Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.26.2.2
      1  1.26.2.2  jdolecek /*	$NetBSD: clock.c,v 1.26.2.2 2002/10/10 18:32:00 jdolecek Exp $	*/
      2       1.1       leo 
      3       1.1       leo /*
      4       1.1       leo  * Copyright (c) 1988 University of Utah.
      5       1.1       leo  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6       1.1       leo  * All rights reserved.
      7       1.1       leo  *
      8       1.1       leo  * This code is derived from software contributed to Berkeley by
      9       1.1       leo  * the Systems Programming Group of the University of Utah Computer
     10       1.1       leo  * Science Department.
     11       1.1       leo  *
     12       1.1       leo  * Redistribution and use in source and binary forms, with or without
     13       1.1       leo  * modification, are permitted provided that the following conditions
     14       1.1       leo  * are met:
     15       1.1       leo  * 1. Redistributions of source code must retain the above copyright
     16       1.1       leo  *    notice, this list of conditions and the following disclaimer.
     17       1.1       leo  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.1       leo  *    notice, this list of conditions and the following disclaimer in the
     19       1.1       leo  *    documentation and/or other materials provided with the distribution.
     20       1.1       leo  * 3. All advertising materials mentioning features or use of this software
     21       1.1       leo  *    must display the following acknowledgement:
     22       1.1       leo  *	This product includes software developed by the University of
     23       1.1       leo  *	California, Berkeley and its contributors.
     24       1.1       leo  * 4. Neither the name of the University nor the names of its contributors
     25       1.1       leo  *    may be used to endorse or promote products derived from this software
     26       1.1       leo  *    without specific prior written permission.
     27       1.1       leo  *
     28       1.1       leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29       1.1       leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30       1.1       leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31       1.1       leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32       1.1       leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33       1.1       leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34       1.1       leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35       1.1       leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36       1.1       leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37       1.1       leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38       1.1       leo  * SUCH DAMAGE.
     39       1.1       leo  *
     40       1.1       leo  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41       1.1       leo  *
     42       1.1       leo  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43       1.1       leo  */
     44       1.1       leo 
     45       1.1       leo #include <sys/param.h>
     46       1.1       leo #include <sys/kernel.h>
     47       1.9       leo #include <sys/systm.h>
     48       1.1       leo #include <sys/device.h>
     49      1.14       leo #include <sys/uio.h>
     50      1.14       leo #include <sys/conf.h>
     51  1.26.2.2  jdolecek #include <sys/event.h>
     52      1.18       leo 
     53      1.18       leo #include <dev/clock_subr.h>
     54      1.18       leo 
     55       1.1       leo #include <machine/psl.h>
     56       1.1       leo #include <machine/cpu.h>
     57       1.1       leo #include <machine/iomap.h>
     58       1.1       leo #include <machine/mfp.h>
     59       1.1       leo #include <atari/dev/clockreg.h>
     60      1.14       leo #include <atari/atari/device.h>
     61       1.1       leo 
     62       1.4       leo #if defined(GPROF) && defined(PROFTIMER)
     63       1.4       leo #include <machine/profile.h>
     64       1.1       leo #endif
     65       1.1       leo 
     66       1.1       leo /*
     67       1.5       leo  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     68       1.5       leo  * of 200. Therefore the timer runs at an effective rate of:
     69       1.5       leo  * 2457600/200 = 12288Hz.
     70       1.5       leo  */
     71       1.5       leo #define CLOCK_HZ	12288
     72       1.5       leo 
     73       1.5       leo /*
     74       1.1       leo  * Machine-dependent clock routines.
     75       1.1       leo  *
     76       1.1       leo  * Inittodr initializes the time of day hardware which provides
     77       1.1       leo  * date functions.
     78       1.1       leo  *
     79       1.1       leo  * Resettodr restores the time of day hardware after a time change.
