Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.27.14.1
      1  1.27.14.1   gehenna /*	$NetBSD: clock.c,v 1.27.14.1 2002/05/17 15:41:02 gehenna Exp $	*/
      2        1.1       leo 
      3        1.1       leo /*
      4        1.1       leo  * Copyright (c) 1988 University of Utah.
      5        1.1       leo  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6        1.1       leo  * All rights reserved.
      7        1.1       leo  *
      8        1.1       leo  * This code is derived from software contributed to Berkeley by
      9        1.1       leo  * the Systems Programming Group of the University of Utah Computer
     10        1.1       leo  * Science Department.
     11        1.1       leo  *
     12        1.1       leo  * Redistribution and use in source and binary forms, with or without
     13        1.1       leo  * modification, are permitted provided that the following conditions
     14        1.1       leo  * are met:
     15        1.1       leo  * 1. Redistributions of source code must retain the above copyright
     16        1.1       leo  *    notice, this list of conditions and the following disclaimer.
     17        1.1       leo  * 2. Redistributions in binary form must reproduce the above copyright
     18        1.1       leo  *    notice, this list of conditions and the following disclaimer in the
     19        1.1       leo  *    documentation and/or other materials provided with the distribution.
     20        1.1       leo  * 3. All advertising materials mentioning features or use of this software
     21        1.1       leo  *    must display the following acknowledgement:
     22        1.1       leo  *	This product includes software developed by the University of
     23        1.1       leo  *	California, Berkeley and its contributors.
     24        1.1       leo  * 4. Neither the name of the University nor the names of its contributors
     25        1.1       leo  *    may be used to endorse or promote products derived from this software
     26        1.1       leo  *    without specific prior written permission.
     27        1.1       leo  *
     28        1.1       leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29        1.1       leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30        1.1       leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31        1.1       leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32        1.1       leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33        1.1       leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34        1.1       leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35        1.1       leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36        1.1       leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37        1.1       leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38        1.1       leo  * SUCH DAMAGE.
     39        1.1       leo  *
     40        1.1       leo  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41        1.1       leo  *
     42        1.1       leo  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43        1.1       leo  */
     44        1.1       leo 
     45        1.1       leo #include <sys/param.h>
     46        1.1       leo #include <sys/kernel.h>
     47        1.9       leo #include <sys/systm.h>
     48        1.1       leo #include <sys/device.h>
     49       1.14       leo #include <sys/uio.h>
     50       1.14       leo #include <sys/conf.h>
     51       1.18       leo 
     52       1.18       leo #include <dev/clock_subr.h>
     53       1.18       leo 
     54        1.1       leo #include <machine/psl.h>
     55        1.1       leo #include <machine/cpu.h>
     56        1.1       leo #include <machine/iomap.h>
     57        1.1       leo #include <machine/mfp.h>
     58        1.1       leo #include <atari/dev/clockreg.h>
     59       1.14       leo #include <atari/atari/device.h>
     60        1.1       leo 
     61        1.4       leo #if defined(GPROF) && defined(PROFTIMER)
     62        1.4       leo #include <machine/profile.h>
     63        1.1       leo #endif
     64        1.1       leo 
     65        1.1       leo /*
     66        1.5       leo  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     67        1.5       leo  * of 200. Therefore the timer runs at an effective rate of:
     68        1.5       leo  * 2457600/200 = 12288Hz.
     69        1.5       leo  */
     70        1.5       leo #define CLOCK_HZ	12288
     71        1.5       leo 
     72        1.5       leo /*
     73        1.1       leo  * Machine-dependent clock routines.
     74        1.1       leo  *
     75        1.1       leo  * Inittodr initializes the time of day hardware which provides
     76        1.1       leo  * date functions.
     77        1.1       leo  *
     78        1.1       leo  * Resettodr restores the time of day hardware after a time change.
     79        1.1       leo  */
     80        1.1       leo 
     81       1.14       leo struct clock_softc {
     82       1.14       leo 	struct device	sc_dev;
     83       1.14       leo 	int		sc_flags;
     84       1.14       leo };
     85       1.14       leo 
     86       1.14       leo /*
     87       1.14       leo  *  'sc_flags' state info. Only used by the rtc-device functions.
