else
    232  1.1      scw 	sc = malloc(sizeof(*sc), M_DEVBUF, M_NOWAIT | M_ZERO);
    233  1.1      scw 	if (sc == NULL)
    234  1.1      scw 		return (NULL);
    235  1.1      scw 
    236  1.1      scw 	sc->sc_iot = iot;
    237  1.1      scw #endif
    238  1.1      scw 
    239  1.1      scw 	if (bus_space_map(sc->sc_iot, IXP425_QMGR_HWBASE, IXP425_QMGR_SIZE,
    240  1.1      scw 	    0, &sc->sc_ioh))
    241  1.1      scw 		panic("%s: Cannot map registers", __func__);
    242  1.1      scw 
    243  1.1      scw #ifdef __FreeBSD__
    244  1.1      scw 	/* NB: we only use the lower 32 q's */
    245  1.1      scw 	sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->sc_rid,
    246  1.1      scw 	    IXP425_INT_QUE1_32, IXP425_INT_QUE33_64, 2, RF_ACTIVE);
    247  1.1      scw 	if (!sc->sc_irq)
    248  1.1      scw 		panic("Unable to allocate the qmgr irqs.\n");
    249  1.1      scw 	/* XXX could be a source of entropy */
    250  1.1      scw 	bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
    251  1.1      scw 		ixpqmgr_intr, NULL, &sc->sc_ih);
    252  1.1      scw #else
    253  1.3      scw 	ixpqmgr_sc = sc;
    254  1.1      scw 	sc->sc_ih[0] = ixp425_intr_establish(IXP425_INT_QUE1_32, IPL_NET,
    255  1.1      scw 	    ixpqmgr_intr, sc);
    256  1.1      scw 	if (sc->sc_ih[0] == NULL) {
    257  1.3      scw 		ixpqmgr_sc = NULL;
    258  1.1      scw 		free(sc, M_DEVBUF);
    259  1.1      scw 		return (NULL);
    260  1.1      scw 	}
    261  1.1      scw 	sc->sc_ih[1] = ixp425_intr_establish(IXP425_INT_QUE33_64, IPL_NET,
    262  1.1      scw 	    ixpqmgr_intr, sc);
    263  1.1      scw 	if (sc->sc_ih[1] == NULL) {
    264  1.1      scw 		ixp425_intr_disestablish(sc->sc_ih[0]);
    265  1.3      scw 		ixpqmgr_sc = NULL;
    266  1.1      scw 		free(sc, M_DEVBUF);
    267  1.1      scw 		return (NULL);
    268  1.1      scw 	}
    269  1.1      scw #endif
    270  1.1      scw 
    271  1.1      scw 	/* NB: softc is pre-zero'd */
    272  1.1      scw 	for (i = 0; i < IX_QMGR_MAX_NUM_QUEUES; i++) {
    273  1.1      scw 	    struct qmgrInfo *qi = &sc->qinfo[i];
    274  1.1      scw 
    275  1.1      scw 	    qi->cb = dummyCallback;
    276  1.1      scw 	    qi->priority = IX_QMGR_Q_PRIORITY_0;	/* default priority */
    277  1.1      scw 	    /*
    278  1.1      scw 	     * There are two interrupt registers, 32 bits each. One
    279  1.1      scw 	     * for the lower queues(0-31) and one for the upper
    280  1.1      scw 	     * queues(32-63). Therefore need to mod by 32 i.e the
    281  1.1      scw 	     * min upper queue identifier.
    282  1.1      scw 	     */
    283  1.1      scw 	    qi->intRegCheckMask = (1<<(i%(IX_QMGR_MIN_QUEUPP_QID)));
    284  1.1      scw 
    285  1.1      scw 	    /*
    286  1.1      scw 	     * Register addresses and bit masks are calculated and
    287  1.1      scw 	     * stored here to optimize QRead, QWrite and QStatusGet
    288  1.1      scw 	     * functions.
    289  1.1      scw 	     */
    290  1.1      scw 
    291  1.1      scw 	    /* AQM Queue access reg addresses, per queue */
    292  1.1      scw 	    qi->qAccRegAddr = IX_QMGR_Q_ACCESS_ADDR_GET(i);
    293  1.1      scw 	    qi->qAccRegAddr = IX_QMGR_Q_ACCESS_ADDR_GET(i);
    294  1.1      scw 	    qi->qConfigRegAddr = IX_QMGR_Q_CONFIG_ADDR_GET(i);
    295  1.1      scw 
    296  1.1      scw 	    /* AQM Queue lower-group (0-31), only */
    297  1.1      scw 	    if (i < IX_QMGR_MIN_QUEUPP_QID) {
    298  1.1      scw 		/* AQM Q underflow/overflow status reg address, per queue */
    299  1.1      scw 		qi->qUOStatRegAddr = IX_QMGR_QUEUOSTAT0_OFFSET +
    300  1.1      scw 		    ((i / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD) *
    301  1.1      scw 		     sizeof(uint32_t));
    302  1.1      scw 
    303  1.1      scw 		/* AQM Q underflow status bit masks for status reg per queue */
    304  1.1      scw 		qi->qUflowStatBitMask =
    305  1.1      scw 		    (IX_QMGR_UNDERFLOW_BIT_OFFSET + 1) <<
    306  1.1      scw 		    ((i & (IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD - 1)) *
    307  1.1      scw 		     (32 / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD));
    308  1.1      scw 
    309  1.1      scw 		/* AQM Q overflow status bit masks for status reg, per queue */
    310  1.1      scw 		qi->qOflowStatBitMask =
    311  1.1      scw 		    (IX_QMGR_OVERFLOW_BIT_OFFSET + 1) <<
    312  1.1      scw 		    ((i & (IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD - 1)) *
    313  1.1      scw 		     (32 / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD));
    314  1.1      scw 
    315  1.1      scw 		/* AQM Q lower-group (0-31) status reg addresses, per queue */
    316  1.1      scw 		qi->qStatRegAddr = IX_QMGR_QUELOWSTAT0_OFFSET +
    317  1.1      scw 		    ((i / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD) *
    318  1.1      scw 		     sizeof(uint32_t));
    319  1.1      scw 
    320  1.1      scw 		/* AQM Q lower-group (0-31) status register bit offset */
    321  1.1      scw 		qi->qStatBitsOffset =
    322  1.1      scw 		    (i & (IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD - 1)) *
    323  1.1      scw 		    (32 / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD);
    324  1.1      scw 	    } else { /* AQM Q upper-group (32-63), only */
    325  1.1      scw 		qi->qUOStatRegAddr = 0;		/* XXX */
    326  1.1      scw 
    327  1.1      scw 		/* AQM Q upper-group (32-63) Nearly Empty status reg bitmasks */
    328  1.1      scw 		qi->qStat0BitMask = (1 << (i - IX_QMGR_MIN_QUEUPP_QID));
    329  1.1      scw 
    330  1.1      scw 		/* AQM Q upper-group (32-63) Full status register bitmasks */
    331  1.1      scw 		qi->qStat1BitMask = (1 << (i - IX_QMGR_MIN_QUEUPP_QID));
    332  1.1      scw 	    }
    333  1.1      scw 	}
    334  1.1      scw 
    335  1.1      scw 	sc->aqmFreeSramAddress = 0x100;	/* Q buffer space starts at 0x2100 */
    336  1.1      scw 
    337  1.1      scw 	ixpqmgr_rebuild(sc);		/* build inital priority table */
