Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.25
      1  1.25       leo /*	$NetBSD: clock.c,v 1.25 2001/04/24 06:26:48 leo Exp $	*/
      2   1.1       leo 
      3   1.1       leo /*
      4   1.1       leo  * Copyright (c) 1988 University of Utah.
      5   1.1       leo  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6   1.1       leo  * All rights reserved.
      7   1.1       leo  *
      8   1.1       leo  * This code is derived from software contributed to Berkeley by
      9   1.1       leo  * the Systems Programming Group of the University of Utah Computer
     10   1.1       leo  * Science Department.
     11   1.1       leo  *
     12   1.1       leo  * Redistribution and use in source and binary forms, with or without
     13   1.1       leo  * modification, are permitted provided that the following conditions
     14   1.1       leo  * are met:
     15   1.1       leo  * 1. Redistributions of source code must retain the above copyright
     16   1.1       leo  *    notice, this list of conditions and the following disclaimer.
     17   1.1       leo  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       leo  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       leo  *    documentation and/or other materials provided with the distribution.
     20   1.1       leo  * 3. All advertising materials mentioning features or use of this software
     21   1.1       leo  *    must display the following acknowledgement:
     22   1.1       leo  *	This product includes software developed by the University of
     23   1.1       leo  *	California, Berkeley and its contributors.
     24   1.1       leo  * 4. Neither the name of the University nor the names of its contributors
     25   1.1       leo  *    may be used to endorse or promote products derived from this software
     26   1.1       leo  *    without specific prior written permission.
     27   1.1       leo  *
     28   1.1       leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29   1.1       leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30   1.1       leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31   1.1       leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32   1.1       leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33   1.1       leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34   1.1       leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35   1.1       leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36   1.1       leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37   1.1       leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38   1.1       leo  * SUCH DAMAGE.
     39   1.1       leo  *
     40   1.1       leo  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41   1.1       leo  *
     42   1.1       leo  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43   1.1       leo  */
     44   1.1       leo 
     45   1.1       leo #include <sys/param.h>
     46   1.1       leo #include <sys/kernel.h>
     47   1.9       leo #include <sys/systm.h>
     48   1.1       leo #include <sys/device.h>
     49  1.14       leo #include <sys/uio.h>
     50  1.14       leo #include <sys/conf.h>
     51  1.18       leo 
     52  1.18       leo #include <dev/clock_subr.h>
     53  1.18       leo 
     54   1.1       leo #include <machine/psl.h>
     55   1.1       leo #include <machine/cpu.h>
     56   1.1       leo #include <machine/iomap.h>
     57   1.1       leo #include <machine/mfp.h>
     58   1.1       leo #include <atari/dev/clockreg.h>
     59  1.14       leo #include <atari/atari/device.h>
     60   1.1       leo 
     61   1.4       leo #if defined(GPROF) && defined(PROFTIMER)
     62   1.4       leo #include <machine/profile.h>
     63   1.1       leo #endif
     64   1.1       leo 
     65   1.1       leo /*
     66   1.5       leo  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     67   1.5       leo  * of 200. Therefore the timer runs at an effective rate of:
     68   1.5       leo  * 2457600/200 = 12288Hz.
     69   1.5       leo  */
     70   1.5       leo #define CLOCK_HZ	12288
     71   1.5       leo 
     72   1.5       leo /*
     73   1.1       leo  * Machine-dependent clock routines.
     74   1.1       leo  *
     75   1.1       leo  * Inittodr initializes the time of day hardware which provides
     76   1.1       leo  * date functions.
     77   1.1       leo  *
     78   1.1       leo  * Resettodr restores the time of day hardware after a time change.
     79   1.1       leo  */
     80   1.1       leo 
     81  1.14       leo struct clock_softc {
     82  1.14       leo 	struct device	sc_dev;
     83  1.14       leo 	int		sc_flags;
     84  1.14       leo };
     85  1.14       leo 
     86  1.14       leo /*
     87  1.14       leo  *  'sc_flags' state info. Only used by the rtc-device functions.