     80       1.1       leo  */
     81       1.1       leo 
     82      1.14       leo struct clock_softc {
     83      1.14       leo 	struct device	sc_dev;
     84      1.14       leo 	int		sc_flags;
     85      1.14       leo };
     86      1.14       leo 
     87      1.14       leo /*
     88      1.14       leo  *  'sc_flags' state info. Only used by the rtc-device functions.
     89      1.14       leo  */
     90      1.14       leo #define	RTC_OPEN	1
     91      1.14       leo 
     92      1.14       leo dev_type_open(rtcopen);
     93      1.14       leo dev_type_close(rtcclose);
     94      1.14       leo dev_type_read(rtcread);
     95      1.14       leo dev_type_write(rtcwrite);
     96      1.14       leo 
     97      1.14       leo static void	clockattach __P((struct device *, struct device *, void *));
     98      1.17       leo static int	clockmatch __P((struct device *, struct cfdata *, void *));
     99       1.1       leo 
    100  1.26.2.2  jdolecek CFATTACH_DECL(clock, sizeof(struct clock_softc),
    101  1.26.2.2  jdolecek     clockmatch, clockattach, NULL, NULL);
    102      1.10   thorpej 
    103      1.19   thorpej extern struct cfdriver clock_cd;
    104  1.26.2.2  jdolecek 
    105  1.26.2.2  jdolecek const struct cdevsw rtc_cdevsw = {
    106  1.26.2.2  jdolecek 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    107  1.26.2.2  jdolecek 	nostop, notty, nopoll, nommap, nokqfilter,
    108  1.26.2.2  jdolecek };
    109       1.1       leo 
    110      1.16       leo void statintr __P((struct clockframe));
    111       1.9       leo 
    112       1.1       leo static u_long	gettod __P((void));
    113      1.14       leo static int	twodigits __P((char *, int));
    114       1.1       leo 
    115       1.5       leo static int	divisor;	/* Systemclock divisor	*/
    116       1.5       leo 
    117       1.5       leo /*
    118       1.5       leo  * Statistics and profile clock intervals and variances. Variance must
    119       1.5       leo  * be a power of 2. Since this gives us an even number, not an odd number,
    120       1.5       leo  * we discard one case and compensate. That is, a variance of 64 would
    121       1.5       leo  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    122      1.26       wiz  * This is symmetric around the point 32, or statvar/2, and thus averages
    123       1.5       leo  * to that value (assuming uniform random numbers).
    124       1.5       leo  */
    125       1.5       leo #ifdef STATCLOCK
    126       1.5       leo static int	statvar = 32;	/* {stat,prof}clock variance		*/
    127       1.5       leo static int	statmin;	/* statclock divisor - variance/2	*/
    128       1.5       leo static int	profmin;	/* profclock divisor - variance/2	*/
    129  1.26.2.1     lukem static int	clk2min;	/* current, from above choices		*/
    130       1.5       leo #endif
    131       1.1       leo 
    132       1.1       leo int
    133      1.17       leo clockmatch(pdp, cfp, auxp)
    134      1.14       leo struct device	*pdp;
    135      1.17       leo struct cfdata	*cfp;
    136      1.17       leo void		*auxp;
    137       1.1       leo {
    138      1.15       leo 	if (!atari_realconfig) {
    139      1.15       leo 	    /*
    140      1.15       leo 	     * Initialize Timer-B in the ST-MFP. This timer is used by
    141      1.15       leo 	     * the 'delay' function below. This timer is setup to be
    142      1.15       leo 	     * continueously counting from 255 back to zero at a
    143      1.15       leo 	     * frequency of 614400Hz. We do this *early* in the
    144      1.15       leo 	     * initialisation process.