    338  1.1      scw 	aqm_reset(sc);			/* reset h/w */
    339  1.1      scw 
    340  1.1      scw 	return (sc);
    341  1.1      scw }
    342  1.1      scw 
    343  1.1      scw #ifdef __FreeBSD__
    344  1.1      scw static void
    345  1.1      scw ixpqmgr_detach(device_t dev)
    346  1.1      scw {
    347  1.1      scw 	struct ixpqmgr_softc *sc = device_get_softc(dev);
    348  1.1      scw 
    349  1.1      scw 	aqm_reset(sc);		/* disable interrupts */
    350  1.1      scw 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
    351  1.1      scw 	bus_release_resource(dev, SYS_RES_IRQ, sc->sc_rid, sc->sc_irq);
    352  1.1      scw 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, IXP425_QMGR_SIZE);
    353  1.1      scw }
    354  1.1      scw #endif
    355  1.1      scw 
    356  1.1      scw int
    357  1.1      scw ixpqmgr_qconfig(int qId, int qEntries, int ne, int nf, int srcSel,
    358  1.1      scw     void (*cb)(int, void *), void *cbarg)
    359  1.1      scw {
    360  1.1      scw 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
    361  1.1      scw 	struct qmgrInfo *qi = &sc->qinfo[qId];
    362  1.1      scw 
    363  1.1      scw 	DPRINTF(sc->sc_dev, "%s(%u, %u, %u, %u, %u, %p, %p)\n",
    364  1.1      scw 	    __func__, qId, qEntries, ne, nf, srcSel, cb, cbarg);
    365  1.1      scw 
    366  1.1      scw 	/* NB: entry size is always 1 */
    367  1.1      scw 	qi->qSizeInWords = qEntries;
    368  1.1      scw 
    369  1.1      scw 	qi->qReadCount = 0;
    370  1.1      scw 	qi->qWriteCount = 0;
    371  1.1      scw 	qi->qSizeInEntries = qEntries;	/* XXX kept for code clarity */
    372  1.1      scw 
    373  1.1      scw 	if (cb == NULL) {
    374  1.1      scw 	    /* Reset to dummy callback */
    375  1.1      scw 	    qi->cb = dummyCallback;
    376  1.1      scw 	    qi->cbarg = 0;
    377  1.1      scw 	} else {
    378  1.1      scw 	    qi->cb = cb;
    379  1.1      scw 	    qi->cbarg = cbarg;
    380  1.1      scw 	}
    381  1.1      scw 
    382  1.1      scw 	/* Write the config register; NB must be AFTER qinfo setup */
    383  1.1      scw 	aqm_qcfg(sc, qId, ne, nf);
    384  1.1      scw 	/*
    385  1.1      scw 	 * Account for space just allocated to queue.
    386  1.1      scw 	 */
    387  1.1      scw 	sc->aqmFreeSramAddress += (qi->qSizeInWords * sizeof(uint32_t));
    388  1.1      scw 
    389  1.5  msaitoh 	/* Set the interrupt source if this queue is in the range 0-31 */
    390  1.1      scw 	if (qId < IX_QMGR_MIN_QUEUPP_QID)
    391  1.1      scw 	    aqm_srcsel_write(sc, qId, srcSel);
    392  1.1      scw 
    393  1.1      scw 	if (cb != NULL)				/* Enable the interrupt */
    394  1.1      scw 	    aqm_int_enable(sc, qId);
    395  1.1      scw 
    396  1.2  thorpej 	sc->rebuildTable = true;
    397  1.1      scw 
    398  1.1      scw 	return 0;		/* XXX */
    399  1.1      scw }
    400  1.1      scw 
    401  1.1      scw int
    402  1.1      scw ixpqmgr_qwrite(int qId, uint32_t entry)
    403  1.1      scw {
    404  1.1      scw 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
    405  1.1      scw 	struct qmgrInfo *qi = &sc->qinfo[qId];
    406  1.1      scw 
    407  1.1      scw 	DPRINTFn(3, sc->sc_dev, "%s(%u, 0x%x) writeCount %u size %u\n",
    408  1.1      scw 	    __func__, qId, entry, qi->qWriteCount, qi->qSizeInEntries);
    409  1.1      scw 
    410  1.1      scw 	/* write the entry */
    411  1.1      scw 	aqm_reg_write(sc, qi->qAccRegAddr, entry);
    412  1.1      scw 
    413  1.1      scw 	/* NB: overflow is available for lower queues only */
    414  1.1      scw 	if (qId < IX_QMGR_MIN_QUEUPP_QID) {
    415  1.1      scw 	    int qSize = qi->qSizeInEntries;
    416  1.1      scw 	    /*
    417  1.1      scw 	     * Increment the current number of entries in the queue
    418  1.1      scw 	     * and check for overflow .
    419  1.1      scw 	     */
    420  1.1      scw 	    if (qi->qWriteCount++ == qSize) {	/* check for overflow */
    421  1.1      scw 		uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
    422  1.1      scw 		int qPtrs;
    423  1.1      scw 
    424  1.1      scw 		/*
    425  1.1      scw 		 * Read the status twice because the status may
    426  1.1      scw 		 * not be immediately ready after the write operation
    427  1.1      scw 		 */
    428  1.1      scw 		if ((status & qi->qOflowStatBitMask) ||
    429  1.1      scw 		    ((status = aqm_reg_read(sc, qi->qUOStatRegAddr)) & qi->qOflowStatBitMask)) {
    430  1.1      scw 		    /*
    431  1.1      scw 		     * The queue is full, clear the overflow status bit if set.
    432  1.1      scw 		     */
    433  1.1      scw 		    aqm_reg_write(sc, qi->qUOStatRegAddr,
    434  1.1      scw 			status & ~qi->qOflowStatBitMask);
    435  1.1      scw 		    qi->qWriteCount = qSize;
    436  1.1      scw 		    DPRINTFn(5, sc->sc_dev,
    437  1.1      scw 			"%s(%u, 0x%x) Q full, overflow status cleared\n",
    438  1.1      scw 			__func__, qId, entry);
    439  1.1      scw 		    return ENOSPC;
    440  1.1      scw 		}
    441  1.1      scw 		/*
    442  1.1      scw 		 * No overflow occured : someone is draining the queue
    443  1.1      scw 		 * and the current counter needs to be
    444  1.1      scw 		 * updated from the current number of entries in the queue
    445  1.1      scw 		 */
    446  1.1      scw 
    447  1.1      scw 		/* calculate number of words in q */
    448  1.1      scw 		qPtrs = aqm_reg_read(sc, qi->qConfigRegAddr);
    449  1.1      scw 		DPRINTFn(2, sc->sc_dev,
    450  1.1      scw 		    "%s(%u, 0x%x) Q full, no overflow status, qConfig 0x%x\n",
    451  1.1      scw 		    __func__, qId, entry, qPtrs);
    452  1.1      scw 		qPtrs = (qPtrs - (qPtrs >> 7)) & 0x7f;
    453  1.1      scw 
    454  1.1      scw 		if (qPtrs == 0) {
    455  1.1      scw 		    /*
    456  1.1      scw 		     * The queue may be full at the time of the
    457  1.1      scw 		     * snapshot. Next access will check
    458  1.1      scw 		     * the overflow status again.
