clock.c revision 1.13 1 1.13 christos /* $NetBSD: clock.c,v 1.13 1996/10/13 04:10:51 christos Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.1 leo * Copyright (c) 1988 University of Utah.
5 1.1 leo * Copyright (c) 1982, 1990 The Regents of the University of California.
6 1.1 leo * All rights reserved.
7 1.1 leo *
8 1.1 leo * This code is derived from software contributed to Berkeley by
9 1.1 leo * the Systems Programming Group of the University of Utah Computer
10 1.1 leo * Science Department.
11 1.1 leo *
12 1.1 leo * Redistribution and use in source and binary forms, with or without
13 1.1 leo * modification, are permitted provided that the following conditions
14 1.1 leo * are met:
15 1.1 leo * 1. Redistributions of source code must retain the above copyright
16 1.1 leo * notice, this list of conditions and the following disclaimer.
17 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 leo * notice, this list of conditions and the following disclaimer in the
19 1.1 leo * documentation and/or other materials provided with the distribution.
20 1.1 leo * 3. All advertising materials mentioning features or use of this software
21 1.1 leo * must display the following acknowledgement:
22 1.1 leo * This product includes software developed by the University of
23 1.1 leo * California, Berkeley and its contributors.
24 1.1 leo * 4. Neither the name of the University nor the names of its contributors
25 1.1 leo * may be used to endorse or promote products derived from this software
26 1.1 leo * without specific prior written permission.
27 1.1 leo *
28 1.1 leo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 leo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 leo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 leo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 leo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 leo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 leo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 leo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 leo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 leo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 leo * SUCH DAMAGE.
39 1.1 leo *
40 1.1 leo * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 1.1 leo *
42 1.1 leo * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 1.1 leo */
44 1.1 leo
45 1.1 leo #include <sys/param.h>
46 1.1 leo #include <sys/kernel.h>
47 1.9 leo #include <sys/systm.h>
48 1.1 leo #include <sys/device.h>
49 1.1 leo #include <machine/psl.h>
50 1.1 leo #include <machine/cpu.h>
51 1.1 leo #include <machine/iomap.h>
52 1.1 leo #include <machine/mfp.h>
53 1.1 leo #include <atari/dev/clockreg.h>
54 1.1 leo
55 1.4 leo #if defined(GPROF) && defined(PROFTIMER)
56 1.4 leo #include <machine/profile.h>
57 1.1 leo #endif
58 1.1 leo
59 1.1 leo /*
60 1.5 leo * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
61 1.5 leo * of 200. Therefore the timer runs at an effective rate of:
62 1.5 leo * 2457600/200 = 12288Hz.
63 1.5 leo */
64 1.5 leo #define CLOCK_HZ 12288
65 1.5 leo
66 1.5 leo /*
67 1.1 leo * Machine-dependent clock routines.
68 1.1 leo *
69 1.1 leo * Inittodr initializes the time of day hardware which provides
70 1.1 leo * date functions.
71 1.1 leo *
72 1.1 leo * Resettodr restores the time of day hardware after a time change.
73 1.1 leo */
74 1.1 leo
75 1.10 thorpej int clockmatch __P((struct device *, void *, void *));
76 1.1 leo void clockattach __P((struct device *, struct device *, void *));
77 1.1 leo
78 1.10 thorpej struct cfattach clock_ca = {
79 1.10 thorpej sizeof(struct device), clockmatch, clockattach
80 1.10 thorpej };
81 1.10 thorpej
82 1.10 thorpej struct cfdriver clock_cd = {
83 1.10 thorpej NULL, "clock", DV_DULL, NULL, 0
84 1.1 leo };
85 1.1 leo
86 1.9 leo void statintr __P((struct clockframe *));
87 1.9 leo
88 1.1 leo static u_long gettod __P((void));
89 1.1 leo static int settod __P((u_long));
90 1.1 leo
91 1.5 leo static int divisor; /* Systemclock divisor */
92 1.5 leo
93 1.5 leo /*
94 1.5 leo * Statistics and profile clock intervals and variances. Variance must
95 1.5 leo * be a power of 2. Since this gives us an even number, not an odd number,
96 1.5 leo * we discard one case and compensate. That is, a variance of 64 would
97 1.5 leo * give us offsets in [0..63]. Instead, we take offsets in [1..63].
