clock.c revision 1.2 1 1.2 leo /* $NetBSD: clock.c,v 1.2 1995/05/05 16:31:46 leo Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.1 leo * Copyright (c) 1988 University of Utah.
5 1.1 leo * Copyright (c) 1982, 1990 The Regents of the University of California.
6 1.1 leo * All rights reserved.
7 1.1 leo *
8 1.1 leo * This code is derived from software contributed to Berkeley by
9 1.1 leo * the Systems Programming Group of the University of Utah Computer
10 1.1 leo * Science Department.
11 1.1 leo *
12 1.1 leo * Redistribution and use in source and binary forms, with or without
13 1.1 leo * modification, are permitted provided that the following conditions
14 1.1 leo * are met:
15 1.1 leo * 1. Redistributions of source code must retain the above copyright
16 1.1 leo * notice, this list of conditions and the following disclaimer.
17 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 leo * notice, this list of conditions and the following disclaimer in the
19 1.1 leo * documentation and/or other materials provided with the distribution.
20 1.1 leo * 3. All advertising materials mentioning features or use of this software
21 1.1 leo * must display the following acknowledgement:
22 1.1 leo * This product includes software developed by the University of
23 1.1 leo * California, Berkeley and its contributors.
24 1.1 leo * 4. Neither the name of the University nor the names of its contributors
25 1.1 leo * may be used to endorse or promote products derived from this software
26 1.1 leo * without specific prior written permission.
27 1.1 leo *
28 1.1 leo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 leo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 leo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 leo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 leo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 leo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 leo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 leo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 leo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 leo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 leo * SUCH DAMAGE.
39 1.1 leo *
40 1.1 leo * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 1.1 leo *
42 1.1 leo * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 1.1 leo */
44 1.1 leo
45 1.1 leo #include <sys/param.h>
46 1.1 leo #include <sys/kernel.h>
47 1.1 leo #include <sys/device.h>
48 1.1 leo #include <machine/psl.h>
49 1.1 leo #include <machine/cpu.h>
50 1.1 leo #include <machine/iomap.h>
51 1.1 leo #include <machine/mfp.h>
52 1.1 leo #include <atari/dev/clockreg.h>
53 1.1 leo
54 1.1 leo #if defined(PROF) && defined(PROFTIMER)
55 1.1 leo #include <sys/PROF.h>
56 1.1 leo #endif
57 1.1 leo
58 1.1 leo
59 1.1 leo /*
60 1.1 leo * Machine-dependent clock routines.
61 1.1 leo *
62 1.1 leo * Startrtclock restarts the real-time clock, which provides
63 1.1 leo * hardclock interrupts to kern_clock.c.
64 1.1 leo *
65 1.1 leo * Inittodr initializes the time of day hardware which provides
66 1.1 leo * date functions.
67 1.1 leo *
68 1.1 leo * Resettodr restores the time of day hardware after a time change.
69 1.1 leo *
70 1.1 leo * A note on the real-time clock:
71 1.1 leo * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
72 1.1 leo * This is because the counter decrements to zero after N+1 enabled clock
73 1.1 leo * periods where N is the value loaded into the counter.
74 1.1 leo */
75 1.1 leo
76 1.1 leo int clockmatch __P((struct device *, struct cfdata *, void *));
77 1.1 leo void clockattach __P((struct device *, struct device *, void *));
78 1.1 leo
79 1.1 leo struct cfdriver clockcd = {
80 1.1 leo NULL, "clock", (cfmatch_t)clockmatch, clockattach,
81 1.1 leo DV_DULL, sizeof(struct device), NULL, 0
82 1.1 leo };
83 1.1 leo
84 1.1 leo static u_long gettod __P((void));
85 1.1 leo static int settod __P((u_long));
86 1.1 leo
87 1.1 leo static int divisor;
88 1.1 leo
89 1.1 leo int
90 1.1 leo clockmatch(pdp, cfp, auxp)
91 1.1 leo struct device *pdp;
92 1.1 leo struct cfdata *cfp;
93 1.1 leo void *auxp;
94 1.1 leo {
95 1.1 leo if(!strcmp("clock", auxp))
96 1.1 leo return(1);
97 1.1 leo return(0);
98 1.1 leo }
99 1.1 leo
100 1.1 leo /*
101 1.1 leo * Start the real-time clock.