    459  1.1      scw 		     */
    460  1.1      scw 		    qi->qWriteCount = qSize;
    461  1.1      scw 		} else {
    462  1.1      scw 		    /* convert the number of words to a number of entries */
    463  1.1      scw 		    qi->qWriteCount = qPtrs & (qSize - 1);
    464  1.1      scw 		}
    465  1.1      scw 	    }
    466  1.1      scw 	}
    467  1.1      scw 	return 0;
    468  1.1      scw }
    469  1.1      scw 
    470  1.1      scw int
    471  1.1      scw ixpqmgr_qread(int qId, uint32_t *entry)
    472  1.1      scw {
    473  1.1      scw 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
    474  1.1      scw 	struct qmgrInfo *qi = &sc->qinfo[qId];
    475  1.1      scw 	bus_size_t off = qi->qAccRegAddr;
    476  1.1      scw 
    477  1.1      scw 	*entry = aqm_reg_read(sc, off);
    478  1.1      scw 
    479  1.1      scw 	/*
    480  1.1      scw 	 * Reset the current read count : next access to the read function
    481  1.1      scw 	 * will force a underflow status check.
    482  1.1      scw 	 */
    483  1.1      scw 	qi->qReadCount = 0;
    484  1.1      scw 
    485  1.1      scw 	/* Check if underflow occurred on the read */
    486  1.1      scw 	if (*entry == 0 && qId < IX_QMGR_MIN_QUEUPP_QID) {
    487  1.1      scw 	    /* get the queue status */
    488  1.1      scw 	    uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
    489  1.1      scw 
    490  1.1      scw 	    if (status & qi->qUflowStatBitMask) { /* clear underflow status */
    491  1.1      scw 		aqm_reg_write(sc, qi->qUOStatRegAddr,
    492  1.1      scw 		    status &~ qi->qUflowStatBitMask);
    493  1.1      scw 		return ENOSPC;
    494  1.1      scw 	    }
    495  1.1      scw 	}
    496  1.1      scw 	return 0;
    497  1.1      scw }
    498  1.1      scw 
    499  1.1      scw int
    500  1.1      scw ixpqmgr_qreadm(int qId, uint32_t n, uint32_t *p)
    501  1.1      scw {
    502  1.1      scw 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
    503  1.1      scw 	struct qmgrInfo *qi = &sc->qinfo[qId];
    504  1.1      scw 	uint32_t entry;
    505  1.1      scw 	bus_size_t off = qi->qAccRegAddr;
    506  1.1      scw 
    507  1.1      scw 	entry = aqm_reg_read(sc, off);
    508  1.1      scw 	while (--n) {
    509  1.1      scw 	    if (entry == 0) {
    510  1.1      scw 		/* if we read a NULL entry, stop. We have underflowed */
    511  1.1      scw 		break;
    512  1.1      scw 	    }
    513  1.1      scw 	    *p++ = entry;	/* store */
    514  1.1      scw 	    entry = aqm_reg_read(sc, off);
    515  1.1      scw 	}
    516  1.1      scw 	*p = entry;
    517  1.1      scw 
    518  1.1      scw 	/*
    519  1.1      scw 	 * Reset the current read count : next access to the read function
    520  1.1      scw 	 * will force a underflow status check.
    521  1.1      scw 	 */
    522  1.1      scw 	qi->qReadCount = 0;
    523  1.1      scw 
    524  1.1      scw 	/* Check if underflow occurred on the read */
    525  1.1      scw 	if (entry == 0 && qId < IX_QMGR_MIN_QUEUPP_QID) {
    526  1.1      scw 	    /* get the queue status */
    527  1.1      scw 	    uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
    528  1.1      scw 
    529  1.1      scw 	    if (status & qi->qUflowStatBitMask) { /* clear underflow status */
    530  1.1      scw 		aqm_reg_write(sc, qi->qUOStatRegAddr,
    531  1.1      scw 		    status &~ qi->qUflowStatBitMask);
    532  1.1      scw 		return ENOSPC;
    533  1.1      scw 	    }
    534  1.1      scw 	}
    535  1.1      scw 	return 0;
    536  1.1      scw }
    537  1.1      scw 
    538  1.1      scw uint32_t
    539  1.1      scw ixpqmgr_getqstatus(int qId)
    540  1.1      scw {
    541  1.1      scw #define	QLOWSTATMASK \
    542  1.1      scw     ((1 << (32 / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD)) - 1)
    543  1.1      scw 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
    544  1.1      scw 	const struct qmgrInfo *qi = &sc->qinfo[qId];
    545  1.1      scw 	uint32_t status;
    546  1.1      scw 
    547  1.1      scw 	if (qId < IX_QMGR_MIN_QUEUPP_QID) {
    548  1.1      scw 	    /* read the status of a queue in the range 0-31 */
    549  1.1      scw 	    status = aqm_reg_read(sc, qi->qStatRegAddr);
    550  1.1      scw 
    551  1.1      scw 	    /* mask out the status bits relevant only to this queue */
    552  1.1      scw 	    status = (status >> qi->qStatBitsOffset) & QLOWSTATMASK;
    553  1.1      scw 	} else { /* read status of a queue in the range 32-63 */
    554  1.1      scw 	    status = 0;
    555  1.1      scw 	    if (aqm_reg_read(sc, IX_QMGR_QUEUPPSTAT0_OFFSET)&qi->qStat0BitMask)
    556  1.1      scw 		status |= IX_QMGR_Q_STATUS_NE_BIT_MASK;	/* nearly empty */
    557  1.1      scw 	    if (aqm_reg_read(sc, IX_QMGR_QUEUPPSTAT1_OFFSET)&qi->qStat1BitMask)
    558  1.1      scw 		status |= IX_QMGR_Q_STATUS_F_BIT_MASK;	/* full */
    559  1.1      scw 	}
    560  1.1      scw 	return status;
    561  1.1      scw #undef QLOWSTATMASK
    562  1.1      scw }
    563  1.1      scw 
    564  1.1      scw uint32_t
    565  1.1      scw ixpqmgr_getqconfig(int qId)
    566  1.1      scw {
    567  1.1      scw 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
    568  1.1      scw 
    569  1.1      scw 	return aqm_reg_read(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId));
    570  1.1      scw }
    571  1.1      scw 
    572  1.1      scw void
    573  1.1      scw ixpqmgr_dump(void)
    574  1.1      scw {
