Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.2
      1  1.2  leo /*	$NetBSD: clock.c,v 1.2 1995/05/05 16:31:46 leo Exp $	*/
      2  1.1  leo 
      3  1.1  leo /*
      4  1.1  leo  * Copyright (c) 1988 University of Utah.
      5  1.1  leo  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  1.1  leo  * All rights reserved.
      7  1.1  leo  *
      8  1.1  leo  * This code is derived from software contributed to Berkeley by
      9  1.1  leo  * the Systems Programming Group of the University of Utah Computer
     10  1.1  leo  * Science Department.
     11  1.1  leo  *
     12  1.1  leo  * Redistribution and use in source and binary forms, with or without
     13  1.1  leo  * modification, are permitted provided that the following conditions
     14  1.1  leo  * are met:
     15  1.1  leo  * 1. Redistributions of source code must retain the above copyright
     16  1.1  leo  *    notice, this list of conditions and the following disclaimer.
     17  1.1  leo  * 2. Redistributions in binary form must reproduce the above copyright
     18  1.1  leo  *    notice, this list of conditions and the following disclaimer in the
     19  1.1  leo  *    documentation and/or other materials provided with the distribution.
     20  1.1  leo  * 3. All advertising materials mentioning features or use of this software
     21  1.1  leo  *    must display the following acknowledgement:
     22  1.1  leo  *	This product includes software developed by the University of
     23  1.1  leo  *	California, Berkeley and its contributors.
     24  1.1  leo  * 4. Neither the name of the University nor the names of its contributors
     25  1.1  leo  *    may be used to endorse or promote products derived from this software
     26  1.1  leo  *    without specific prior written permission.
     27  1.1  leo  *
     28  1.1  leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  1.1  leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  1.1  leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  1.1  leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  1.1  leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  1.1  leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  1.1  leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  1.1  leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  1.1  leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  1.1  leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  1.1  leo  * SUCH DAMAGE.
     39  1.1  leo  *
     40  1.1  leo  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  1.1  leo  *
     42  1.1  leo  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  1.1  leo  */
     44  1.1  leo 
     45  1.1  leo #include <sys/param.h>
     46  1.1  leo #include <sys/kernel.h>
     47  1.1  leo #include <sys/device.h>
     48  1.1  leo #include <machine/psl.h>
     49  1.1  leo #include <machine/cpu.h>
     50  1.1  leo #include <machine/iomap.h>
     51  1.1  leo #include <machine/mfp.h>
     52  1.1  leo #include <atari/dev/clockreg.h>
     53  1.1  leo 
     54  1.1  leo #if defined(PROF) && defined(PROFTIMER)
     55  1.1  leo #include <sys/PROF.h>
     56  1.1  leo #endif
     57  1.1  leo 
     58  1.1  leo 
     59  1.1  leo /*
     60  1.1  leo  * Machine-dependent clock routines.
     61  1.1  leo  *
     62  1.1  leo  * Startrtclock restarts the real-time clock, which provides
     63  1.1  leo  * hardclock interrupts to kern_clock.c.
     64  1.1  leo  *
     65  1.1  leo  * Inittodr initializes the time of day hardware which provides
     66  1.1  leo  * date functions.
     67  1.1  leo  *
     68  1.1  leo  * Resettodr restores the time of day hardware after a time change.
     69  1.1  leo  *
     70  1.1  leo  * A note on the real-time clock:
     71  1.1  leo  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
     72  1.1  leo  * This is because the counter decrements to zero after N+1 enabled clock
     73  1.1  leo  * periods where N is the value loaded into the counter.
     74  1.1  leo  */
     75  1.1  leo 
     76  1.1  leo int	clockmatch __P((struct device *, struct cfdata *, void *));
     77  1.1  leo void	clockattach __P((struct device *, struct device *, void *));
     78  1.1  leo 
     79  1.1  leo struct cfdriver clockcd = {
     80  1.1  leo 	NULL, "clock", (cfmatch_t)clockmatch, clockattach,
     81  1.1  leo 	DV_DULL, sizeof(struct device), NULL, 0
     82  1.1  leo };
     83  1.1  leo 
     84  1.1  leo static u_long	gettod __P((void));
     85  1.1  leo static int	settod __P((u_long));
     86  1.1  leo 
     87  1.1  leo static int	divisor;
     88  1.1  leo 
     89  1.1  leo int
     90  1.1  leo clockmatch(pdp, cfp, auxp)
     91  1.1  leo struct device *pdp;
     92  1.1  leo struct cfdata *cfp;
     93  1.1  leo void *auxp;
     94  1.1  leo {
     95  1.1  leo 	if(!strcmp("clock", auxp))
     96  1.1  leo 		return(1);
     97  1.1  leo 	return(0);
     98  1.1  leo }
     99  1.1  leo 
    100  1.1  leo /*
    101  1.1  leo  * Start the real-time clock.