     88  1.14       leo  */
     89  1.14       leo #define	RTC_OPEN	1
     90  1.14       leo 
     91  1.14       leo /* {b,c}devsw[] function prototypes for rtc functions */
     92  1.14       leo dev_type_open(rtcopen);
     93  1.14       leo dev_type_close(rtcclose);
     94  1.14       leo dev_type_read(rtcread);
     95  1.14       leo dev_type_write(rtcwrite);
     96  1.14       leo 
     97  1.14       leo static void	clockattach __P((struct device *, struct device *, void *));
     98  1.17       leo static int	clockmatch __P((struct device *, struct cfdata *, void *));
     99   1.1       leo 
    100  1.10   thorpej struct cfattach clock_ca = {
    101  1.14       leo 	sizeof(struct clock_softc), clockmatch, clockattach
    102  1.10   thorpej };
    103  1.10   thorpej 
    104  1.19   thorpej extern struct cfdriver clock_cd;
    105   1.1       leo 
    106  1.16       leo void statintr __P((struct clockframe));
    107   1.9       leo 
    108   1.1       leo static u_long	gettod __P((void));
    109  1.14       leo static int	twodigits __P((char *, int));
    110   1.1       leo 
    111   1.5       leo static int	divisor;	/* Systemclock divisor	*/
    112   1.5       leo 
    113   1.5       leo /*
    114   1.5       leo  * Statistics and profile clock intervals and variances. Variance must
    115   1.5       leo  * be a power of 2. Since this gives us an even number, not an odd number,
    116   1.5       leo  * we discard one case and compensate. That is, a variance of 64 would
    117   1.5       leo  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    118   1.5       leo  * This is symetric around the point 32, or statvar/2, and thus averages
    119   1.5       leo  * to that value (assuming uniform random numbers).
    120   1.5       leo  */
    121   1.5       leo #ifdef STATCLOCK
    122   1.5       leo static int	statvar = 32;	/* {stat,prof}clock variance		*/
    123   1.5       leo static int	statmin;	/* statclock divisor - variance/2	*/
    124   1.5       leo static int	profmin;	/* profclock divisor - variance/2	*/
    125   1.5       leo static int	clk2min;	/* current, from above choises		*/
    126   1.5       leo #endif
    127   1.1       leo 
    128   1.1       leo int
    129  1.17       leo clockmatch(pdp, cfp, auxp)
    130  1.14       leo struct device	*pdp;
    131  1.17       leo struct cfdata	*cfp;
    132  1.17       leo void		*auxp;
    133   1.1       leo {
    134  1.15       leo 	if (!atari_realconfig) {
    135  1.15       leo 	    /*
    136  1.15       leo 	     * Initialize Timer-B in the ST-MFP. This timer is used by
    137  1.15       leo 	     * the 'delay' function below. This timer is setup to be
    138  1.15       leo 	     * continueously counting from 255 back to zero at a
    139  1.15       leo 	     * frequency of 614400Hz. We do this *early* in the
    140  1.15       leo 	     * initialisation process.
    141  1.15       leo 	     */
    142  1.15       leo 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
    143  1.15       leo 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    144  1.15       leo 	    MFP->mf_tbdr  = 0;
    145  1.15       leo 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    146  1.15       leo 
    147  1.15       leo 	    /*
    148  1.15       leo 	     * Initialize the time structure
    149  1.15       leo 	     */
    150  1.15       leo 	    time.tv_sec  = 0;
    151  1.15       leo 	    time.tv_usec = 0;
    152  1.15       leo 
    153  1.15       leo 	    return 0;
    154  1.15       leo 	}
    155   1.1       leo 	if(!strcmp("clock", auxp))
    156   1.1       leo 		return(1);
    157   1.1       leo 	return(0);
    158   1.1       leo }
    159   1.1       leo 
    160   1.1       leo /*
    161   1.1       leo  * Start the real-time clock.