     88       1.14       leo  */
     89       1.14       leo #define	RTC_OPEN	1
     90       1.14       leo 
     91       1.14       leo dev_type_open(rtcopen);
     92       1.14       leo dev_type_close(rtcclose);
     93       1.14       leo dev_type_read(rtcread);
     94       1.14       leo dev_type_write(rtcwrite);
     95       1.14       leo 
     96       1.14       leo static void	clockattach __P((struct device *, struct device *, void *));
     97       1.17       leo static int	clockmatch __P((struct device *, struct cfdata *, void *));
     98        1.1       leo 
     99       1.10   thorpej struct cfattach clock_ca = {
    100       1.14       leo 	sizeof(struct clock_softc), clockmatch, clockattach
    101       1.10   thorpej };
    102       1.10   thorpej 
    103       1.19   thorpej extern struct cfdriver clock_cd;
    104  1.27.14.1   gehenna 
    105  1.27.14.1   gehenna const struct cdevsw rtc_cdevsw = {
    106  1.27.14.1   gehenna 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    107  1.27.14.1   gehenna 	nostop, notty, nopoll, nommap,
    108  1.27.14.1   gehenna };
    109        1.1       leo 
    110       1.16       leo void statintr __P((struct clockframe));
    111        1.9       leo 
    112        1.1       leo static u_long	gettod __P((void));
    113       1.14       leo static int	twodigits __P((char *, int));
    114        1.1       leo 
    115        1.5       leo static int	divisor;	/* Systemclock divisor	*/
    116        1.5       leo 
    117        1.5       leo /*
    118        1.5       leo  * Statistics and profile clock intervals and variances. Variance must
    119        1.5       leo  * be a power of 2. Since this gives us an even number, not an odd number,
    120        1.5       leo  * we discard one case and compensate. That is, a variance of 64 would
    121        1.5       leo  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    122       1.26       wiz  * This is symmetric around the point 32, or statvar/2, and thus averages
    123        1.5       leo  * to that value (assuming uniform random numbers).
    124        1.5       leo  */
    125        1.5       leo #ifdef STATCLOCK
    126        1.5       leo static int	statvar = 32;	/* {stat,prof}clock variance		*/
    127        1.5       leo static int	statmin;	/* statclock divisor - variance/2	*/
    128        1.5       leo static int	profmin;	/* profclock divisor - variance/2	*/
    129       1.27       wiz static int	clk2min;	/* current, from above choices		*/
    130        1.5       leo #endif
    131        1.1       leo 
    132        1.1       leo int
    133       1.17       leo clockmatch(pdp, cfp, auxp)
    134       1.14       leo struct device	*pdp;
    135       1.17       leo struct cfdata	*cfp;
    136       1.17       leo void		*auxp;
    137        1.1       leo {
    138       1.15       leo 	if (!atari_realconfig) {
    139       1.15       leo 	    /*
    140       1.15       leo 	     * Initialize Timer-B in the ST-MFP. This timer is used by
    141       1.15       leo 	     * the 'delay' function below. This timer is setup to be
    142       1.15       leo 	     * continueously counting from 255 back to zero at a
    143       1.15       leo 	     * frequency of 614400Hz. We do this *early* in the
    144       1.15       leo 	     * initialisation process.
    145       1.15       leo 	     */
    146       1.15       leo 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
    147       1.15       leo 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    148       1.15       leo 	    MFP->mf_tbdr  = 0;
    149       1.15       leo 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    150       1.15       leo 
    151       1.15       leo 	    /*
    152       1.15       leo 	     * Initialize the time structure
    153       1.15       leo 	     */
    154       1.15       leo 	    time.tv_sec  = 0;
    155       1.15       leo 	    time.tv_usec = 0;
    156       1.15       leo 
    157       1.15       leo 	    return 0;
    158       1.15       leo 	}
    159        1.1       leo 	if(!strcmp("clock", auxp))
    160        1.1       leo 		return(1);
    161        1.1       leo 	return(0);
    162        1.1       leo }
    163        1.1       leo 
    164        1.1       leo /*
    165        1.1       leo  * Start the real-time clock.
    166        1.1       leo  */
    167        1.1       leo void clockattach(pdp, dp, auxp)
    168        1.1       leo struct device	*pdp, *dp;
    169       1.14       leo void		*auxp;
    170        1.1       leo {
    171       1.14       leo 	struct clock_softc *sc = (void *)dp;
    172       1.14       leo 
    173       1.14       leo 	sc->sc_flags = 0;
    174       1.14       leo 
    175        1.1       leo 	/*
    176        1.3       leo 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    177        1.3       leo 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    178        1.3       leo 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    179        1.3       leo 	 * following expression works for 48, 64 or 96 hz.