    102  1.1  leo  */
    103  1.1  leo void clockattach(pdp, dp, auxp)
    104  1.1  leo struct device	*pdp, *dp;
    105  1.1  leo void			*auxp;
    106  1.1  leo {
    107  1.1  leo 	/*
    108  1.2  leo 	 * Initialize Timer-A in the ST-MFP. An exact reduce to HZ is not
    109  1.1  leo 	 * possible by hardware. We use a divisor of 64 and reduce by software
    110  1.1  leo 	 * with a factor of 4. The MFP clock runs at 2457600Hz. Therefore the
    111  1.1  leo 	 * timer runs at an effective rate of: 2457600/(64*4) = 9600Hz. The
    112  1.1  leo 	 * following expression works for all 'normal' values of hz.
    113  1.1  leo 	 */
    114  1.2  leo 	divisor       = 9600/hz;
    115  1.2  leo 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    116  1.2  leo 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    117  1.2  leo 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    118  1.1  leo 
    119  1.1  leo 	printf(": system hz %d timer-A divisor %d\n", hz, divisor);
    120  1.1  leo 
    121  1.1  leo 	/*
    122  1.2  leo 	 * Initialize Timer-B in the ST-MFP. This timer is used by the 'delay'
    123  1.1  leo 	 * function below. This time is setup to be continueously counting from
    124  1.1  leo 	 * 255 back to zero at a frequency of 614400Hz.
    125  1.1  leo 	 */
    126  1.2  leo 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
    127  1.2  leo 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    128  1.2  leo 	MFP->mf_tbdr  = 0;
    129  1.2  leo 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    130  1.1  leo 
    131  1.1  leo }
    132  1.1  leo 
    133  1.1  leo void cpu_initclocks()
    134  1.1  leo {
    135  1.2  leo 	MFP->mf_tacr  = T_Q064;		/* Start timer			*/
    136  1.2  leo 	MFP->mf_ipra &= ~IA_TIMA;	/* Clear pending interrupts	*/
    137  1.2  leo 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    138  1.2  leo 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    139  1.1  leo }
    140  1.1  leo 
    141  1.1  leo setstatclockrate(hz)
    142  1.1  leo 	int hz;
    143  1.1  leo {
    144  1.1  leo }
    145  1.1  leo 
    146  1.1  leo /*
    147  1.1  leo  * Returns number of usec since last recorded clock "tick"
    148  1.1  leo  * (i.e. clock interrupt).
    149  1.1  leo  */
    150  1.1  leo clkread()
    151  1.1  leo {
    152  1.1  leo 	extern	short	clk_div;
    153  1.1  leo 			u_int	delta, elapsed;
    154  1.1  leo 
    155  1.2  leo 	elapsed = (divisor - MFP->mf_tadr) + ((4 - clk_div) * divisor);
    156  1.1  leo 	delta   = (elapsed * tick) / (divisor << 2);
    157  1.1  leo 
    158  1.1  leo 	/*
    159  1.1  leo 	 * Account for pending clock interrupts
    160  1.1  leo 	 */
    161  1.2  leo 	if(MFP->mf_iera & IA_TIMA)
    162  1.1  leo 		return(delta + tick);
    163  1.1  leo 	return(delta);
    164  1.1  leo }
    165  1.1  leo 
    166  1.2  leo #define TIMB_FREQ	614400
    167  1.2  leo #define TIMB_LIMIT	256
    168  1.1  leo 
    169  1.1  leo /*
    170  1.1  leo  * Wait "n" microseconds.
    171  1.2  leo  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    172  1.1  leo  * Note: timer had better have been programmed before this is first used!