    145      1.15       leo 	     */
    146      1.15       leo 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
    147      1.15       leo 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    148      1.15       leo 	    MFP->mf_tbdr  = 0;
    149      1.15       leo 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    150      1.15       leo 
    151      1.15       leo 	    /*
    152      1.15       leo 	     * Initialize the time structure
    153      1.15       leo 	     */
    154      1.15       leo 	    time.tv_sec  = 0;
    155      1.15       leo 	    time.tv_usec = 0;
    156      1.15       leo 
    157      1.15       leo 	    return 0;
    158      1.15       leo 	}
    159       1.1       leo 	if(!strcmp("clock", auxp))
    160       1.1       leo 		return(1);
    161       1.1       leo 	return(0);
    162       1.1       leo }
    163       1.1       leo 
    164       1.1       leo /*
    165       1.1       leo  * Start the real-time clock.
    166       1.1       leo  */
    167       1.1       leo void clockattach(pdp, dp, auxp)
    168       1.1       leo struct device	*pdp, *dp;
    169      1.14       leo void		*auxp;
    170       1.1       leo {
    171      1.14       leo 	struct clock_softc *sc = (void *)dp;
    172      1.14       leo 
    173      1.14       leo 	sc->sc_flags = 0;
    174      1.14       leo 
    175       1.1       leo 	/*
    176       1.3       leo 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    177       1.3       leo 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    178       1.3       leo 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    179       1.3       leo 	 * following expression works for 48, 64 or 96 hz.
    180       1.1       leo 	 */
    181       1.5       leo 	divisor       = CLOCK_HZ/hz;
    182       1.2       leo 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    183       1.2       leo 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    184       1.2       leo 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    185       1.1       leo 
    186       1.5       leo 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    187      1.13  christos 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    188       1.5       leo 								hz, 64);
    189       1.5       leo 		hz = 64;
    190       1.5       leo 	}
    191      1.13  christos 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    192       1.1       leo 
    193       1.5       leo #ifdef STATCLOCK
    194       1.5       leo 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    195       1.5       leo 		stathz = hz;
    196       1.5       leo 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    197       1.5       leo 		profhz = hz << 1;
    198       1.5       leo 
    199       1.5       leo 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    200       1.5       leo 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    201       1.5       leo 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    202       1.5       leo 
    203       1.5       leo 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    204       1.5       leo 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    205       1.5       leo 	clk2min  = statmin;
    206       1.5       leo #endif /* STATCLOCK */
    207      1.14       leo 
    208       1.1       leo }
    209       1.1       leo 
    210       1.1       leo void cpu_initclocks()
    211       1.1       leo {
    212       1.3       leo 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    213      1.20       leo 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    214       1.2       leo 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    215       1.2       leo 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    216       1.5       leo 
    217       1.5       leo #ifdef STATCLOCK
    218       1.5       leo 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    219      1.20       leo 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    220       1.5       leo 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    221       1.5       leo 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    222       1.5       leo #endif /* STATCLOCK */
    223       1.1       leo }
    224       1.1       leo 
    225       1.9       leo void
    226       1.5       leo setstatclockrate(newhz)
    227       1.5       leo 	int newhz;
    228       1.1       leo {
    229       1.5       leo #ifdef STATCLOCK
    230       1.5       leo 	if (newhz == stathz)
    231       1.5       leo 		clk2min = statmin;
    232       1.5       leo 	else clk2min = profmin;
    233       1.5       leo #endif /* STATCLOCK */
    234       1.1       leo }
    235       1.1       leo 
    236       1.5       leo #ifdef STATCLOCK
    237       1.5       leo void
    238       1.5       leo statintr(frame)
    239      1.16       leo 	struct clockframe frame;
    240       1.5       leo {
    241       1.5       leo 	register int	var, r;
    242       1.5       leo 
    243       1.5       leo 	var = statvar - 1;
    244       1.5       leo 	do {
    245       1.5       leo 		r = random() & var;
    246       1.5       leo 	} while(r == 0);
    247       1.5       leo 
    248       1.5       leo 	/*
    249       1.5       leo 	 * Note that we are always lagging behind as the new divisor
    250       1.5       leo 	 * value will not be loaded until the next interrupt. This
    251       1.5       leo 	 * shouldn't disturb the median frequency (I think ;-) ) as
    252       1.5       leo 	 * only the value used when switching frequencies is used
    253       1.5       leo 	 * twice. This shouldn't happen very often.