    162   1.1       leo  */
    163   1.1       leo void clockattach(pdp, dp, auxp)
    164   1.1       leo struct device	*pdp, *dp;
    165  1.14       leo void		*auxp;
    166   1.1       leo {
    167  1.14       leo 	struct clock_softc *sc = (void *)dp;
    168  1.14       leo 
    169  1.14       leo 	sc->sc_flags = 0;
    170  1.14       leo 
    171   1.1       leo 	/*
    172   1.3       leo 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    173   1.3       leo 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    174   1.3       leo 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    175   1.3       leo 	 * following expression works for 48, 64 or 96 hz.
    176   1.1       leo 	 */
    177   1.5       leo 	divisor       = CLOCK_HZ/hz;
    178   1.2       leo 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    179   1.2       leo 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    180   1.2       leo 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    181   1.1       leo 
    182   1.5       leo 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    183  1.13  christos 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    184   1.5       leo 								hz, 64);
    185   1.5       leo 		hz = 64;
    186   1.5       leo 	}
    187  1.13  christos 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    188   1.1       leo 
    189   1.5       leo #ifdef STATCLOCK
    190   1.5       leo 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    191   1.5       leo 		stathz = hz;
    192   1.5       leo 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    193   1.5       leo 		profhz = hz << 1;
    194   1.5       leo 
    195   1.5       leo 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    196   1.5       leo 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    197   1.5       leo 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    198   1.5       leo 
    199   1.5       leo 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    200   1.5       leo 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    201   1.5       leo 	clk2min  = statmin;
    202   1.5       leo #endif /* STATCLOCK */
    203  1.14       leo 
    204   1.1       leo }
    205   1.1       leo 
    206   1.1       leo void cpu_initclocks()
    207   1.1       leo {
    208   1.3       leo 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    209  1.20       leo 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    210   1.2       leo 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    211   1.2       leo 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    212   1.5       leo 
    213   1.5       leo #ifdef STATCLOCK
    214   1.5       leo 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    215  1.20       leo 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    216   1.5       leo 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    217   1.5       leo 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    218   1.5       leo #endif /* STATCLOCK */
    219   1.1       leo }
    220   1.1       leo 
    221   1.9       leo void
    222   1.5       leo setstatclockrate(newhz)
    223   1.5       leo 	int newhz;
    224   1.1       leo {
    225   1.5       leo #ifdef STATCLOCK
    226   1.5       leo 	if (newhz == stathz)
    227   1.5       leo 		clk2min = statmin;
    228   1.5       leo 	else clk2min = profmin;
    229   1.5       leo #endif /* STATCLOCK */
    230   1.1       leo }
    231   1.1       leo 
    232   1.5       leo #ifdef STATCLOCK
    233   1.5       leo void
    234   1.5       leo statintr(frame)
    235  1.16       leo 	struct clockframe frame;
    236   1.5       leo {
    237   1.5       leo 	register int	var, r;
    238   1.5       leo 
    239   1.5       leo 	var = statvar - 1;
    240   1.5       leo 	do {
    241   1.5       leo 		r = random() & var;
    242   1.5       leo 	} while(r == 0);
    243   1.5       leo 
    244   1.5       leo 	/*
    245   1.5       leo 	 * Note that we are always lagging behind as the new divisor
    246   1.5       leo 	 * value will not be loaded until the next interrupt. This
    247   1.5       leo 	 * shouldn't disturb the median frequency (I think ;-) ) as
    248   1.5       leo 	 * only the value used when switching frequencies is used
    249   1.5       leo 	 * twice. This shouldn't happen very often.