    173  1.1  leo  */
    174  1.1  leo void delay(n)
    175  1.1  leo int	n;
    176  1.1  leo {
    177  1.1  leo 	int	tick, otick;
    178  1.1  leo 
    179  1.1  leo 	/*
    180  1.1  leo 	 * Read the counter first, so that the rest of the setup overhead is
    181  1.1  leo 	 * counted.
    182  1.1  leo 	 */
    183  1.2  leo 	otick = MFP->mf_tbdr;
    184  1.1  leo 
    185  1.1  leo 	/*
    186  1.1  leo 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    187  1.1  leo 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    188  1.1  leo 	 * loss of significance.
    189  1.1  leo 	 */
    190  1.1  leo 	n -= 5;
    191  1.1  leo 	if(n < 0)
    192  1.1  leo 		return;
    193  1.1  leo 	{
    194  1.1  leo 	    u_int	temp;
    195  1.1  leo 
    196  1.1  leo 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    197  1.2  leo 					       : "d" (TIMB_FREQ));
    198  1.1  leo 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    199  1.1  leo 					       : "d"(1000000),"d"(temp),"0"(n));
    200  1.1  leo 	}
    201  1.1  leo 
    202  1.1  leo 	while(n > 0) {
    203  1.2  leo 		tick = MFP->mf_tbdr;
    204  1.1  leo 		if(tick > otick)
    205  1.2  leo 			n -= TIMB_LIMIT - (tick - otick);
    206  1.1  leo 		else n -= otick - tick;
    207  1.1  leo 		otick = tick;
    208  1.1  leo 	}
    209  1.1  leo }
    210  1.1  leo 
    211  1.1  leo #ifdef PROFTIMER
    212  1.1  leo /*
    213  1.1  leo  * This code allows the amiga kernel to use one of the extra timers on
    214  1.1  leo  * the clock chip for profiling, instead of the regular system timer.
    215  1.1  leo  * The advantage of this is that the profiling timer can be turned up to
    216  1.1  leo  * a higher interrupt rate, giving finer resolution timing. The profclock
    217  1.1  leo  * routine is called from the lev6intr in locore, and is a specialized
    218  1.1  leo  * routine that calls addupc. The overhead then is far less than if
    219  1.1  leo  * hardclock/softclock was called. Further, the context switch code in
    220  1.1  leo  * locore has been changed to turn the profile clock on/off when switching
    221  1.1  leo  * into/out of a process that is profiling (startprofclock/stopprofclock).
    222  1.1  leo  * This reduces the impact of the profiling clock on other users, and might
    223  1.1  leo  * possibly increase the accuracy of the profiling.
    224  1.1  leo  */
    225  1.1  leo int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
    226  1.1  leo int  profscale = 0;		/* Scale factor from sys clock to prof clock */
    227  1.1  leo char profon    = 0;		/* Is profiling clock on? */
    228  1.1  leo 
    229  1.1  leo /* profon values - do not change, locore.s assumes these values */
    230  1.1  leo #define PRF_NONE	0x00
    231  1.1  leo #define	PRF_USER	0x01
    232  1.1  leo #define	PRF_KERNEL	0x80
    233  1.1  leo 
    234  1.1  leo initprofclock()
    235  1.1  leo {
    236  1.1  leo #if NCLOCK > 0
    237  1.1  leo 	struct proc *p = curproc;		/* XXX */
    238  1.1  leo 
    239  1.1  leo 	/*
    240  1.1  leo 	 * If the high-res timer is running, force profiling off.
    241  1.1  leo 	 * Unfortunately, this gets reflected back to the user not as
    242  1.1  leo 	 * an error but as a lack of results.
    243  1.1  leo 	 */
    244  1.1  leo 	if (clockon) {
    245  1.1  leo 		p->p_stats->p_prof.pr_scale = 0;
    246  1.1  leo 		return;
    247  1.1  leo 	}
    248  1.1  leo 	/*
    249  1.1  leo 	 * Keep track of the number of user processes that are profiling
    250  1.1  leo 	 * by checking the scale value.
    251  1.1  leo 	 *
    252  1.1  leo 	 * XXX: this all assumes that the profiling code is well behaved;
    253  1.1  leo 	 * i.e. profil() is called once per process with pcscale non-zero
    254  1.1  leo 	 * to turn it on, and once with pcscale zero to turn it off.