98 1.5 leo * This is symetric around the point 32, or statvar/2, and thus averages
99 1.5 leo * to that value (assuming uniform random numbers).
100 1.5 leo */
101 1.5 leo #ifdef STATCLOCK
102 1.5 leo static int statvar = 32; /* {stat,prof}clock variance */
103 1.5 leo static int statmin; /* statclock divisor - variance/2 */
104 1.5 leo static int profmin; /* profclock divisor - variance/2 */
105 1.5 leo static int clk2min; /* current, from above choises */
106 1.5 leo #endif
107 1.1 leo
108 1.1 leo int
109 1.10 thorpej clockmatch(pdp, match, auxp)
110 1.1 leo struct device *pdp;
111 1.10 thorpej void *match, *auxp;
112 1.1 leo {
113 1.1 leo if(!strcmp("clock", auxp))
114 1.1 leo return(1);
115 1.1 leo return(0);
116 1.1 leo }
117 1.1 leo
118 1.1 leo /*
119 1.1 leo * Start the real-time clock.
120 1.1 leo */
121 1.1 leo void clockattach(pdp, dp, auxp)
122 1.1 leo struct device *pdp, *dp;
123 1.1 leo void *auxp;
124 1.1 leo {
125 1.1 leo /*
126 1.3 leo * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
127 1.3 leo * The MFP clock runs at 2457600Hz. Therefore the timer runs
128 1.3 leo * at an effective rate of: 2457600/200 = 12288Hz. The
129 1.3 leo * following expression works for 48, 64 or 96 hz.
130 1.1 leo */
131 1.5 leo divisor = CLOCK_HZ/hz;
132 1.2 leo MFP->mf_tacr = 0; /* Stop timer */
133 1.2 leo MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
134 1.2 leo MFP->mf_tadr = divisor; /* Set divisor */
135 1.1 leo
136 1.5 leo if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
137 1.13 christos printf (": illegal value %d for systemclock, reset to %d\n\t",
138 1.5 leo hz, 64);
139 1.5 leo hz = 64;
140 1.5 leo }
141 1.13 christos printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
142 1.1 leo
143 1.5 leo #ifdef STATCLOCK
144 1.5 leo if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
145 1.5 leo stathz = hz;
146 1.5 leo if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
147 1.5 leo profhz = hz << 1;
148 1.5 leo
149 1.5 leo MFP->mf_tcdcr &= 0x7; /* Stop timer */
150 1.5 leo MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
151 1.5 leo MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
152 1.5 leo
153 1.5 leo statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
154 1.5 leo profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
155 1.5 leo clk2min = statmin;
156 1.5 leo #endif /* STATCLOCK */
157 1.5 leo
158 1.1 leo /*
159 1.2 leo * Initialize Timer-B in the ST-MFP. This timer is used by the 'delay'
160 1.1 leo * function below. This time is setup to be continueously counting from
161 1.1 leo * 255 back to zero at a frequency of 614400Hz.
162 1.1 leo */
163 1.2 leo MFP->mf_tbcr = 0; /* Stop timer */
164 1.2 leo MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
165 1.2 leo MFP->mf_tbdr = 0;
166 1.2 leo MFP->mf_tbcr = T_Q004; /* Start timer */
167 1.1 leo
168 1.1 leo }
169 1.1 leo
170 1.1 leo void cpu_initclocks()
171 1.1 leo {
172 1.3 leo MFP->mf_tacr = T_Q200; /* Start timer */
173 1.2 leo MFP->mf_ipra &= ~IA_TIMA; /* Clear pending interrupts */
174 1.2 leo MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
175 1.2 leo MFP->mf_imra |= IA_TIMA; /* ..... */
176 1.5 leo
177 1.5 leo #ifdef STATCLOCK
178 1.5 leo MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
179 1.5 leo MFP->mf_iprb &= ~IB_TIMC; /* Clear pending interrupts */
180 1.5 leo MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
181 1.5 leo MFP->mf_imrb |= IB_TIMC; /* ..... */
182 1.5 leo #endif /* STATCLOCK */
183 1.1 leo }
184 1.1 leo
185 1.9 leo void
186 1.5 leo setstatclockrate(newhz)
187 1.5 leo int newhz;
188 1.1 leo {
189 1.5 leo #ifdef STATCLOCK
190 1.5 leo if (newhz == stathz)
191 1.5 leo clk2min = statmin;
192 1.5 leo else clk2min = profmin;
193 1.5 leo #endif /* STATCLOCK */
194 1.1 leo }
195 1.1 leo
196 1.5 leo #ifdef STATCLOCK
197 1.5 leo void
198 1.5 leo statintr(frame)
199 1.5 leo register struct clockframe *frame;
200 1.5 leo {
201 1.5 leo register int var, r;
202 1.5 leo
203 1.5 leo var = statvar - 1;
204 1.5 leo do {
205 1.5 leo r = random() & var;
206 1.5 leo } while(r == 0);
207 1.5 leo
208 1.5 leo /*
209 1.5 leo * Note that we are always lagging behind as the new divisor
210 1.5 leo * value will not be loaded until the next interrupt. This
211 1.5 leo * shouldn't disturb the median frequency (I think ;-) ) as
212 1.5 leo * only the value used when switching frequencies is used
213 1.5 leo * twice. This shouldn't happen very often.