    254       1.5       leo 	 */
    255       1.5       leo 	MFP->mf_tcdr = clk2min + r;
    256       1.5       leo 
    257      1.16       leo 	statclock(&frame);
    258       1.5       leo }
    259       1.5       leo #endif /* STATCLOCK */
    260       1.5       leo 
    261       1.1       leo /*
    262       1.1       leo  * Returns number of usec since last recorded clock "tick"
    263       1.1       leo  * (i.e. clock interrupt).
    264       1.1       leo  */
    265       1.9       leo long
    266       1.1       leo clkread()
    267       1.1       leo {
    268       1.3       leo 	u_int	delta;
    269      1.22       leo 	u_char	ipra, tadr;
    270       1.3       leo 
    271      1.22       leo 	/*
    272      1.22       leo 	 * Note: Order is important!
    273      1.22       leo 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
    274      1.22       leo 	 * the situation that very low value in 'tadr' is read (== a big delta)
    275      1.22       leo 	 * while also acccounting for a full 'tick' because the counter went
    276      1.22       leo 	 * through zero during the calculations.
    277      1.22       leo 	 */
    278      1.22       leo 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
    279      1.22       leo 
    280      1.22       leo 	delta = ((divisor - tadr) * tick) / divisor;
    281       1.1       leo 	/*
    282       1.1       leo 	 * Account for pending clock interrupts
    283       1.1       leo 	 */
    284      1.22       leo 	if(ipra & IA_TIMA)
    285       1.1       leo 		return(delta + tick);
    286       1.1       leo 	return(delta);
    287       1.1       leo }
    288       1.1       leo 
    289       1.2       leo #define TIMB_FREQ	614400
    290       1.2       leo #define TIMB_LIMIT	256
    291       1.1       leo 
    292       1.1       leo /*
    293       1.1       leo  * Wait "n" microseconds.
    294       1.2       leo  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    295       1.1       leo  * Note: timer had better have been programmed before this is first used!
    296       1.1       leo  */
    297      1.14       leo void
    298      1.14       leo delay(n)
    299       1.1       leo int	n;
    300       1.1       leo {
    301       1.1       leo 	int	tick, otick;
    302       1.1       leo 
    303       1.1       leo 	/*
    304       1.1       leo 	 * Read the counter first, so that the rest of the setup overhead is
    305       1.1       leo 	 * counted.
    306       1.1       leo 	 */
    307       1.2       leo 	otick = MFP->mf_tbdr;
    308       1.1       leo 
    309       1.1       leo 	/*
    310       1.1       leo 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    311       1.1       leo 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    312       1.1       leo 	 * loss of significance.
    313       1.1       leo 	 */
    314       1.1       leo 	n -= 5;
    315       1.1       leo 	if(n < 0)
    316       1.1       leo 		return;
    317       1.1       leo 	{
    318       1.1       leo 	    u_int	temp;
    319       1.1       leo 
    320       1.1       leo 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    321      1.23       leo 					       : "d" (TIMB_FREQ), "d" (n));
    322       1.1       leo 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    323       1.1       leo 					       : "d"(1000000),"d"(temp),"0"(n));
    324       1.1       leo 	}
    325       1.1       leo 
    326       1.1       leo 	while(n > 0) {
    327       1.2       leo 		tick = MFP->mf_tbdr;
    328       1.1       leo 		if(tick > otick)
    329       1.2       leo 			n -= TIMB_LIMIT - (tick - otick);
    330       1.1       leo 		else n -= otick - tick;
    331       1.1       leo 		otick = tick;
    332       1.1       leo 	}
    333       1.1       leo }
    334       1.1       leo 
    335       1.4       leo #ifdef GPROF
    336       1.1       leo /*
    337       1.1       leo  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    338       1.1       leo  * Assumes it is called with clock interrupts blocked.