    575  1.1      scw 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
    576  1.1      scw 	int i, a;
    577  1.1      scw 
    578  1.1      scw 	/* status registers */
    579  1.1      scw 	printf("0x%04x: %08x %08x %08x %08x\n"
    580  1.1      scw 		, 0x400
    581  1.1      scw 		, aqm_reg_read(sc, 0x400)
    582  1.1      scw 		, aqm_reg_read(sc, 0x400+4)
    583  1.1      scw 		, aqm_reg_read(sc, 0x400+8)
    584  1.1      scw 		, aqm_reg_read(sc, 0x400+12)
    585  1.1      scw 	);
    586  1.1      scw 	printf("0x%04x: %08x %08x %08x %08x\n"
    587  1.1      scw 		, 0x410
    588  1.1      scw 		, aqm_reg_read(sc, 0x410)
    589  1.1      scw 		, aqm_reg_read(sc, 0x410+4)
    590  1.1      scw 		, aqm_reg_read(sc, 0x410+8)
    591  1.1      scw 		, aqm_reg_read(sc, 0x410+12)
    592  1.1      scw 	);
    593  1.1      scw 	printf("0x%04x: %08x %08x %08x %08x\n"
    594  1.1      scw 		, 0x420
    595  1.1      scw 		, aqm_reg_read(sc, 0x420)
    596  1.1      scw 		, aqm_reg_read(sc, 0x420+4)
    597  1.1      scw 		, aqm_reg_read(sc, 0x420+8)
    598  1.1      scw 		, aqm_reg_read(sc, 0x420+12)
    599  1.1      scw 	);
    600  1.1      scw 	printf("0x%04x: %08x %08x %08x %08x\n"
    601  1.1      scw 		, 0x430
    602  1.1      scw 		, aqm_reg_read(sc, 0x430)
    603  1.1      scw 		, aqm_reg_read(sc, 0x430+4)
    604  1.1      scw 		, aqm_reg_read(sc, 0x430+8)
    605  1.1      scw 		, aqm_reg_read(sc, 0x430+12)
    606  1.1      scw 	);
    607  1.1      scw 	/* q configuration registers */
    608  1.1      scw 	for (a = 0x2000; a < 0x20ff; a += 32)
    609  1.1      scw 		printf("0x%04x: %08x %08x %08x %08x %08x %08x %08x %08x\n"
    610  1.1      scw 			, a
    611  1.1      scw 			, aqm_reg_read(sc, a)
    612  1.1      scw 			, aqm_reg_read(sc, a+4)
    613  1.1      scw 			, aqm_reg_read(sc, a+8)
    614  1.1      scw 			, aqm_reg_read(sc, a+12)
    615  1.1      scw 			, aqm_reg_read(sc, a+16)
    616  1.1      scw 			, aqm_reg_read(sc, a+20)
    617  1.1      scw 			, aqm_reg_read(sc, a+24)
    618  1.1      scw 			, aqm_reg_read(sc, a+28)
    619  1.1      scw 		);
    620  1.1      scw 	/* allocated SRAM */
    621  1.1      scw 	for (i = 0x100; i < sc->aqmFreeSramAddress; i += 32) {
    622  1.1      scw 		a = 0x2000 + i;
    623  1.1      scw 		printf("0x%04x: %08x %08x %08x %08x %08x %08x %08x %08x\n"
    624  1.1      scw 			, a
    625  1.1      scw 			, aqm_reg_read(sc, a)
    626  1.1      scw 			, aqm_reg_read(sc, a+4)
    627  1.1      scw 			, aqm_reg_read(sc, a+8)
    628  1.1      scw 			, aqm_reg_read(sc, a+12)
    629  1.1      scw 			, aqm_reg_read(sc, a+16)
    630  1.1      scw 			, aqm_reg_read(sc, a+20)
    631  1.1      scw 			, aqm_reg_read(sc, a+24)
    632  1.1      scw 			, aqm_reg_read(sc, a+28)
    633  1.1      scw 		);
    634  1.1      scw 	}
    635  1.1      scw 	for (i = 0; i < 16; i++) {
    636  1.1      scw 		printf("Q[%2d] config 0x%08x status 0x%02x  "
    637  1.1      scw 		       "Q[%2d] config 0x%08x status 0x%02x\n"
    638  1.1      scw 		    , i, ixpqmgr_getqconfig(i), ixpqmgr_getqstatus(i)
    639  1.1      scw 		    , i+16, ixpqmgr_getqconfig(i+16), ixpqmgr_getqstatus(i+16)
    640  1.1      scw 		);
    641  1.1      scw 	}
    642  1.1      scw }
    643  1.1      scw 
    644  1.1      scw void
    645  1.1      scw ixpqmgr_notify_enable(int qId, int srcSel)
    646  1.1      scw {
    647  1.1      scw 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
    648  1.1      scw #if 0
    649  1.1      scw 	/* Calculate the checkMask and checkValue for this q */
    650  1.1      scw 	aqm_calc_statuscheck(sc, qId, srcSel);
    651  1.1      scw #endif
    652  1.6  msaitoh 	/* Set the interrupt source if this queue is in the range 0-31 */
    653  1.1      scw 	if (qId < IX_QMGR_MIN_QUEUPP_QID)
    654  1.1      scw 	    aqm_srcsel_write(sc, qId, srcSel);
    655  1.1      scw 
    656  1.1      scw 	/* Enable the interrupt */
    657  1.1      scw 	aqm_int_enable(sc, qId);
    658  1.1      scw }
    659  1.1      scw 
    660  1.1      scw void
    661  1.1      scw ixpqmgr_notify_disable(int qId)
    662  1.1      scw {
    663  1.1      scw 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
    664  1.1      scw 
    665  1.1      scw 	aqm_int_disable(sc, qId);
    666  1.1      scw }
    667  1.1      scw 
    668  1.1      scw /*
    669  1.1      scw  * Rebuild the priority table used by the dispatcher.
    670  1.1      scw  */
    671  1.1      scw static void
    672  1.1      scw ixpqmgr_rebuild(struct ixpqmgr_softc *sc)
    673  1.1      scw {
    674  1.1      scw 	int q, pri;
    675  1.1      scw 	int lowQuePriorityTableIndex, uppQuePriorityTableIndex;
    676  1.1      scw 	struct qmgrInfo *qi;
    677  1.1      scw 
    678  1.1      scw 	sc->lowPriorityTableFirstHalfMask = 0;
    679  1.1      scw 	sc->uppPriorityTableFirstHalfMask = 0;
    680  1.1      scw 
    681  1.1      scw 	lowQuePriorityTableIndex = 0;
    682  1.1      scw 	uppQuePriorityTableIndex = 32;
    683  1.1      scw 	for (pri = 0; pri < IX_QMGR_NUM_PRIORITY_LEVELS; pri++) {
    684  1.1      scw 	    /* low priority q's */
    685  1.1      scw 	    for (q = 0; q < IX_QMGR_MIN_QUEUPP_QID; q++) {
    686  1.1      scw 		qi = &sc->qinfo[q];
    687  1.1      scw 		if (qi->priority == pri) {
    688  1.1      scw 		    /*
    689  1.1      scw 		     * Build the priority table bitmask which match the
    690  1.1      scw 		     * queues of the first half of the priority table.