    250   1.5       leo 	 */
    251   1.5       leo 	MFP->mf_tcdr = clk2min + r;
    252   1.5       leo 
    253  1.16       leo 	statclock(&frame);
    254   1.5       leo }
    255   1.5       leo #endif /* STATCLOCK */
    256   1.5       leo 
    257   1.1       leo /*
    258   1.1       leo  * Returns number of usec since last recorded clock "tick"
    259   1.1       leo  * (i.e. clock interrupt).
    260   1.1       leo  */
    261   1.9       leo long
    262   1.1       leo clkread()
    263   1.1       leo {
    264   1.3       leo 	u_int	delta;
    265  1.22       leo 	u_char	ipra, tadr;
    266   1.3       leo 
    267  1.22       leo 	/*
    268  1.22       leo 	 * Note: Order is important!
    269  1.22       leo 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
    270  1.22       leo 	 * the situation that very low value in 'tadr' is read (== a big delta)
    271  1.22       leo 	 * while also acccounting for a full 'tick' because the counter went
    272  1.22       leo 	 * through zero during the calculations.
    273  1.22       leo 	 */
    274  1.22       leo 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
    275  1.22       leo 
    276  1.22       leo 	delta = ((divisor - tadr) * tick) / divisor;
    277   1.1       leo 	/*
    278   1.1       leo 	 * Account for pending clock interrupts
    279   1.1       leo 	 */
    280  1.22       leo 	if(ipra & IA_TIMA)
    281   1.1       leo 		return(delta + tick);
    282   1.1       leo 	return(delta);
    283   1.1       leo }
    284   1.1       leo 
    285   1.2       leo #define TIMB_FREQ	614400
    286   1.2       leo #define TIMB_LIMIT	256
    287   1.1       leo 
    288   1.1       leo /*
    289   1.1       leo  * Wait "n" microseconds.
    290   1.2       leo  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    291   1.1       leo  * Note: timer had better have been programmed before this is first used!
    292   1.1       leo  */
    293  1.14       leo void
    294  1.14       leo delay(n)
    295   1.1       leo int	n;
    296   1.1       leo {
    297   1.1       leo 	int	tick, otick;
    298   1.1       leo 
    299   1.1       leo 	/*
    300   1.1       leo 	 * Read the counter first, so that the rest of the setup overhead is
    301   1.1       leo 	 * counted.
    302   1.1       leo 	 */
    303   1.2       leo 	otick = MFP->mf_tbdr;
    304   1.1       leo 
    305   1.1       leo 	/*
    306   1.1       leo 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    307   1.1       leo 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    308   1.1       leo 	 * loss of significance.
    309   1.1       leo 	 */
    310   1.1       leo 	n -= 5;
    311   1.1       leo 	if(n < 0)
    312   1.1       leo 		return;
    313   1.1       leo 	{
    314   1.1       leo 	    u_int	temp;
    315   1.1       leo 
    316   1.1       leo 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    317  1.23       leo 					       : "d" (TIMB_FREQ), "d" (n));
    318   1.1       leo 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    319   1.1       leo 					       : "d"(1000000),"d"(temp),"0"(n));
    320   1.1       leo 	}
    321   1.1       leo 
    322   1.1       leo 	while(n > 0) {
    323   1.2       leo 		tick = MFP->mf_tbdr;
    324   1.1       leo 		if(tick > otick)
    325   1.2       leo 			n -= TIMB_LIMIT - (tick - otick);
    326   1.1       leo 		else n -= otick - tick;
    327   1.1       leo 		otick = tick;
    328   1.1       leo 	}
    329   1.1       leo }
    330   1.1       leo 
    331   1.4       leo #ifdef GPROF
    332   1.1       leo /*
    333   1.1       leo  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    334   1.1       leo  * Assumes it is called with clock interrupts blocked.
    335   1.1       leo  */
    336   1.1       leo profclock(pc, ps)
    337   1.1       leo 	caddr_t pc;
    338   1.1       leo 	int ps;
    339   1.1       leo {
    340   1.1       leo 	/*
    341   1.1       leo 	 * Came from user mode.