    339       1.1       leo  */
    340       1.1       leo profclock(pc, ps)
    341       1.1       leo 	caddr_t pc;
    342       1.1       leo 	int ps;
    343       1.1       leo {
    344       1.1       leo 	/*
    345       1.1       leo 	 * Came from user mode.
    346       1.1       leo 	 * If this process is being profiled record the tick.
    347       1.1       leo 	 */
    348       1.1       leo 	if (USERMODE(ps)) {
    349       1.1       leo 		if (p->p_stats.p_prof.pr_scale)
    350       1.1       leo 			addupc(pc, &curproc->p_stats.p_prof, 1);
    351       1.1       leo 	}
    352       1.1       leo 	/*
    353       1.1       leo 	 * Came from kernel (supervisor) mode.
    354       1.1       leo 	 * If we are profiling the kernel, record the tick.
    355       1.1       leo 	 */
    356       1.1       leo 	else if (profiling < 2) {
    357       1.1       leo 		register int s = pc - s_lowpc;
    358       1.1       leo 
    359       1.1       leo 		if (s < s_textsize)
    360       1.1       leo 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    361       1.1       leo 	}
    362       1.1       leo 	/*
    363       1.1       leo 	 * Kernel profiling was on but has been disabled.
    364       1.1       leo 	 * Mark as no longer profiling kernel and if all profiling done,
    365       1.1       leo 	 * disable the clock.
    366       1.1       leo 	 */
    367       1.1       leo 	if (profiling && (profon & PRF_KERNEL)) {
    368       1.1       leo 		profon &= ~PRF_KERNEL;
    369       1.1       leo 		if (profon == PRF_NONE)
    370       1.1       leo 			stopprofclock();
    371       1.1       leo 	}
    372       1.1       leo }
    373       1.1       leo #endif
    374       1.7       leo 
    375       1.7       leo /***********************************************************************
    376       1.7       leo  *                   Real Time Clock support                           *
    377       1.7       leo  ***********************************************************************/
    378       1.7       leo 
    379       1.7       leo u_int mc146818_read(rtc, regno)
    380       1.7       leo void	*rtc;
    381       1.7       leo u_int	regno;
    382       1.7       leo {
    383       1.7       leo 	((struct rtc *)rtc)->rtc_regno = regno;
    384       1.7       leo 	return(((struct rtc *)rtc)->rtc_data & 0377);
    385       1.7       leo }
    386       1.7       leo 
    387       1.7       leo void mc146818_write(rtc, regno, value)
    388       1.7       leo void	*rtc;
    389       1.7       leo u_int	regno, value;
    390       1.7       leo {
    391       1.7       leo 	((struct rtc *)rtc)->rtc_regno = regno;
    392       1.7       leo 	((struct rtc *)rtc)->rtc_data  = value;
    393       1.7       leo }
    394       1.1       leo 
    395       1.1       leo /*
    396      1.14       leo  * Initialize the time of day register, assuming the RTC runs in UTC.
    397      1.14       leo  * Since we've got the 'rtc' device, this functionality should be removed
    398      1.14       leo  * from the kernel. The only problem to be solved before that can happen
    399      1.14       leo  * is the possibility of init(1) providing a way (rc.boot?) to set
    400      1.14       leo  * the RTC before single-user mode is entered.
    401       1.1       leo  */
    402       1.9       leo void
    403       1.1       leo inittodr(base)
    404       1.1       leo time_t base;
    405       1.1       leo {
    406       1.1       leo 	/* Battery clock does not store usec's, so forget about it. */
    407      1.14       leo 	time.tv_sec  = gettod();
    408      1.11       leo 	time.tv_usec = 0;
    409       1.1       leo }
    410       1.1       leo 
    411      1.14       leo /*
    412      1.14       leo  * Function turned into a No-op. Use /dev/rtc to update the RTC.