102 1.1 leo */
103 1.1 leo void clockattach(pdp, dp, auxp)
104 1.1 leo struct device *pdp, *dp;
105 1.1 leo void *auxp;
106 1.1 leo {
107 1.1 leo /*
108 1.2 leo * Initialize Timer-A in the ST-MFP. An exact reduce to HZ is not
109 1.1 leo * possible by hardware. We use a divisor of 64 and reduce by software
110 1.1 leo * with a factor of 4. The MFP clock runs at 2457600Hz. Therefore the
111 1.1 leo * timer runs at an effective rate of: 2457600/(64*4) = 9600Hz. The
112 1.1 leo * following expression works for all 'normal' values of hz.
113 1.1 leo */
114 1.2 leo divisor = 9600/hz;
115 1.2 leo MFP->mf_tacr = 0; /* Stop timer */
116 1.2 leo MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
117 1.2 leo MFP->mf_tadr = divisor; /* Set divisor */
118 1.1 leo
119 1.1 leo printf(": system hz %d timer-A divisor %d\n", hz, divisor);
120 1.1 leo
121 1.1 leo /*
122 1.2 leo * Initialize Timer-B in the ST-MFP. This timer is used by the 'delay'
123 1.1 leo * function below. This time is setup to be continueously counting from
124 1.1 leo * 255 back to zero at a frequency of 614400Hz.
125 1.1 leo */
126 1.2 leo MFP->mf_tbcr = 0; /* Stop timer */
127 1.2 leo MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
128 1.2 leo MFP->mf_tbdr = 0;
129 1.2 leo MFP->mf_tbcr = T_Q004; /* Start timer */
130 1.1 leo
131 1.1 leo }
132 1.1 leo
133 1.1 leo void cpu_initclocks()
134 1.1 leo {
135 1.2 leo MFP->mf_tacr = T_Q064; /* Start timer */
136 1.2 leo MFP->mf_ipra &= ~IA_TIMA; /* Clear pending interrupts */
137 1.2 leo MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
138 1.2 leo MFP->mf_imra |= IA_TIMA; /* ..... */
139 1.1 leo }
140 1.1 leo
141 1.1 leo setstatclockrate(hz)
142 1.1 leo int hz;
143 1.1 leo {
144 1.1 leo }
145 1.1 leo
146 1.1 leo /*
147 1.1 leo * Returns number of usec since last recorded clock "tick"
148 1.1 leo * (i.e. clock interrupt).
149 1.1 leo */
150 1.1 leo clkread()
151 1.1 leo {
152 1.1 leo extern short clk_div;
153 1.1 leo u_int delta, elapsed;
154 1.1 leo
155 1.2 leo elapsed = (divisor - MFP->mf_tadr) + ((4 - clk_div) * divisor);
156 1.1 leo delta = (elapsed * tick) / (divisor << 2);
157 1.1 leo
158 1.1 leo /*
159 1.1 leo * Account for pending clock interrupts
160 1.1 leo */
161 1.2 leo if(MFP->mf_iera & IA_TIMA)
162 1.1 leo return(delta + tick);
163 1.1 leo return(delta);
164 1.1 leo }
165 1.1 leo
166 1.2 leo #define TIMB_FREQ 614400
167 1.2 leo #define TIMB_LIMIT 256
168 1.1 leo
169 1.1 leo /*
170 1.1 leo * Wait "n" microseconds.
171 1.2 leo * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
172 1.1 leo * Note: timer had better have been programmed before this is first used!
173 1.1 leo */
174 1.1 leo void delay(n)
175 1.1 leo int n;
176 1.1 leo {
177 1.1 leo int tick, otick;
178 1.1 leo
179 1.1 leo /*
180 1.1 leo * Read the counter first, so that the rest of the setup overhead is
181 1.1 leo * counted.
182 1.1 leo */
183 1.2 leo otick = MFP->mf_tbdr;
184 1.1 leo
185 1.1 leo /*
186 1.1 leo * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
187 1.1 leo * we can take advantage of the intermediate 64-bit quantity to prevent
188 1.1 leo * loss of significance.
189 1.1 leo */
190 1.1 leo n -= 5;
191 1.1 leo if(n < 0)
192 1.1 leo return;
193 1.1 leo {
194 1.1 leo u_int temp;
195 1.1 leo
196 1.1 leo __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
197 1.2 leo : "d" (TIMB_FREQ));
198 1.1 leo __asm __volatile ("divul %1,%2:%0" : "=d" (n)
199 1.1 leo : "d"(1000000),"d"(temp),"0"(n));
200 1.1 leo }
201 1.1 leo
202 1.1 leo while(n > 0) {
203 1.2 leo tick = MFP->mf_tbdr;
204 1.1 leo if(tick > otick)
205 1.2 leo n -= TIMB_LIMIT - (tick - otick);
206 1.1 leo else n -= otick - tick;
207 1.1 leo otick = tick;
208 1.1 leo }
209 1.1 leo }
210 1.1 leo
211 1.1 leo #ifdef PROFTIMER
212 1.1 leo /*
213 1.1 leo * This code allows the amiga kernel to use one of the extra timers on
214 1.1 leo * the clock chip for profiling, instead of the regular system timer.