    342   1.1       leo 	 * If this process is being profiled record the tick.
    343   1.1       leo 	 */
    344   1.1       leo 	if (USERMODE(ps)) {
    345   1.1       leo 		if (p->p_stats.p_prof.pr_scale)
    346   1.1       leo 			addupc(pc, &curproc->p_stats.p_prof, 1);
    347   1.1       leo 	}
    348   1.1       leo 	/*
    349   1.1       leo 	 * Came from kernel (supervisor) mode.
    350   1.1       leo 	 * If we are profiling the kernel, record the tick.
    351   1.1       leo 	 */
    352   1.1       leo 	else if (profiling < 2) {
    353   1.1       leo 		register int s = pc - s_lowpc;
    354   1.1       leo 
    355   1.1       leo 		if (s < s_textsize)
    356   1.1       leo 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    357   1.1       leo 	}
    358   1.1       leo 	/*
    359   1.1       leo 	 * Kernel profiling was on but has been disabled.
    360   1.1       leo 	 * Mark as no longer profiling kernel and if all profiling done,
    361   1.1       leo 	 * disable the clock.
    362   1.1       leo 	 */
    363   1.1       leo 	if (profiling && (profon & PRF_KERNEL)) {
    364   1.1       leo 		profon &= ~PRF_KERNEL;
    365   1.1       leo 		if (profon == PRF_NONE)
    366   1.1       leo 			stopprofclock();
    367   1.1       leo 	}
    368   1.1       leo }
    369   1.1       leo #endif
    370   1.7       leo 
    371   1.7       leo /***********************************************************************
    372   1.7       leo  *                   Real Time Clock support                           *
    373   1.7       leo  ***********************************************************************/
    374   1.7       leo 
    375   1.7       leo u_int mc146818_read(rtc, regno)
    376   1.7       leo void	*rtc;
    377   1.7       leo u_int	regno;
    378   1.7       leo {
    379   1.7       leo 	((struct rtc *)rtc)->rtc_regno = regno;
    380   1.7       leo 	return(((struct rtc *)rtc)->rtc_data & 0377);
    381   1.7       leo }
    382   1.7       leo 
    383   1.7       leo void mc146818_write(rtc, regno, value)
    384   1.7       leo void	*rtc;
    385   1.7       leo u_int	regno, value;
    386   1.7       leo {
    387   1.7       leo 	((struct rtc *)rtc)->rtc_regno = regno;
    388   1.7       leo 	((struct rtc *)rtc)->rtc_data  = value;
    389   1.7       leo }
    390   1.1       leo 
    391   1.1       leo /*
    392  1.14       leo  * Initialize the time of day register, assuming the RTC runs in UTC.
    393  1.14       leo  * Since we've got the 'rtc' device, this functionality should be removed
    394  1.14       leo  * from the kernel. The only problem to be solved before that can happen
    395  1.14       leo  * is the possibility of init(1) providing a way (rc.boot?) to set
    396  1.14       leo  * the RTC before single-user mode is entered.
    397   1.1       leo  */
    398   1.9       leo void
    399   1.1       leo inittodr(base)
    400   1.1       leo time_t base;
    401   1.1       leo {
    402   1.1       leo 	/* Battery clock does not store usec's, so forget about it. */
    403  1.14       leo 	time.tv_sec  = gettod();
    404  1.11       leo 	time.tv_usec = 0;
    405   1.1       leo }
    406   1.1       leo 
    407  1.14       leo /*
    408  1.14       leo  * Function turned into a No-op. Use /dev/rtc to update the RTC.