    691  1.1      scw 		     */
    692  1.1      scw 		    if (lowQuePriorityTableIndex < 16) {
    693  1.1      scw 			sc->lowPriorityTableFirstHalfMask |=
    694  1.1      scw 			    qi->intRegCheckMask;
    695  1.1      scw 		    }
    696  1.1      scw 		    sc->priorityTable[lowQuePriorityTableIndex++] = q;
    697  1.1      scw 		}
    698  1.1      scw 	    }
    699  1.1      scw 	    /* high priority q's */
    700  1.1      scw 	    for (; q < IX_QMGR_MAX_NUM_QUEUES; q++) {
    701  1.1      scw 		qi = &sc->qinfo[q];
    702  1.1      scw 		if (qi->priority == pri) {
    703  1.1      scw 		    /*
    704  1.1      scw 		     * Build the priority table bitmask which match the
    705  1.1      scw 		     * queues of the first half of the priority table .
    706  1.1      scw 		     */
    707  1.1      scw 		    if (uppQuePriorityTableIndex < 48) {
    708  1.1      scw 			sc->uppPriorityTableFirstHalfMask |=
    709  1.1      scw 			    qi->intRegCheckMask;
    710  1.1      scw 		    }
    711  1.1      scw 		    sc->priorityTable[uppQuePriorityTableIndex++] = q;
    712  1.1      scw 		}
    713  1.1      scw 	    }
    714  1.1      scw 	}
    715  1.2  thorpej 	sc->rebuildTable = false;
    716  1.1      scw }
    717  1.1      scw 
    718  1.1      scw /*
    719  1.1      scw  * Count the number of leading zero bits in a word,
    720  1.1      scw  * and return the same value than the CLZ instruction.
    721  1.1      scw  * Note this is similar to the standard ffs function but
    722  1.1      scw  * it counts zero's from the MSB instead of the LSB.
    723  1.1      scw  *
    724  1.1      scw  * word (in)    return value (out)
    725  1.1      scw  * 0x80000000   0
    726  1.1      scw  * 0x40000000   1
    727  1.1      scw  * ,,,          ,,,
    728  1.1      scw  * 0x00000002   30
    729  1.1      scw  * 0x00000001   31
    730  1.1      scw  * 0x00000000   32
    731  1.1      scw  *
    732  1.1      scw  * The C version of this function is used as a replacement
    733  1.1      scw  * for system not providing the equivalent of the CLZ
    734  1.1      scw  * assembly language instruction.
    735  1.1      scw  *
    736  1.1      scw  * Note that this version is big-endian
    737  1.1      scw  */
    738  1.1      scw static unsigned int
    739  1.1      scw _lzcount(uint32_t word)
    740  1.1      scw {
    741  1.1      scw 	unsigned int lzcount = 0;
    742  1.1      scw 
    743  1.1      scw 	if (word == 0)
    744  1.1      scw 	    return 32;
    745  1.1      scw 	while ((word & 0x80000000) == 0) {
    746  1.1      scw 	    word <<= 1;
    747  1.1      scw 	    lzcount++;
    748  1.1      scw 	}
    749  1.1      scw 	return lzcount;
    750  1.1      scw }
    751  1.1      scw 
    752  1.1      scw static int
    753  1.1      scw ixpqmgr_intr(void *arg)
    754  1.1      scw {
    755  1.1      scw 	struct ixpqmgr_softc *sc = ixpqmgr_sc;
    756  1.1      scw 	uint32_t intRegVal;                /* Interrupt reg val */
    757  1.1      scw 	struct qmgrInfo *qi;
    758  1.1      scw 	int priorityTableIndex;		/* Priority table index */
    759  1.1      scw 	int qIndex;			/* Current queue being processed */
    760  1.1      scw 
    761  1.1      scw 	/* Read the interrupt register */
    762  1.1      scw 	intRegVal = aqm_reg_read(sc, IX_QMGR_QINTREG0_OFFSET);
    763  1.1      scw 	/* Write back to clear interrupt */
    764  1.1      scw 	aqm_reg_write(sc, IX_QMGR_QINTREG0_OFFSET, intRegVal);
    765  1.1      scw 
    766  1.1      scw 	DPRINTFn(5, sc->sc_dev, "%s: ISR0 0x%x ISR1 0x%x\n",
    767  1.1      scw 	    __func__, intRegVal, aqm_reg_read(sc, IX_QMGR_QINTREG1_OFFSET));
    768  1.1      scw 
    769  1.1      scw 	/* No queue has interrupt register set */
    770  1.1      scw 	if (intRegVal != 0) {
    771  1.1      scw 		/* get the first queue Id from the interrupt register value */
    772  1.1      scw 		qIndex = (32 - 1) - _lzcount(intRegVal);
    773  1.1      scw 
    774  1.1      scw 		DPRINTFn(2, sc->sc_dev, "%s: ISR0 0x%x qIndex %u\n",
    775  1.1      scw 		    __func__, intRegVal, qIndex);
    776  1.1      scw 
    777  1.1      scw 		/*
    778  1.1      scw 		 * Optimize for single callback case.
    779  1.1      scw 		 */
    780  1.1      scw 		 qi = &sc->qinfo[qIndex];
    781  1.1      scw 		 if (intRegVal == qi->intRegCheckMask) {
    782  1.1      scw 		    /*
    783  1.1      scw 		     * Only 1 queue event triggered a notification.
    784  1.1      scw 		     * Call the callback function for this queue
    785  1.1      scw 		     */
    786  1.1      scw 		    qi->cb(qIndex, qi->cbarg);
    787  1.1      scw 		 } else {
    788  1.1      scw 		     /*
    789  1.1      scw 		      * The event is triggered by more than 1 queue,
    790  1.1      scw 		      * the queue search will start from the beginning
    791  1.1      scw 		      * or the middle of the priority table.
    792  1.1      scw 		      *
    793  1.1      scw 		      * The search will end when all the bits of the interrupt
    794  1.1      scw 		      * register are cleared. There is no need to maintain
    795  1.8  msaitoh 		      * a separate value and test it at each iteration.
    796  1.1      scw 		      */
    797  1.1      scw 		     if (intRegVal & sc->lowPriorityTableFirstHalfMask) {
    798  1.1      scw 			 priorityTableIndex = 0;
    799  1.1      scw 		     } else {
    800  1.1      scw 			 priorityTableIndex = 16;
    801  1.1      scw 		     }
    802  1.1      scw 		     /*
    803  1.1      scw 		      * Iterate over the priority table until all the bits
    804  1.1      scw 		      * of the interrupt register are cleared.