215 1.1 leo * The advantage of this is that the profiling timer can be turned up to
216 1.1 leo * a higher interrupt rate, giving finer resolution timing. The profclock
217 1.1 leo * routine is called from the lev6intr in locore, and is a specialized
218 1.1 leo * routine that calls addupc. The overhead then is far less than if
219 1.1 leo * hardclock/softclock was called. Further, the context switch code in
220 1.1 leo * locore has been changed to turn the profile clock on/off when switching
221 1.1 leo * into/out of a process that is profiling (startprofclock/stopprofclock).
222 1.1 leo * This reduces the impact of the profiling clock on other users, and might
223 1.1 leo * possibly increase the accuracy of the profiling.
224 1.1 leo */
225 1.1 leo int profint = PRF_INTERVAL; /* Clock ticks between interrupts */
226 1.1 leo int profscale = 0; /* Scale factor from sys clock to prof clock */
227 1.1 leo char profon = 0; /* Is profiling clock on? */
228 1.1 leo
229 1.1 leo /* profon values - do not change, locore.s assumes these values */
230 1.1 leo #define PRF_NONE 0x00
231 1.1 leo #define PRF_USER 0x01
232 1.1 leo #define PRF_KERNEL 0x80
233 1.1 leo
234 1.1 leo initprofclock()
235 1.1 leo {
236 1.1 leo #if NCLOCK > 0
237 1.1 leo struct proc *p = curproc; /* XXX */
238 1.1 leo
239 1.1 leo /*
240 1.1 leo * If the high-res timer is running, force profiling off.
241 1.1 leo * Unfortunately, this gets reflected back to the user not as
242 1.1 leo * an error but as a lack of results.
243 1.1 leo */
244 1.1 leo if (clockon) {
245 1.1 leo p->p_stats->p_prof.pr_scale = 0;
246 1.1 leo return;
247 1.1 leo }
248 1.1 leo /*
249 1.1 leo * Keep track of the number of user processes that are profiling
250 1.1 leo * by checking the scale value.
251 1.1 leo *
252 1.1 leo * XXX: this all assumes that the profiling code is well behaved;
253 1.1 leo * i.e. profil() is called once per process with pcscale non-zero
254 1.1 leo * to turn it on, and once with pcscale zero to turn it off.
255 1.1 leo * Also assumes you don't do any forks or execs. Oh well, there
256 1.1 leo * is always adb...
257 1.1 leo */
258 1.1 leo if (p->p_stats->p_prof.pr_scale)
259 1.1 leo profprocs++;
260 1.1 leo else
261 1.1 leo profprocs--;
262 1.1 leo #endif
263 1.1 leo /*
264 1.1 leo * The profile interrupt interval must be an even divisor
265 1.1 leo * of the CLK_INTERVAL so that scaling from a system clock
266 1.1 leo * tick to a profile clock tick is possible using integer math.
267 1.1 leo */
268 1.1 leo if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
269 1.1 leo profint = CLK_INTERVAL;
270 1.1 leo profscale = CLK_INTERVAL / profint;
271 1.1 leo }
272 1.1 leo
273 1.1 leo startprofclock()
274 1.1 leo {
275 1.1 leo unsigned short interval;
276 1.1 leo
277 1.1 leo /* stop timer B */
278 1.1 leo ciab.crb = ciab.crb & 0xc0;
279 1.1 leo
280 1.1 leo /* load interval into registers.
281 1.1 leo the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
282 1.1 leo
283 1.1 leo interval = profint - 1;
284 1.1 leo
285 1.1 leo /* order of setting is important ! */
286 1.1 leo ciab.tblo = interval & 0xff;
287 1.1 leo ciab.tbhi = interval >> 8;
288 1.1 leo
289 1.1 leo /* enable interrupts for timer B */
290 1.1 leo ciab.icr = (1<<7) | (1<<1);
291 1.1 leo
292 1.1 leo /* start timer B in continuous shot mode */
293 1.1 leo ciab.crb = (ciab.crb & 0xc0) | 1;
294 1.1 leo }
295 1.1 leo
296 1.1 leo stopprofclock()
297 1.1 leo {
298 1.1 leo /* stop timer B */
299 1.1 leo ciab.crb = ciab.crb & 0xc0;
300 1.1 leo }
301 1.1 leo
302 1.1 leo #ifdef PROF
303 1.1 leo /*
304 1.1 leo * profclock() is expanded in line in lev6intr() unless profiling kernel.