    409  1.14       leo  */
    410   1.9       leo void
    411   1.1       leo resettodr()
    412   1.1       leo {
    413  1.14       leo 	return;
    414   1.1       leo }
    415   1.1       leo 
    416   1.1       leo static u_long
    417   1.1       leo gettod()
    418   1.1       leo {
    419  1.18       leo 	int			sps;
    420  1.18       leo 	mc_todregs		clkregs;
    421  1.25       leo 	u_int			regb;
    422  1.18       leo 	struct clock_ymdhms	dt;
    423   1.3       leo 
    424   1.3       leo 	sps = splhigh();
    425  1.25       leo 	regb = mc146818_read(RTC, MC_REGB);
    426   1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    427   1.3       leo 	splx(sps);
    428   1.1       leo 
    429  1.25       leo 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    430  1.25       leo 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    431  1.25       leo 		printf("Error: Nonstandard RealTimeClock Configuration -"
    432  1.25       leo 			" value ignored\n"
    433  1.25       leo 			"       A write to /dev/rtc will correct this.\n");
    434  1.25       leo 			return(0);
    435  1.25       leo 	}
    436   1.9       leo 	if(clkregs[MC_SEC] > 59)
    437   1.8       leo 		return(0);
    438   1.9       leo 	if(clkregs[MC_MIN] > 59)
    439   1.8       leo 		return(0);
    440   1.9       leo 	if(clkregs[MC_HOUR] > 23)
    441   1.1       leo 		return(0);
    442   1.3       leo 	if(range_test(clkregs[MC_DOM], 1, 31))
    443   1.1       leo 		return(0);
    444   1.3       leo 	if (range_test(clkregs[MC_MONTH], 1, 12))
    445   1.1       leo 		return(0);
    446  1.24       leo 	if(clkregs[MC_YEAR] > 99)
    447   1.1       leo 		return(0);
    448   1.1       leo 
    449  1.18       leo 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    450  1.18       leo 	dt.dt_mon  = clkregs[MC_MONTH];
    451  1.18       leo 	dt.dt_day  = clkregs[MC_DOM];
    452  1.18       leo 	dt.dt_hour = clkregs[MC_HOUR];
    453  1.18       leo 	dt.dt_min  = clkregs[MC_MIN];
    454  1.18       leo 	dt.dt_sec  = clkregs[MC_SEC];
    455   1.1       leo 
    456  1.18       leo 	return(clock_ymdhms_to_secs(&dt));
    457   1.1       leo }
    458  1.14       leo /***********************************************************************
    459  1.14       leo  *                   RTC-device support				       *
    460  1.14       leo  ***********************************************************************/
    461  1.14       leo int
    462  1.14       leo rtcopen(dev, flag, mode, p)
    463  1.14       leo 	dev_t		dev;
    464  1.14       leo 	int		flag, mode;
    465  1.14       leo 	struct proc	*p;
    466  1.14       leo {
    467  1.14       leo 	int			unit = minor(dev);
    468  1.14       leo 	struct clock_softc	*sc;
    469  1.14       leo 
    470  1.14       leo 	if (unit >= clock_cd.cd_ndevs)
    471  1.14       leo 		return ENXIO;
    472  1.14       leo 	sc = clock_cd.cd_devs[unit];
    473  1.14       leo 	if (!sc)
    474  1.14       leo 		return ENXIO;
    475  1.14       leo 	if (sc->sc_flags & RTC_OPEN)
    476  1.14       leo 		return EBUSY;
    477  1.14       leo 
    478  1.14       leo 	sc->sc_flags = RTC_OPEN;
    479  1.14       leo 	return 0;
    480  1.14       leo }
    481   1.1       leo 
    482  1.14       leo int
    483  1.14       leo rtcclose(dev, flag, mode, p)
    484  1.14       leo 	dev_t		dev;
    485  1.14       leo 	int		flag;
    486  1.14       leo 	int		mode;
    487  1.14       leo 	struct proc	*p;
    488   1.1       leo {
    489  1.14       leo 	int			unit = minor(dev);
    490  1.14       leo 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
    491  1.14       leo 
    492  1.14       leo 	sc->sc_flags = 0;
    493  1.14       leo 	return 0;
    494  1.14       leo }
    495  1.14       leo 
    496  1.14       leo int
    497  1.14       leo rtcread(dev, uio, flags)
    498  1.14       leo 	dev_t		dev;
    499  1.14       leo 	struct uio	*uio;