214 1.5 leo */
215 1.5 leo MFP->mf_tcdr = clk2min + r;
216 1.5 leo
217 1.5 leo statclock(frame);
218 1.5 leo }
219 1.5 leo #endif /* STATCLOCK */
220 1.5 leo
221 1.1 leo /*
222 1.1 leo * Returns number of usec since last recorded clock "tick"
223 1.1 leo * (i.e. clock interrupt).
224 1.1 leo */
225 1.9 leo long
226 1.1 leo clkread()
227 1.1 leo {
228 1.3 leo u_int delta;
229 1.3 leo
230 1.3 leo delta = ((divisor - MFP->mf_tadr) * tick) / divisor;
231 1.1 leo /*
232 1.1 leo * Account for pending clock interrupts
233 1.1 leo */
234 1.2 leo if(MFP->mf_iera & IA_TIMA)
235 1.1 leo return(delta + tick);
236 1.1 leo return(delta);
237 1.1 leo }
238 1.1 leo
239 1.2 leo #define TIMB_FREQ 614400
240 1.2 leo #define TIMB_LIMIT 256
241 1.1 leo
242 1.1 leo /*
243 1.1 leo * Wait "n" microseconds.
244 1.2 leo * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
245 1.1 leo * Note: timer had better have been programmed before this is first used!
246 1.1 leo */
247 1.1 leo void delay(n)
248 1.1 leo int n;
249 1.1 leo {
250 1.1 leo int tick, otick;
251 1.1 leo
252 1.1 leo /*
253 1.1 leo * Read the counter first, so that the rest of the setup overhead is
254 1.1 leo * counted.
255 1.1 leo */
256 1.2 leo otick = MFP->mf_tbdr;
257 1.1 leo
258 1.1 leo /*
259 1.1 leo * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
260 1.1 leo * we can take advantage of the intermediate 64-bit quantity to prevent
261 1.1 leo * loss of significance.
262 1.1 leo */
263 1.1 leo n -= 5;
264 1.1 leo if(n < 0)
265 1.1 leo return;
266 1.1 leo {
267 1.1 leo u_int temp;
268 1.1 leo
269 1.1 leo __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
270 1.2 leo : "d" (TIMB_FREQ));
271 1.1 leo __asm __volatile ("divul %1,%2:%0" : "=d" (n)
272 1.1 leo : "d"(1000000),"d"(temp),"0"(n));
273 1.1 leo }
274 1.1 leo
275 1.1 leo while(n > 0) {
276 1.2 leo tick = MFP->mf_tbdr;
277 1.1 leo if(tick > otick)
278 1.2 leo n -= TIMB_LIMIT - (tick - otick);
279 1.1 leo else n -= otick - tick;
280 1.1 leo otick = tick;
281 1.1 leo }
282 1.1 leo }
283 1.1 leo
284 1.4 leo #ifdef GPROF
285 1.1 leo /*
286 1.1 leo * profclock() is expanded in line in lev6intr() unless profiling kernel.
287 1.1 leo * Assumes it is called with clock interrupts blocked.
288 1.1 leo */
289 1.1 leo profclock(pc, ps)
290 1.1 leo caddr_t pc;
291 1.1 leo int ps;
292 1.1 leo {
293 1.1 leo /*
294 1.1 leo * Came from user mode.