305 1.1 leo * Assumes it is called with clock interrupts blocked.
306 1.1 leo */
307 1.1 leo profclock(pc, ps)
308 1.1 leo caddr_t pc;
309 1.1 leo int ps;
310 1.1 leo {
311 1.1 leo /*
312 1.1 leo * Came from user mode.
313 1.1 leo * If this process is being profiled record the tick.
314 1.1 leo */
315 1.1 leo if (USERMODE(ps)) {
316 1.1 leo if (p->p_stats.p_prof.pr_scale)
317 1.1 leo addupc(pc, &curproc->p_stats.p_prof, 1);
318 1.1 leo }
319 1.1 leo /*
320 1.1 leo * Came from kernel (supervisor) mode.
321 1.1 leo * If we are profiling the kernel, record the tick.
322 1.1 leo */
323 1.1 leo else if (profiling < 2) {
324 1.1 leo register int s = pc - s_lowpc;
325 1.1 leo
326 1.1 leo if (s < s_textsize)
327 1.1 leo kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
328 1.1 leo }
329 1.1 leo /*
330 1.1 leo * Kernel profiling was on but has been disabled.
331 1.1 leo * Mark as no longer profiling kernel and if all profiling done,
332 1.1 leo * disable the clock.
333 1.1 leo */
334 1.1 leo if (profiling && (profon & PRF_KERNEL)) {
335 1.1 leo profon &= ~PRF_KERNEL;
336 1.1 leo if (profon == PRF_NONE)
337 1.1 leo stopprofclock();
338 1.1 leo }
339 1.1 leo }
340 1.1 leo #endif
341 1.1 leo #endif
342 1.1 leo
343 1.1 leo /*
344 1.1 leo * Initialize the time of day register, based on the time base which is, e.g.
345 1.1 leo * from a filesystem.
346 1.1 leo */
347 1.1 leo inittodr(base)
348 1.1 leo time_t base;
349 1.1 leo {
350 1.1 leo u_long timbuf = base; /* assume no battery clock exists */
351 1.1 leo
352 1.1 leo timbuf = gettod();
353 1.1 leo
354 1.1 leo if(timbuf < base) {
355 1.1 leo printf("WARNING: bad date in battery clock\n");
356 1.1 leo timbuf = base;
357 1.1 leo }
358 1.1 leo
359 1.1 leo /* Battery clock does not store usec's, so forget about it. */
360 1.1 leo time.tv_sec = timbuf;
361 1.1 leo }
362 1.1 leo
363 1.1 leo resettodr()
364 1.1 leo {
365 1.1 leo if(settod(time.tv_sec) == 1)
366 1.1 leo return;
367 1.1 leo printf("Cannot set battery backed clock\n");
368 1.1 leo }
369 1.1 leo
370 1.1 leo static char dmsize[12] =
371 1.1 leo {
372 1.1 leo 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
373 1.1 leo };
374 1.1 leo
375 1.1 leo static char ldmsize[12] =
376 1.1 leo {
377 1.1 leo 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
378 1.1 leo };
379 1.1 leo
380 1.1 leo static __inline__ int rtc_getclkreg(regno)
381 1.1 leo int regno;
382 1.1 leo {
383 1.1 leo RTC->rtc_regno = RTC_REGA;
384 1.1 leo RTC->rtc_regno = regno;
385 1.1 leo return(RTC->rtc_data & 0377);
386 1.1 leo }
387 1.1 leo
388 1.1 leo static __inline__ void rtc_setclkreg(regno, value)
389 1.1 leo int regno, value;
390 1.1 leo {
391 1.1 leo RTC->rtc_regno = regno;
392 1.1 leo RTC->rtc_data = value;
393 1.1 leo }
394 1.1 leo
395 1.1 leo static u_long
396 1.1 leo gettod()
397 1.1 leo {
398 1.2 leo int i, year, mon, day, hour, min, sec;
399 1.1 leo u_long new_time = 0;
400 1.1 leo char *msize;
401 1.1 leo
402 1.1 leo /*
403 1.1 leo * Hold clock
404 1.1 leo */
405 1.1 leo rtc_setclkreg(RTC_REGB, rtc_getclkreg(RTC_REGB) | RTC_B_SET);
406 1.1 leo
407 1.1 leo /*
408 1.1 leo * Read clock
409 1.1 leo */
410 1.1 leo sec = rtc_getclkreg(RTC_SEC);
411 1.1 leo min = rtc_getclkreg(RTC_MIN);
412 1.1 leo hour = rtc_getclkreg(RTC_HOUR);
413 1.1 leo day = rtc_getclkreg(RTC_DAY) - 1;
414 1.1 leo mon = rtc_getclkreg(RTC_MONTH) - 1;
415 1.1 leo year = rtc_getclkreg(RTC_YEAR) + STARTOFTIME;
416 1.1 leo
417 1.1 leo /*
418 1.1 leo * Let it run again..