    413      1.14       leo  */
    414       1.9       leo void
    415       1.1       leo resettodr()
    416       1.1       leo {
    417      1.14       leo 	return;
    418       1.1       leo }
    419       1.1       leo 
    420       1.1       leo static u_long
    421       1.1       leo gettod()
    422       1.1       leo {
    423      1.18       leo 	int			sps;
    424      1.18       leo 	mc_todregs		clkregs;
    425      1.25       leo 	u_int			regb;
    426      1.18       leo 	struct clock_ymdhms	dt;
    427       1.3       leo 
    428       1.3       leo 	sps = splhigh();
    429      1.25       leo 	regb = mc146818_read(RTC, MC_REGB);
    430       1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    431       1.3       leo 	splx(sps);
    432       1.1       leo 
    433      1.25       leo 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    434      1.25       leo 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    435      1.25       leo 		printf("Error: Nonstandard RealTimeClock Configuration -"
    436      1.25       leo 			" value ignored\n"
    437      1.25       leo 			"       A write to /dev/rtc will correct this.\n");
    438      1.25       leo 			return(0);
    439      1.25       leo 	}
    440       1.9       leo 	if(clkregs[MC_SEC] > 59)
    441       1.8       leo 		return(0);
    442       1.9       leo 	if(clkregs[MC_MIN] > 59)
    443       1.8       leo 		return(0);
    444       1.9       leo 	if(clkregs[MC_HOUR] > 23)
    445       1.1       leo 		return(0);
    446       1.3       leo 	if(range_test(clkregs[MC_DOM], 1, 31))
    447       1.1       leo 		return(0);
    448       1.3       leo 	if (range_test(clkregs[MC_MONTH], 1, 12))
    449       1.1       leo 		return(0);
    450      1.24       leo 	if(clkregs[MC_YEAR] > 99)
    451       1.1       leo 		return(0);
    452       1.1       leo 
    453      1.18       leo 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    454      1.18       leo 	dt.dt_mon  = clkregs[MC_MONTH];
    455      1.18       leo 	dt.dt_day  = clkregs[MC_DOM];
    456      1.18       leo 	dt.dt_hour = clkregs[MC_HOUR];
    457      1.18       leo 	dt.dt_min  = clkregs[MC_MIN];
    458      1.18       leo 	dt.dt_sec  = clkregs[MC_SEC];
    459       1.1       leo 
    460      1.18       leo 	return(clock_ymdhms_to_secs(&dt));
    461       1.1       leo }
    462      1.14       leo /***********************************************************************
    463      1.14       leo  *                   RTC-device support				       *
    464      1.14       leo  ***********************************************************************/
    465      1.14       leo int
    466      1.14       leo rtcopen(dev, flag, mode, p)
    467      1.14       leo 	dev_t		dev;
    468      1.14       leo 	int		flag, mode;
    469      1.14       leo 	struct proc	*p;
    470      1.14       leo {
    471      1.14       leo 	int			unit = minor(dev);
    472      1.14       leo 	struct clock_softc	*sc;
    473      1.14       leo 
    474      1.14       leo 	if (unit >= clock_cd.cd_ndevs)
    475      1.14       leo 		return ENXIO;
    476      1.14       leo 	sc = clock_cd.cd_devs[unit];
    477      1.14       leo 	if (!sc)
    478      1.14       leo 		return ENXIO;
    479      1.14       leo 	if (sc->sc_flags & RTC_OPEN)
    480      1.14       leo 		return EBUSY;
    481      1.14       leo 
    482      1.14       leo 	sc->sc_flags = RTC_OPEN;
    483      1.14       leo 	return 0;
    484      1.14       leo }
    485       1.1       leo 
    486      1.14       leo int
    487      1.14       leo rtcclose(dev, flag, mode, p)
    488      1.14       leo 	dev_t		dev;
    489      1.14       leo 	int		flag;
    490      1.14       leo 	int		mode;
    491      1.14       leo 	struct proc	*p;
    492       1.1       leo {
    493      1.14       leo 	int			unit = minor(dev);
    494      1.14       leo 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
    495      1.14       leo 
    496      1.14       leo 	sc->sc_flags = 0;
    497      1.14       leo 	return 0;
    498      1.14       leo }
    499      1.14       leo 
    500      1.14       leo int
    501      1.14       leo rtcread(dev, uio, flags)
    502      1.14       leo 	dev_t		dev;
    503      1.14       leo 	struct uio	*uio;