    805  1.1      scw 		      */
    806  1.1      scw 		     do {
    807  1.1      scw 			 qIndex = sc->priorityTable[priorityTableIndex++];
    808  1.3      scw 			 if (qIndex >= IX_QMGR_MAX_NUM_QUEUES)
    809  1.3      scw 			     break;
    810  1.1      scw 			 qi = &sc->qinfo[qIndex];
    811  1.1      scw 
    812  1.1      scw 			 /* If this queue caused this interrupt to be raised */
    813  1.1      scw 			 if (intRegVal & qi->intRegCheckMask) {
    814  1.1      scw 			     /* Call the callback function for this queue */
    815  1.1      scw 			     qi->cb(qIndex, qi->cbarg);
    816  1.1      scw 			     /* Clear the interrupt register bit */
    817  1.1      scw 			     intRegVal &= ~qi->intRegCheckMask;
    818  1.1      scw 			 }
    819  1.3      scw 		      } while (intRegVal &&
    820  1.3      scw 		          priorityTableIndex < IX_QMGR_MAX_NUM_QUEUES);
    821  1.1      scw 		 }
    822  1.1      scw 	 }
    823  1.1      scw 
    824  1.1      scw 	/* Rebuild the priority table if needed */
    825  1.1      scw 	if (sc->rebuildTable)
    826  1.1      scw 	    ixpqmgr_rebuild(sc);
    827  1.1      scw 
    828  1.1      scw 	return (1);
    829  1.1      scw }
    830  1.1      scw 
    831  1.1      scw #if 0
    832  1.1      scw /*
    833  1.1      scw  * Generate the parameters used to check if a Q's status matches
    834  1.1      scw  * the specified source select.  We calculate which status word
    835  1.1      scw  * to check (statusWordOffset), the value to check the status
    836  1.1      scw  * against (statusCheckValue) and the mask (statusMask) to mask
    837  1.1      scw  * out all but the bits to check in the status word.
    838  1.1      scw  */
    839  1.1      scw static void
    840  1.1      scw aqm_calc_statuscheck(int qId, IxQMgrSourceId srcSel)
    841  1.1      scw {
    842  1.1      scw 	struct qmgrInfo *qi = &qinfo[qId];
    843  1.1      scw 	uint32_t shiftVal;
    844  1.1      scw 
    845  1.1      scw 	if (qId < IX_QMGR_MIN_QUEUPP_QID) {
    846  1.1      scw 	    switch (srcSel) {
    847  1.1      scw 	    case IX_QMGR_Q_SOURCE_ID_E:
    848  1.1      scw 		qi->statusCheckValue = IX_QMGR_Q_STATUS_E_BIT_MASK;
    849  1.1      scw 		qi->statusMask = IX_QMGR_Q_STATUS_E_BIT_MASK;
    850  1.1      scw 		break;
    851  1.1      scw 	    case IX_QMGR_Q_SOURCE_ID_NE:
    852  1.1      scw 		qi->statusCheckValue = IX_QMGR_Q_STATUS_NE_BIT_MASK;
    853  1.1      scw 		qi->statusMask = IX_QMGR_Q_STATUS_NE_BIT_MASK;
    854  1.1      scw 		break;
    855  1.1      scw 	    case IX_QMGR_Q_SOURCE_ID_NF:
    856  1.1      scw 		qi->statusCheckValue = IX_QMGR_Q_STATUS_NF_BIT_MASK;
    857  1.1      scw 		qi->statusMask = IX_QMGR_Q_STATUS_NF_BIT_MASK;
    858  1.1      scw 		break;
    859  1.1      scw 	    case IX_QMGR_Q_SOURCE_ID_F:
    860  1.1      scw 		qi->statusCheckValue = IX_QMGR_Q_STATUS_F_BIT_MASK;
    861  1.1      scw 		qi->statusMask = IX_QMGR_Q_STATUS_F_BIT_MASK;
    862  1.1      scw 		break;
    863  1.1      scw 	    case IX_QMGR_Q_SOURCE_ID_NOT_E:
    864  1.1      scw 		qi->statusCheckValue = 0;
    865  1.1      scw 		qi->statusMask = IX_QMGR_Q_STATUS_E_BIT_MASK;
    866  1.1      scw 		break;
    867  1.1      scw 	    case IX_QMGR_Q_SOURCE_ID_NOT_NE:
    868  1.1      scw 		qi->statusCheckValue = 0;
    869  1.1      scw 		qi->statusMask = IX_QMGR_Q_STATUS_NE_BIT_MASK;
    870  1.1      scw 		break;
    871  1.1      scw 	    case IX_QMGR_Q_SOURCE_ID_NOT_NF:
    872  1.1      scw 		qi->statusCheckValue = 0;
    873  1.1      scw 		qi->statusMask = IX_QMGR_Q_STATUS_NF_BIT_MASK;
    874  1.1      scw 		break;
    875  1.1      scw 	    case IX_QMGR_Q_SOURCE_ID_NOT_F:
    876  1.1      scw 		qi->statusCheckValue = 0;
    877  1.1      scw 		qi->statusMask = IX_QMGR_Q_STATUS_F_BIT_MASK;
    878  1.1      scw 		break;
    879  1.1      scw 	    default:
    880  1.1      scw 		/* Should never hit */
    881  1.1      scw 		IX_OSAL_ASSERT(0);
    882  1.1      scw 		break;
    883  1.1      scw 	    }
    884  1.1      scw 
    885  1.1      scw 	    /* One nibble of status per queue so need to shift the
    886  1.1      scw 	     * check value and mask out to the correct position.
    887  1.1      scw 	     */
    888  1.1      scw 	    shiftVal = (qId % IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD) *
    889  1.1      scw 		IX_QMGR_QUELOWSTAT_BITS_PER_Q;
    890  1.1      scw 
    891  1.1      scw 	    /* Calculate the which status word to check from the qId,
    892  1.1      scw 	     * 8 Qs status per word
    893  1.1      scw 	     */
    894  1.1      scw 	    qi->statusWordOffset = qId / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD;
    895  1.1      scw 
    896  1.1      scw 	    qi->statusCheckValue <<= shiftVal;
    897  1.1      scw 	    qi->statusMask <<= shiftVal;
    898  1.1      scw 	} else {
    899  1.1      scw 	    /* One status word */
    900  1.1      scw 	    qi->statusWordOffset = 0;
    901  1.1      scw 	    /* Single bits per queue and int source bit hardwired  NE,
    902  1.1      scw 	     * Qs start at 32.
    903  1.1      scw 	     */
    904  1.1      scw 	    qi->statusMask = 1 << (qId - IX_QMGR_MIN_QUEUPP_QID);
    905  1.1      scw 	    qi->statusCheckValue = qi->statusMask;
    906  1.1      scw 	}
    907  1.1      scw }
    908  1.1      scw #endif
    909  1.1      scw 
    910  1.1      scw static void
    911  1.1      scw aqm_int_enable(struct ixpqmgr_softc *sc, int qId)
    912  1.1      scw {
    913  1.1      scw 	bus_size_t reg;
    914  1.1      scw 	uint32_t v;
    915  1.1      scw 
    916  1.1      scw 	if (qId < IX_QMGR_MIN_QUEUPP_QID)
    917  1.1      scw 	    reg = IX_QMGR_QUEIEREG0_OFFSET;
    918  1.1      scw 	else
    919  1.1      scw 	    reg = IX_QMGR_QUEIEREG1_OFFSET;
    920  1.1      scw 	v = aqm_reg_read(sc, reg);
    921  1.1      scw 	aqm_reg_write(sc, reg, v | (1 << (qId % IX_QMGR_MIN_QUEUPP_QID)));
    922  1.1      scw 
    923  1.1      scw 	DPRINTF(sc->sc_dev, "%s(%u) 0x%lx: 0x%x => 0x%x\n",
    924  1.1      scw 	    __func__, qId, reg, v, aqm_reg_read(sc, reg));
    925  1.1      scw }
    926  1.1      scw 
    927  1.1      scw static void
    928  1.1      scw aqm_int_disable(struct ixpqmgr_softc *sc, int qId)
    929  1.1      scw {
    930  1.1      scw 	bus_size_t reg;
    931  1.1      scw 	uint32_t v;
    932  1.1      scw 
    933  1.1      scw 	if (qId < IX_QMGR_MIN_QUEUPP_QID)
    934  1.1      scw 	    reg = IX_QMGR_QUEIEREG0_OFFSET;
    935  1.1      scw 	else
    936  1.1      scw 	    reg = IX_QMGR_QUEIEREG1_OFFSET;
    937  1.1      scw 	v = aqm_reg_read(sc, reg);
    938  1.1      scw 	aqm_reg_write(sc, reg, v &~ (1 << (qId % IX_QMGR_MIN_QUEUPP_QID)));
    939  1.1      scw 
    940  1.1      scw 	DPRINTF(sc->sc_dev, "%s(%u) 0x%lx: 0x%x => 0x%x\n",
    941  1.1      scw 	    __func__, qId, reg, v, aqm_reg_read(sc, reg));
    942  1.1      scw }
    943  1.1      scw 
    944  1.1      scw static unsigned
    945  1.1      scw log2(unsigned n)
    946  1.1      scw {
    947  1.1      scw 	unsigned count;
    948  1.1      scw 	/*
    949  1.1      scw 	 * N.B. this function will return 0 if supplied 0.