419 1.1 leo */
420 1.1 leo rtc_setclkreg(RTC_REGB, rtc_getclkreg(RTC_REGB) & ~RTC_B_SET);
421 1.1 leo
422 1.1 leo if(range_test(hour, 0, 23))
423 1.1 leo return(0);
424 1.1 leo if(range_test(day, 0, 30))
425 1.1 leo return(0);
426 1.1 leo if (range_test(mon, 0, 11))
427 1.1 leo return(0);
428 1.1 leo if(range_test(year, STARTOFTIME, 2000))
429 1.1 leo return(0);
430 1.1 leo
431 1.1 leo for(i = STARTOFTIME; i < year; i++) {
432 1.1 leo if(is_leap(i))
433 1.1 leo new_time += 366;
434 1.1 leo else new_time += 365;
435 1.1 leo }
436 1.1 leo
437 1.1 leo msize = is_leap(year) ? ldmsize : dmsize;
438 1.1 leo for(i = 0; i < mon; i++)
439 1.1 leo new_time += msize[i];
440 1.1 leo new_time += day;
441 1.1 leo return((new_time * SECS_DAY) + (hour * 3600) + (min * 60) + sec);
442 1.1 leo }
443 1.1 leo
444 1.1 leo static int
445 1.1 leo settod(newtime)
446 1.1 leo u_long newtime;
447 1.1 leo {
448 1.1 leo register long days, rem, year;
449 1.1 leo register char *ml;
450 1.1 leo int sec, min, hour, month;
451 1.1 leo
452 1.1 leo /* Number of days since Jan. 1 1970 */
453 1.1 leo days = newtime / SECS_DAY;
454 1.1 leo rem = newtime % SECS_DAY;
455 1.1 leo
456 1.1 leo /*
457 1.1 leo * Calculate sec, min, hour
458 1.1 leo */
459 1.1 leo hour = rem / SECS_HOUR;
460 1.1 leo rem %= SECS_HOUR;
461 1.1 leo min = rem / 60;
462 1.1 leo sec = rem % 60;
463 1.1 leo
464 1.1 leo /*
465 1.1 leo * Figure out the year. Day in year is left in 'days'.
466 1.1 leo */
467 1.1 leo year = STARTOFTIME;
468 1.1 leo while(days >= (rem = is_leap(year) ? 366 : 365)) {
469 1.1 leo ++year;
470 1.1 leo days -= rem;
471 1.1 leo }
472 1.1 leo while(days < 0) {
473 1.1 leo --year;
474 1.1 leo days += is_leap(year) ? 366 : 365;
475 1.1 leo }
476 1.1 leo
477 1.1 leo /*
478 1.1 leo * Determine the month
479 1.1 leo */
480 1.1 leo ml = is_leap(year) ? ldmsize : dmsize;
481 1.1 leo for(month = 0; days >= ml[month]; ++month)
482 1.1 leo days -= ml[month];
483 1.1 leo
484 1.1 leo /*
485 1.1 leo * Now that everything is calculated, program the RTC
486 1.1 leo */
487 1.1 leo rtc_setclkreg(RTC_REGB, RTC_B_SET);
488 1.1 leo rtc_setclkreg(RTC_REGA, RTC_A_DV1|RTC_A_RS2|RTC_A_RS3);
489 1.1 leo rtc_setclkreg(RTC_REGB, RTC_B_SET|RTC_B_SQWE|RTC_B_DM|RTC_B_24_12);
490 1.1 leo rtc_setclkreg(RTC_SEC, sec);
491 1.1 leo rtc_setclkreg(RTC_MIN, min);
492 1.1 leo rtc_setclkreg(RTC_HOUR, hour);
493 1.1 leo rtc_setclkreg(RTC_DAY, days+1);
494 1.1 leo rtc_setclkreg(RTC_MONTH, month+1);
495 1.1 leo rtc_setclkreg(RTC_YEAR, year-1970);
496 1.1 leo rtc_setclkreg(RTC_REGB, RTC_B_SQWE|RTC_B_DM|RTC_B_24_12);
497 1.1 leo
498 1.1 leo return(1);
499 1.1 leo }
500