295 1.1 leo * If this process is being profiled record the tick.
296 1.1 leo */
297 1.1 leo if (USERMODE(ps)) {
298 1.1 leo if (p->p_stats.p_prof.pr_scale)
299 1.1 leo addupc(pc, &curproc->p_stats.p_prof, 1);
300 1.1 leo }
301 1.1 leo /*
302 1.1 leo * Came from kernel (supervisor) mode.
303 1.1 leo * If we are profiling the kernel, record the tick.
304 1.1 leo */
305 1.1 leo else if (profiling < 2) {
306 1.1 leo register int s = pc - s_lowpc;
307 1.1 leo
308 1.1 leo if (s < s_textsize)
309 1.1 leo kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
310 1.1 leo }
311 1.1 leo /*
312 1.1 leo * Kernel profiling was on but has been disabled.
313 1.1 leo * Mark as no longer profiling kernel and if all profiling done,
314 1.1 leo * disable the clock.
315 1.1 leo */
316 1.1 leo if (profiling && (profon & PRF_KERNEL)) {
317 1.1 leo profon &= ~PRF_KERNEL;
318 1.1 leo if (profon == PRF_NONE)
319 1.1 leo stopprofclock();
320 1.1 leo }
321 1.1 leo }
322 1.1 leo #endif
323 1.7 leo
324 1.7 leo /***********************************************************************
325 1.7 leo * Real Time Clock support *
326 1.7 leo ***********************************************************************/
327 1.7 leo
328 1.7 leo u_int mc146818_read(rtc, regno)
329 1.7 leo void *rtc;
330 1.7 leo u_int regno;
331 1.7 leo {
332 1.7 leo ((struct rtc *)rtc)->rtc_regno = regno;
333 1.7 leo return(((struct rtc *)rtc)->rtc_data & 0377);
334 1.7 leo }
335 1.7 leo
336 1.7 leo void mc146818_write(rtc, regno, value)
337 1.7 leo void *rtc;
338 1.7 leo u_int regno, value;
339 1.7 leo {
340 1.7 leo ((struct rtc *)rtc)->rtc_regno = regno;
341 1.7 leo ((struct rtc *)rtc)->rtc_data = value;
342 1.7 leo }
343 1.1 leo
344 1.1 leo /*
345 1.1 leo * Initialize the time of day register, based on the time base which is, e.g.
346 1.1 leo * from a filesystem.
347 1.1 leo */
348 1.9 leo void
349 1.1 leo inittodr(base)
350 1.1 leo time_t base;
351 1.1 leo {
352 1.1 leo u_long timbuf = base; /* assume no battery clock exists */
353 1.1 leo
354 1.1 leo timbuf = gettod();
355 1.1 leo
356 1.1 leo if(timbuf < base) {
357 1.13 christos printf("WARNING: bad date in battery clock\n");
358 1.1 leo timbuf = base;
359 1.1 leo }
360 1.1 leo
361 1.1 leo /* Battery clock does not store usec's, so forget about it. */
362 1.11 leo time.tv_sec = timbuf;
363 1.11 leo time.tv_usec = 0;
364 1.1 leo }
365 1.1 leo
366 1.9 leo void
367 1.1 leo resettodr()
368 1.1 leo {
369 1.1 leo if(settod(time.tv_sec) == 1)
370 1.1 leo return;
371 1.13 christos printf("Cannot set battery backed clock\n");
372 1.1 leo }
373 1.1 leo
374 1.1 leo static char dmsize[12] =
375 1.1 leo {
376 1.1 leo 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
377 1.1 leo };
378 1.1 leo
379 1.1 leo static char ldmsize[12] =
380 1.1 leo {
381 1.1 leo 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
382 1.1 leo };
383 1.1 leo
384 1.1 leo static u_long
385 1.1 leo gettod()
386 1.1 leo {
387 1.3 leo int i, sps;
388 1.3 leo u_long new_time = 0;