    950  1.1      scw 	 */
    951  1.1      scw 	for (count = 0; n/2; count++)
    952  1.1      scw 	    n /= 2;
    953  1.1      scw 	return count;
    954  1.1      scw }
    955  1.1      scw 
    956  1.1      scw static __inline unsigned
    957  1.1      scw toAqmEntrySize(int entrySize)
    958  1.1      scw {
    959  1.1      scw 	/* entrySize  1("00"),2("01"),4("10") */
    960  1.1      scw 	return log2(entrySize);
    961  1.1      scw }
    962  1.1      scw 
    963  1.1      scw static __inline unsigned
    964  1.1      scw toAqmBufferSize(unsigned bufferSizeInWords)
    965  1.1      scw {
    966  1.1      scw 	/* bufferSize 16("00"),32("01),64("10"),128("11") */
    967  1.1      scw 	return log2(bufferSizeInWords / IX_QMGR_MIN_BUFFER_SIZE);
    968  1.1      scw }
    969  1.1      scw 
    970  1.1      scw static __inline unsigned
    971  1.1      scw toAqmWatermark(int watermark)
    972  1.1      scw {
    973  1.1      scw 	/*
    974  1.1      scw 	 * Watermarks 0("000"),1("001"),2("010"),4("011"),
    975  1.1      scw 	 * 8("100"),16("101"),32("110"),64("111")
    976  1.1      scw 	 */
    977  1.1      scw 	return log2(2 * watermark);
    978  1.1      scw }
    979  1.1      scw 
    980  1.1      scw static void
    981  1.1      scw aqm_qcfg(struct ixpqmgr_softc *sc, int qId, u_int ne, u_int nf)
    982  1.1      scw {
    983  1.1      scw 	const struct qmgrInfo *qi = &sc->qinfo[qId];
    984  1.1      scw 	uint32_t qCfg;
    985  1.1      scw 	uint32_t baseAddress;
    986  1.1      scw 
    987  1.1      scw 	/* Build config register */
    988  1.1      scw 	qCfg = ((toAqmEntrySize(1) & IX_QMGR_ENTRY_SIZE_MASK) <<
    989  1.1      scw 		    IX_QMGR_Q_CONFIG_ESIZE_OFFSET)
    990  1.1      scw 	     | ((toAqmBufferSize(qi->qSizeInWords) & IX_QMGR_SIZE_MASK) <<
    991  1.1      scw 		    IX_QMGR_Q_CONFIG_BSIZE_OFFSET);
    992  1.1      scw 
    993  1.1      scw 	/* baseAddress, calculated relative to start address */
    994  1.1      scw 	baseAddress = sc->aqmFreeSramAddress;
    995  1.1      scw 
    996  1.1      scw 	/* base address must be word-aligned */
    997  1.1      scw 	KASSERT((baseAddress % IX_QMGR_BASE_ADDR_16_WORD_ALIGN) == 0);
    998  1.1      scw 
    999  1.1      scw 	/* Now convert to a 16 word pointer as required by QUECONFIG register */
   1000  1.1      scw 	baseAddress >>= IX_QMGR_BASE_ADDR_16_WORD_SHIFT;
   1001  1.1      scw 	qCfg |= baseAddress << IX_QMGR_Q_CONFIG_BADDR_OFFSET;
   1002  1.1      scw 
   1003  1.1      scw 	/* set watermarks */
   1004  1.1      scw 	qCfg |= (toAqmWatermark(ne) << IX_QMGR_Q_CONFIG_NE_OFFSET)
   1005  1.1      scw 	     |  (toAqmWatermark(nf) << IX_QMGR_Q_CONFIG_NF_OFFSET);
   1006  1.1      scw 
   1007  1.1      scw 	DPRINTF(sc->sc_dev, "%s(%u, %u, %u) 0x%x => 0x%x @ 0x%x\n",
   1008  1.1      scw 	    __func__, qId, ne, nf,
   1009  1.1      scw 	    aqm_reg_read(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId)),
   1010  1.1      scw 	    qCfg, (u_int)IX_QMGR_Q_CONFIG_ADDR_GET(qId));
   1011  1.1      scw 
   1012  1.1      scw 	aqm_reg_write(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId), qCfg);
   1013  1.1      scw }
   1014  1.1      scw 
   1015  1.1      scw static void
   1016  1.1      scw aqm_srcsel_write(struct ixpqmgr_softc *sc, int qId, int sourceId)
   1017  1.1      scw {
   1018  1.1      scw 	bus_size_t off;
   1019  1.1      scw 	uint32_t v;
   1020  1.1      scw 
   1021  1.1      scw 	/*
   1022  1.1      scw 	 * Calculate the register offset; multiple queues split across registers
   1023  1.1      scw 	 */
   1024  1.1      scw 	off = IX_QMGR_INT0SRCSELREG0_OFFSET +
   1025  1.1      scw 	    ((qId / IX_QMGR_INTSRC_NUM_QUE_PER_WORD) * sizeof(uint32_t));
   1026  1.1      scw 
   1027  1.1      scw 	v = aqm_reg_read(sc, off);
   1028  1.1      scw 	if (off == IX_QMGR_INT0SRCSELREG0_OFFSET && qId == 0) {
   1029  1.1      scw 	    /* Queue 0 at INT0SRCSELREG should not corrupt the value bit-3  */
   1030  1.1      scw 	    v |= 0x7;
   1031  1.1      scw 	} else {
   1032  1.1      scw 	  const uint32_t bpq = 32 / IX_QMGR_INTSRC_NUM_QUE_PER_WORD;
   1033  1.1      scw 	  uint32_t mask;
   1034  1.1      scw 	  int qshift;
   1035  1.1      scw 
   1036  1.1      scw 	  qshift = (qId & (IX_QMGR_INTSRC_NUM_QUE_PER_WORD-1)) * bpq;
   1037  1.1      scw 	  mask = ((1 << bpq) - 1) << qshift;	/* q's status mask */
   1038  1.1      scw 
   1039  1.1      scw 	  /* merge sourceId */
   1040  1.1      scw 	  v = (v &~ mask) | ((sourceId << qshift) & mask);
   1041  1.1      scw 	}
   1042  1.1      scw 
   1043  1.1      scw 	DPRINTF(sc->sc_dev, "%s(%u, %u) 0x%x => 0x%x @ 0x%lx\n",
   1044  1.1      scw 	    __func__, qId, sourceId, aqm_reg_read(sc, off), v, off);
   1045  1.1      scw 	aqm_reg_write(sc, off, v);
   1046  1.1      scw }
   1047  1.1      scw 
   1048  1.1      scw /*
   1049  1.1      scw  * Reset AQM registers to default values.