    500  1.14       leo 	int		flags;
    501  1.14       leo {
    502  1.14       leo 	struct clock_softc	*sc;
    503  1.14       leo 	mc_todregs		clkregs;
    504  1.14       leo 	int			s, length;
    505  1.14       leo 	char			buffer[16];
    506  1.14       leo 
    507  1.14       leo 	sc = clock_cd.cd_devs[minor(dev)];
    508  1.14       leo 
    509  1.14       leo 	s = splhigh();
    510  1.14       leo 	MC146818_GETTOD(RTC, &clkregs);
    511  1.14       leo 	splx(s);
    512  1.14       leo 
    513  1.21       leo 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    514  1.21       leo 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    515  1.14       leo 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    516  1.14       leo 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    517  1.14       leo 
    518  1.14       leo 	if (uio->uio_offset > strlen(buffer))
    519  1.14       leo 		return 0;
    520   1.1       leo 
    521  1.14       leo 	length = strlen(buffer) - uio->uio_offset;
    522  1.14       leo 	if (length > uio->uio_resid)
    523  1.14       leo 		length = uio->uio_resid;
    524   1.1       leo 
    525  1.14       leo 	return(uiomove((caddr_t)buffer, length, uio));
    526  1.14       leo }
    527  1.14       leo 
    528  1.14       leo static int
    529  1.14       leo twodigits(buffer, pos)
    530  1.14       leo 	char *buffer;
    531  1.14       leo 	int pos;
    532  1.14       leo {
    533  1.14       leo 	int result = 0;
    534  1.14       leo 
    535  1.14       leo 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    536  1.14       leo 		result = (buffer[pos] - '0') * 10;
    537  1.14       leo 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    538  1.14       leo 		result += (buffer[pos+1] - '0');
    539  1.14       leo 	return(result);
    540  1.14       leo }
    541   1.1       leo 
    542  1.14       leo int
    543  1.14       leo rtcwrite(dev, uio, flags)
    544  1.14       leo 	dev_t		dev;
    545  1.14       leo 	struct uio	*uio;
    546  1.14       leo 	int		flags;
    547  1.14       leo {
    548  1.14       leo 	mc_todregs		clkregs;
    549  1.14       leo 	int			s, length, error;
    550  1.21       leo 	char			buffer[16];
    551  1.14       leo 
    552  1.14       leo 	/*
    553  1.14       leo 	 * We require atomic updates!
    554  1.14       leo 	 */
    555  1.14       leo 	length = uio->uio_resid;
    556  1.14       leo 	if (uio->uio_offset || (length != sizeof(buffer)
    557  1.14       leo 	  && length != sizeof(buffer - 1)))
    558  1.14       leo 		return(EINVAL);
    559  1.14       leo 
    560  1.14       leo 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
    561  1.14       leo 		return(error);
    562   1.1       leo 
    563  1.14       leo 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    564  1.14       leo 		return(EINVAL);
    565   1.1       leo 
    566  1.14       leo 	s = splclock();
    567  1.25       leo 	mc146818_write(RTC, MC_REGB,
    568  1.25       leo 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    569   1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    570  1.14       leo 	splx(s);
    571  1.14       leo 
    572  1.21       leo 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    573  1.21       leo 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    574  1.21       leo 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    575  1.21       leo 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    576  1.21       leo 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    577  1.21       leo 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    578  1.14       leo 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    579  1.14       leo 
    580  1.14       leo 	s = splclock();
    581   1.3       leo 	MC146818_PUTTOD(RTC, &clkregs);
    582  1.14       leo 	splx(s);
    583   1.1       leo 
    584  1.14       leo 	return(0);
    585   1.1       leo }
    586