389 1.3 leo char *msize;
390 1.3 leo mc_todregs clkregs;
391 1.3 leo
392 1.3 leo sps = splhigh();
393 1.3 leo MC146818_GETTOD(RTC, &clkregs);
394 1.3 leo splx(sps);
395 1.1 leo
396 1.9 leo if(clkregs[MC_SEC] > 59)
397 1.8 leo return(0);
398 1.9 leo if(clkregs[MC_MIN] > 59)
399 1.8 leo return(0);
400 1.9 leo if(clkregs[MC_HOUR] > 23)
401 1.1 leo return(0);
402 1.3 leo if(range_test(clkregs[MC_DOM], 1, 31))
403 1.1 leo return(0);
404 1.3 leo if (range_test(clkregs[MC_MONTH], 1, 12))
405 1.1 leo return(0);
406 1.9 leo if(clkregs[MC_YEAR] > (2000 - GEMSTARTOFTIME))
407 1.1 leo return(0);
408 1.3 leo clkregs[MC_YEAR] += GEMSTARTOFTIME;
409 1.1 leo
410 1.3 leo for(i = BSDSTARTOFTIME; i < clkregs[MC_YEAR]; i++) {
411 1.1 leo if(is_leap(i))
412 1.1 leo new_time += 366;
413 1.1 leo else new_time += 365;
414 1.1 leo }
415 1.1 leo
416 1.3 leo msize = is_leap(clkregs[MC_YEAR]) ? ldmsize : dmsize;
417 1.3 leo for(i = 0; i < (clkregs[MC_MONTH] - 1); i++)
418 1.1 leo new_time += msize[i];
419 1.3 leo new_time += clkregs[MC_DOM] - 1;
420 1.3 leo new_time *= SECS_DAY;
421 1.3 leo new_time += (clkregs[MC_HOUR] * 3600) + (clkregs[MC_MIN] * 60);
422 1.3 leo return(new_time + clkregs[MC_SEC]);
423 1.1 leo }
424 1.1 leo
425 1.1 leo static int
426 1.1 leo settod(newtime)
427 1.1 leo u_long newtime;
428 1.1 leo {
429 1.1 leo register long days, rem, year;
430 1.1 leo register char *ml;
431 1.3 leo int sps, sec, min, hour, month;
432 1.3 leo mc_todregs clkregs;
433 1.1 leo
434 1.3 leo /* Number of days since Jan. 1 'BSDSTARTOFTIME' */
435 1.1 leo days = newtime / SECS_DAY;
436 1.1 leo rem = newtime % SECS_DAY;
437 1.1 leo
438 1.1 leo /*
439 1.1 leo * Calculate sec, min, hour
440 1.1 leo */
441 1.1 leo hour = rem / SECS_HOUR;
442 1.1 leo rem %= SECS_HOUR;
443 1.1 leo min = rem / 60;
444 1.1 leo sec = rem % 60;
445 1.1 leo
446 1.1 leo /*
447 1.1 leo * Figure out the year. Day in year is left in 'days'.
448 1.1 leo */
449 1.3 leo year = BSDSTARTOFTIME;
450 1.1 leo while(days >= (rem = is_leap(year) ? 366 : 365)) {
451 1.3 leo ++year;
452 1.3 leo days -= rem;
453 1.1 leo }
454 1.1 leo
455 1.1 leo /*
456 1.1 leo * Determine the month
457 1.1 leo */
458 1.1 leo ml = is_leap(year) ? ldmsize : dmsize;
459 1.1 leo for(month = 0; days >= ml[month]; ++month)
460 1.1 leo days -= ml[month];
461 1.1 leo
462 1.1 leo /*
463 1.1 leo * Now that everything is calculated, program the RTC
464 1.1 leo */
465 1.3 leo mc146818_write(RTC, MC_REGA, MC_BASE_32_KHz);
466 1.3 leo mc146818_write(RTC, MC_REGB, MC_REGB_24HR | MC_REGB_BINARY);
467 1.3 leo sps = splhigh();
468 1.3 leo MC146818_GETTOD(RTC, &clkregs);
469 1.3 leo clkregs[MC_SEC] = sec;
470 1.3 leo clkregs[MC_MIN] = min;
471 1.3 leo clkregs[MC_HOUR] = hour;
472 1.3 leo clkregs[MC_DOM] = days+1;
473 1.3 leo clkregs[MC_MONTH] = month+1;
474 1.3 leo clkregs[MC_YEAR] = year - GEMSTARTOFTIME;
475 1.3 leo MC146818_PUTTOD(RTC, &clkregs);
476 1.3 leo splx(sps);
477 1.1 leo
478 1.1 leo return(1);
479 1.1 leo }
480