   1050  1.1      scw  */
   1051  1.1      scw static void
   1052  1.1      scw aqm_reset(struct ixpqmgr_softc *sc)
   1053  1.1      scw {
   1054  1.1      scw 	int i;
   1055  1.1      scw 
   1056  1.1      scw 	/* Reset queues 0..31 status registers 0..3 */
   1057  1.1      scw 	aqm_reg_write(sc, IX_QMGR_QUELOWSTAT0_OFFSET,
   1058  1.1      scw 		IX_QMGR_QUELOWSTAT_RESET_VALUE);
   1059  1.1      scw 	aqm_reg_write(sc, IX_QMGR_QUELOWSTAT1_OFFSET,
   1060  1.1      scw 		IX_QMGR_QUELOWSTAT_RESET_VALUE);
   1061  1.1      scw 	aqm_reg_write(sc, IX_QMGR_QUELOWSTAT2_OFFSET,
   1062  1.1      scw 		IX_QMGR_QUELOWSTAT_RESET_VALUE);
   1063  1.1      scw 	aqm_reg_write(sc, IX_QMGR_QUELOWSTAT3_OFFSET,
   1064  1.1      scw 		IX_QMGR_QUELOWSTAT_RESET_VALUE);
   1065  1.1      scw 
   1066  1.1      scw 	/* Reset underflow/overflow status registers 0..1 */
   1067  1.1      scw 	aqm_reg_write(sc, IX_QMGR_QUEUOSTAT0_OFFSET,
   1068  1.1      scw 		IX_QMGR_QUEUOSTAT_RESET_VALUE);
   1069  1.1      scw 	aqm_reg_write(sc, IX_QMGR_QUEUOSTAT1_OFFSET,
   1070  1.1      scw 		IX_QMGR_QUEUOSTAT_RESET_VALUE);
   1071  1.1      scw 
   1072  1.1      scw 	/* Reset queues 32..63 nearly empty status registers */
   1073  1.1      scw 	aqm_reg_write(sc, IX_QMGR_QUEUPPSTAT0_OFFSET,
   1074  1.1      scw 		IX_QMGR_QUEUPPSTAT0_RESET_VALUE);
   1075  1.1      scw 
   1076  1.1      scw 	/* Reset queues 32..63 full status registers */
   1077  1.1      scw 	aqm_reg_write(sc, IX_QMGR_QUEUPPSTAT1_OFFSET,
   1078  1.1      scw 		IX_QMGR_QUEUPPSTAT1_RESET_VALUE);
   1079  1.1      scw 
   1080  1.1      scw 	/* Reset int0 status flag source select registers 0..3 */
   1081  1.1      scw 	aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG0_OFFSET,
   1082  1.1      scw 			     IX_QMGR_INT0SRCSELREG_RESET_VALUE);
   1083  1.1      scw 	aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG1_OFFSET,
   1084  1.1      scw 			     IX_QMGR_INT0SRCSELREG_RESET_VALUE);
   1085  1.1      scw 	aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG2_OFFSET,
   1086  1.1      scw 			     IX_QMGR_INT0SRCSELREG_RESET_VALUE);
   1087  1.1      scw 	aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG3_OFFSET,
   1088  1.1      scw 			     IX_QMGR_INT0SRCSELREG_RESET_VALUE);
   1089  1.1      scw 
   1090  1.1      scw 	/* Reset queue interrupt enable register 0..1 */
   1091  1.1      scw 	aqm_reg_write(sc, IX_QMGR_QUEIEREG0_OFFSET,
   1092  1.1      scw 		IX_QMGR_QUEIEREG_RESET_VALUE);
   1093  1.1      scw 	aqm_reg_write(sc, IX_QMGR_QUEIEREG1_OFFSET,
   1094  1.1      scw 		IX_QMGR_QUEIEREG_RESET_VALUE);
   1095  1.1      scw 
   1096  1.1      scw 	/* Reset queue interrupt register 0..1 */
   1097  1.1      scw 	aqm_reg_write(sc, IX_QMGR_QINTREG0_OFFSET, IX_QMGR_QINTREG_RESET_VALUE);
   1098  1.1      scw 	aqm_reg_write(sc, IX_QMGR_QINTREG1_OFFSET, IX_QMGR_QINTREG_RESET_VALUE);
   1099  1.1      scw 
   1100  1.1      scw 	/* Reset queue configuration words 0..63 */
   1101  1.1      scw 	for (i = 0; i < IX_QMGR_MAX_NUM_QUEUES; i++)
   1102  1.1      scw 	    aqm_reg_write(sc, sc->qinfo[i].qConfigRegAddr,
   1103  1.1      scw 		IX_QMGR_QUECONFIG_RESET_VALUE);
   1104  1.1      scw 
   1105  1.1      scw 	/* XXX zero SRAM to simplify debugging */
   1106  1.1      scw 	for (i = IX_QMGR_QUEBUFFER_SPACE_OFFSET;
   1107  1.1      scw 	     i < IX_QMGR_AQM_SRAM_SIZE_IN_BYTES; i += sizeof(uint32_t))
   1108  1.1      scw 	    aqm_reg_write(sc, i, 0);
   1109  1.1      scw }
   1110  1.1      scw 
   1111  1.1      scw #ifdef __FreeBSD__
   1112  1.1      scw static device_method_t ixpqmgr_methods[] = {
   1113  1.1      scw 	DEVMETHOD(device_probe,		ixpqmgr_probe),
   1114  1.1      scw 	DEVMETHOD(device_attach,	ixpqmgr_attach),
   1115  1.1      scw 	DEVMETHOD(device_detach,	ixpqmgr_detach),
   1116  1.1      scw 
   1117  1.1      scw 	{ 0, 0 }
   1118  1.1      scw };
   1119  1.1      scw 
   1120  1.1      scw static driver_t ixpqmgr_driver = {
   1121  1.1      scw 	"ixpqmgr",
   1122  1.1      scw 	ixpqmgr_methods,
   1123  1.1      scw 	sizeof(struct ixpqmgr_softc),
   1124  1.1      scw };
   1125  1.1      scw static devclass_t ixpqmgr_devclass;
   1126  1.1      scw 
   1127  1.1      scw DRIVER_MODULE(ixpqmgr, ixp, ixpqmgr_driver, ixpqmgr_devclass, 0, 0);
   1128  1.1      scw #endif
   1129