    255  1.1  leo 	 * Also assumes you don't do any forks or execs.  Oh well, there
    256  1.1  leo 	 * is always adb...
    257  1.1  leo 	 */
    258  1.1  leo 	if (p->p_stats->p_prof.pr_scale)
    259  1.1  leo 		profprocs++;
    260  1.1  leo 	else
    261  1.1  leo 		profprocs--;
    262  1.1  leo #endif
    263  1.1  leo 	/*
    264  1.1  leo 	 * The profile interrupt interval must be an even divisor
    265  1.1  leo 	 * of the CLK_INTERVAL so that scaling from a system clock
    266  1.1  leo 	 * tick to a profile clock tick is possible using integer math.
    267  1.1  leo 	 */
    268  1.1  leo 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
    269  1.1  leo 		profint = CLK_INTERVAL;
    270  1.1  leo 	profscale = CLK_INTERVAL / profint;
    271  1.1  leo }
    272  1.1  leo 
    273  1.1  leo startprofclock()
    274  1.1  leo {
    275  1.1  leo   unsigned short interval;
    276  1.1  leo 
    277  1.1  leo   /* stop timer B */
    278  1.1  leo   ciab.crb = ciab.crb & 0xc0;
    279  1.1  leo 
    280  1.1  leo   /* load interval into registers.
    281  1.1  leo      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
    282  1.1  leo 
    283  1.1  leo   interval = profint - 1;
    284  1.1  leo 
    285  1.1  leo   /* order of setting is important ! */
    286  1.1  leo   ciab.tblo = interval & 0xff;
    287  1.1  leo   ciab.tbhi = interval >> 8;
    288  1.1  leo 
    289  1.1  leo   /* enable interrupts for timer B */
    290  1.1  leo   ciab.icr = (1<<7) | (1<<1);
    291  1.1  leo 
    292  1.1  leo   /* start timer B in continuous shot mode */
    293  1.1  leo   ciab.crb = (ciab.crb & 0xc0) | 1;
    294  1.1  leo }
    295  1.1  leo 
    296  1.1  leo stopprofclock()
    297  1.1  leo {
    298  1.1  leo   /* stop timer B */
    299  1.1  leo   ciab.crb = ciab.crb & 0xc0;
    300  1.1  leo }
    301  1.1  leo 
    302  1.1  leo #ifdef PROF
    303  1.1  leo /*
    304  1.1  leo  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    305  1.1  leo  * Assumes it is called with clock interrupts blocked.
    306  1.1  leo  */
    307  1.1  leo profclock(pc, ps)
    308  1.1  leo 	caddr_t pc;
    309  1.1  leo 	int ps;
    310  1.1  leo {
    311  1.1  leo 	/*
    312  1.1  leo 	 * Came from user mode.
    313  1.1  leo 	 * If this process is being profiled record the tick.
    314  1.1  leo 	 */
    315  1.1  leo 	if (USERMODE(ps)) {
    316  1.1  leo 		if (p->p_stats.p_prof.pr_scale)
    317  1.1  leo 			addupc(pc, &curproc->p_stats.p_prof, 1);
    318  1.1  leo 	}
    319  1.1  leo 	/*
    320  1.1  leo 	 * Came from kernel (supervisor) mode.
    321  1.1  leo 	 * If we are profiling the kernel, record the tick.
    322  1.1  leo 	 */
    323  1.1  leo 	else if (profiling < 2) {
    324  1.1  leo 		register int s = pc - s_lowpc;
    325  1.1  leo 
    326  1.1  leo 		if (s < s_textsize)
    327  1.1  leo 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    328  1.1  leo 	}
    329  1.1  leo 	/*
    330  1.1  leo 	 * Kernel profiling was on but has been disabled.
    331  1.1  leo 	 * Mark as no longer profiling kernel and if all profiling done,
    332  1.1  leo 	 * disable the clock.
    333  1.1  leo 	 */
    334  1.1  leo 	if (profiling && (profon & PRF_KERNEL)) {
    335  1.1  leo 		profon &= ~PRF_KERNEL;
    336  1.1  leo 		if (profon == PRF_NONE)
    337  1.1  leo 			stopprofclock();
    338  1.1  leo 	}
    339  1.1  leo }
    340  1.1  leo #endif
    341  1.1  leo #endif
    342  1.1  leo 
    343  1.1  leo /*
    344  1.1  leo  * Initialize the time of day register, based on the time base which is, e.g.