    504      1.14       leo 	int		flags;
    505      1.14       leo {
    506      1.14       leo 	struct clock_softc	*sc;
    507      1.14       leo 	mc_todregs		clkregs;
    508      1.14       leo 	int			s, length;
    509      1.14       leo 	char			buffer[16];
    510      1.14       leo 
    511      1.14       leo 	sc = clock_cd.cd_devs[minor(dev)];
    512      1.14       leo 
    513      1.14       leo 	s = splhigh();
    514      1.14       leo 	MC146818_GETTOD(RTC, &clkregs);
    515      1.14       leo 	splx(s);
    516      1.14       leo 
    517      1.21       leo 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    518      1.21       leo 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    519      1.14       leo 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    520      1.14       leo 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    521      1.14       leo 
    522      1.14       leo 	if (uio->uio_offset > strlen(buffer))
    523      1.14       leo 		return 0;
    524       1.1       leo 
    525      1.14       leo 	length = strlen(buffer) - uio->uio_offset;
    526      1.14       leo 	if (length > uio->uio_resid)
    527      1.14       leo 		length = uio->uio_resid;
    528       1.1       leo 
    529      1.14       leo 	return(uiomove((caddr_t)buffer, length, uio));
    530      1.14       leo }
    531      1.14       leo 
    532      1.14       leo static int
    533      1.14       leo twodigits(buffer, pos)
    534      1.14       leo 	char *buffer;
    535      1.14       leo 	int pos;
    536      1.14       leo {
    537      1.14       leo 	int result = 0;
    538      1.14       leo 
    539      1.14       leo 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    540      1.14       leo 		result = (buffer[pos] - '0') * 10;
    541      1.14       leo 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    542      1.14       leo 		result += (buffer[pos+1] - '0');
    543      1.14       leo 	return(result);
    544      1.14       leo }
    545       1.1       leo 
    546      1.14       leo int
    547      1.14       leo rtcwrite(dev, uio, flags)
    548      1.14       leo 	dev_t		dev;
    549      1.14       leo 	struct uio	*uio;
    550      1.14       leo 	int		flags;
    551      1.14       leo {
    552      1.14       leo 	mc_todregs		clkregs;
    553      1.14       leo 	int			s, length, error;
    554      1.21       leo 	char			buffer[16];
    555      1.14       leo 
    556      1.14       leo 	/*
    557      1.14       leo 	 * We require atomic updates!
    558      1.14       leo 	 */
    559      1.14       leo 	length = uio->uio_resid;
    560      1.14       leo 	if (uio->uio_offset || (length != sizeof(buffer)
    561      1.14       leo 	  && length != sizeof(buffer - 1)))
    562      1.14       leo 		return(EINVAL);
    563      1.14       leo 
    564      1.14       leo 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
    565      1.14       leo 		return(error);
    566       1.1       leo 
    567      1.14       leo 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    568      1.14       leo 		return(EINVAL);
    569       1.1       leo 
    570      1.14       leo 	s = splclock();
    571      1.25       leo 	mc146818_write(RTC, MC_REGB,
    572      1.25       leo 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    573       1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    574      1.14       leo 	splx(s);
    575      1.14       leo 
    576      1.21       leo 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    577      1.21       leo 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    578      1.21       leo 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    579      1.21       leo 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    580      1.21       leo 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    581      1.21       leo 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    582      1.14       leo 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    583      1.14       leo 
    584      1.14       leo 	s = splclock();
    585       1.3       leo 	MC146818_PUTTOD(RTC, &clkregs);
    586      1.14       leo 	splx(s);
    587       1.1       leo 
    588      1.14       leo 	return(0);
    589       1.1       leo }
    590