    345  1.1  leo  * from a filesystem.
    346  1.1  leo  */
    347  1.1  leo inittodr(base)
    348  1.1  leo time_t base;
    349  1.1  leo {
    350  1.1  leo 	u_long timbuf = base;	/* assume no battery clock exists */
    351  1.1  leo 
    352  1.1  leo 	timbuf = gettod();
    353  1.1  leo 
    354  1.1  leo 	if(timbuf < base) {
    355  1.1  leo 		printf("WARNING: bad date in battery clock\n");
    356  1.1  leo 		timbuf = base;
    357  1.1  leo 	}
    358  1.1  leo 
    359  1.1  leo 	/* Battery clock does not store usec's, so forget about it. */
    360  1.1  leo 	time.tv_sec = timbuf;
    361  1.1  leo }
    362  1.1  leo 
    363  1.1  leo resettodr()
    364  1.1  leo {
    365  1.1  leo 	if(settod(time.tv_sec) == 1)
    366  1.1  leo 		return;
    367  1.1  leo 	printf("Cannot set battery backed clock\n");
    368  1.1  leo }
    369  1.1  leo 
    370  1.1  leo static	char	dmsize[12] =
    371  1.1  leo {
    372  1.1  leo 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    373  1.1  leo };
    374  1.1  leo 
    375  1.1  leo static	char	ldmsize[12] =
    376  1.1  leo {
    377  1.1  leo 	31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    378  1.1  leo };
    379  1.1  leo 
    380  1.1  leo static __inline__ int rtc_getclkreg(regno)
    381  1.1  leo int	regno;
    382  1.1  leo {
    383  1.1  leo 	RTC->rtc_regno = RTC_REGA;
    384  1.1  leo 	RTC->rtc_regno = regno;
    385  1.1  leo 	return(RTC->rtc_data & 0377);
    386  1.1  leo }
    387  1.1  leo 
    388  1.1  leo static __inline__ void rtc_setclkreg(regno, value)
    389  1.1  leo int	regno, value;
    390  1.1  leo {
    391  1.1  leo 	RTC->rtc_regno = regno;
    392  1.1  leo 	RTC->rtc_data  = value;
    393  1.1  leo }
    394  1.1  leo 
    395  1.1  leo static u_long
    396  1.1  leo gettod()
    397  1.1  leo {
    398  1.2  leo 	int	i, year, mon, day, hour, min, sec;
    399  1.1  leo 	u_long	new_time = 0;
    400  1.1  leo 	char	*msize;
    401  1.1  leo 
    402  1.1  leo 	/*
    403  1.1  leo 	 * Hold clock
    404  1.1  leo 	 */
    405  1.1  leo 	rtc_setclkreg(RTC_REGB, rtc_getclkreg(RTC_REGB) | RTC_B_SET);
    406  1.1  leo 
    407  1.1  leo 	/*
    408  1.1  leo 	 * Read clock
    409  1.1  leo 	 */
    410  1.1  leo 	sec  = rtc_getclkreg(RTC_SEC);
    411  1.1  leo 	min  = rtc_getclkreg(RTC_MIN);
    412  1.1  leo 	hour = rtc_getclkreg(RTC_HOUR);
    413  1.1  leo 	day  = rtc_getclkreg(RTC_DAY) - 1;
    414  1.1  leo 	mon  = rtc_getclkreg(RTC_MONTH) - 1;
    415  1.1  leo 	year = rtc_getclkreg(RTC_YEAR) + STARTOFTIME;
    416  1.1  leo 
    417  1.1  leo 	/*
    418  1.1  leo 	 * Let it run again..
    419  1.1  leo 	 */
    420  1.1  leo 	rtc_setclkreg(RTC_REGB, rtc_getclkreg(RTC_REGB) & ~RTC_B_SET);
    421  1.1  leo 
    422  1.1  leo 	if(range_test(hour, 0, 23))
    423  1.1  leo 		return(0);
    424  1.1  leo 	if(range_test(day, 0, 30))
    425  1.1  leo 		return(0);
    426  1.1  leo 	if (range_test(mon, 0, 11))
    427  1.1  leo 		return(0);
    428  1.1  leo 	if(range_test(year, STARTOFTIME, 2000))
    429  1.1  leo 		return(0);
    430  1.1  leo 
    431  1.1  leo 	for(i = STARTOFTIME; i < year; i++) {
    432  1.1  leo 		if(is_leap(i))
    433  1.1  leo 			new_time += 366;
    434  1.1  leo 		else new_time += 365;
    435  1.1  leo 	}
    436  1.1  leo 
    437  1.1  leo 	msize = is_leap(year) ? ldmsize : dmsize;
    438  1.1  leo 	for(i = 0; i < mon; i++)
    439  1.1  leo 		new_time += msize[i];
    440  1.1  leo 	new_time += day;
    441  1.1  leo 	return((new_time * SECS_DAY) + (hour * 3600) + (min * 60) + sec);
    442  1.1  leo }
    443  1.1  leo 
    444  1.1  leo static int
    445  1.1  leo settod(newtime)
    446  1.1  leo u_long	newtime;
    447  1.1  leo {
    448  1.1  leo 	register long	days, rem, year;
    449  1.1  leo 	register char	*ml;
    450  1.1  leo 			 int	sec, min, hour, month;
    451  1.1  leo 
    452  1.1  leo 	/* Number of days since Jan. 1 1970	*/
    453  1.1  leo 	days = newtime / SECS_DAY;
    454  1.1  leo 	rem  = newtime % SECS_DAY;
    455  1.1  leo 
    456  1.1  leo 	/*
    457  1.1  leo 	 * Calculate sec, min, hour
    458  1.1  leo 	 */
    459  1.1  leo 	hour = rem / SECS_HOUR;
    460  1.1  leo 	rem %= SECS_HOUR;
    461  1.1  leo 	min  = rem / 60;
    462  1.1  leo 	sec  = rem % 60;
    463  1.1  leo 
    464  1.1  leo 	/*
    465  1.1  leo 	 * Figure out the year. Day in year is left in 'days'.
    466  1.1  leo 	 */
    467  1.1  leo 	year = STARTOFTIME;
    468  1.1  leo 	while(days >= (rem = is_leap(year) ? 366 : 365)) {
    469  1.1  leo 	  ++year;
    470  1.1  leo 	  days -= rem;
    471  1.1  leo 	}
    472  1.1  leo 	while(days < 0) {
    473  1.1  leo 	  --year;
    474  1.1  leo 	  days += is_leap(year) ? 366 : 365;
    475  1.1  leo 	}
    476  1.1  leo 
    477  1.1  leo 	/*
    478  1.1  leo 	 * Determine the month
    479  1.1  leo 	 */
    480  1.1  leo 	ml = is_leap(year) ? ldmsize : dmsize;
    481  1.1  leo 	for(month = 0; days >= ml[month]; ++month)
    482  1.1  leo 		days -= ml[month];
    483  1.1  leo 
    484  1.1  leo 	/*
    485  1.1  leo 	 * Now that everything is calculated, program the RTC
    486  1.1  leo 	 */
    487  1.1  leo 	rtc_setclkreg(RTC_REGB, RTC_B_SET);
    488  1.1  leo 	rtc_setclkreg(RTC_REGA, RTC_A_DV1|RTC_A_RS2|RTC_A_RS3);
    489  1.1  leo 	rtc_setclkreg(RTC_REGB, RTC_B_SET|RTC_B_SQWE|RTC_B_DM|RTC_B_24_12);
    490  1.1  leo 	rtc_setclkreg(RTC_SEC, sec);
    491  1.1  leo 	rtc_setclkreg(RTC_MIN, min);
    492  1.1  leo 	rtc_setclkreg(RTC_HOUR, hour);
    493  1.1  leo 	rtc_setclkreg(RTC_DAY, days+1);
    494  1.1  leo 	rtc_setclkreg(RTC_MONTH, month+1);
    495  1.1  leo 	rtc_setclkreg(RTC_YEAR, year-1970);
    496  1.1  leo 	rtc_setclkreg(RTC_REGB, RTC_B_SQWE|RTC_B_DM|RTC_B_24_12);
    497  1.1  leo 
    498  1.1  leo 	return(1);
    499  1.1  leo }
    500