    180        1.1       leo 	 */
    181        1.5       leo 	divisor       = CLOCK_HZ/hz;
    182        1.2       leo 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    183        1.2       leo 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    184        1.2       leo 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    185        1.1       leo 
    186        1.5       leo 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    187       1.13  christos 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    188        1.5       leo 								hz, 64);
    189        1.5       leo 		hz = 64;
    190        1.5       leo 	}
    191       1.13  christos 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    192        1.1       leo 
    193        1.5       leo #ifdef STATCLOCK
    194        1.5       leo 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    195        1.5       leo 		stathz = hz;
    196        1.5       leo 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    197        1.5       leo 		profhz = hz << 1;
    198        1.5       leo 
    199        1.5       leo 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    200        1.5       leo 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    201        1.5       leo 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    202        1.5       leo 
    203        1.5       leo 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    204        1.5       leo 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    205        1.5       leo 	clk2min  = statmin;
    206        1.5       leo #endif /* STATCLOCK */
    207       1.14       leo 
    208        1.1       leo }
    209        1.1       leo 
    210        1.1       leo void cpu_initclocks()
    211        1.1       leo {
    212        1.3       leo 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    213       1.20       leo 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    214        1.2       leo 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    215        1.2       leo 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    216        1.5       leo 
    217        1.5       leo #ifdef STATCLOCK
    218        1.5       leo 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    219       1.20       leo 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    220        1.5       leo 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    221        1.5       leo 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    222        1.5       leo #endif /* STATCLOCK */
    223        1.1       leo }
    224        1.1       leo 
    225        1.9       leo void
    226        1.5       leo setstatclockrate(newhz)
    227        1.5       leo 	int newhz;
    228        1.1       leo {
    229        1.5       leo #ifdef STATCLOCK
    230        1.5       leo 	if (newhz == stathz)
    231        1.5       leo 		clk2min = statmin;
    232        1.5       leo 	else clk2min = profmin;
    233        1.5       leo #endif /* STATCLOCK */
    234        1.1       leo }
    235        1.1       leo 
    236        1.5       leo #ifdef STATCLOCK
    237        1.5       leo void
    238        1.5       leo statintr(frame)
    239       1.16       leo 	struct clockframe frame;
    240        1.5       leo {
    241        1.5       leo 	register int	var, r;
    242        1.5       leo 
    243        1.5       leo 	var = statvar - 1;
    244        1.5       leo 	do {
    245        1.5       leo 		r = random() & var;
    246        1.5       leo 	} while(r == 0);
    247        1.5       leo 
    248        1.5       leo 	/*
    249        1.5       leo 	 * Note that we are always lagging behind as the new divisor
    250        1.5       leo 	 * value will not be loaded until the next interrupt. This
    251        1.5       leo 	 * shouldn't disturb the median frequency (I think ;-) ) as
    252        1.5       leo 	 * only the value used when switching frequencies is used
    253        1.5       leo 	 * twice. This shouldn't happen very often.
    254        1.5       leo 	 */
    255        1.5       leo 	MFP->mf_tcdr = clk2min + r;
    256        1.5       leo 
    257       1.16       leo 	statclock(&frame);
    258        1.5       leo }
    259        1.5       leo #endif /* STATCLOCK */
    260        1.5       leo 
    261        1.1       leo /*
    262        1.1       leo  * Returns number of usec since last recorded clock "tick"
    263        1.1       leo  * (i.e. clock interrupt).
    264        1.1       leo  */
    265        1.9       leo long
    266        1.1       leo clkread()
    267        1.1       leo {
    268        1.3       leo 	u_int	delta;
    269       1.22       leo 	u_char	ipra, tadr;
    270        1.3       leo 
    271       1.22       leo 	/*
    272       1.22       leo 	 * Note: Order is important!
    273       1.22       leo 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
    274       1.22       leo 	 * the situation that very low value in 'tadr' is read (== a big delta)
    275       1.22       leo 	 * while also acccounting for a full 'tick' because the counter went
    276       1.22       leo 	 * through zero during the calculations.
    277       1.22       leo 	 */
    278       1.22       leo 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
    279       1.22       leo 
    280       1.22       leo 	delta = ((divisor - tadr) * tick) / divisor;
    281        1.1       leo 	/*
    282        1.1       leo 	 * Account for pending clock interrupts
    283        1.1       leo 	 */
    284       1.22       leo 	if(ipra & IA_TIMA)
    285        1.1       leo 		return(delta + tick);
    286        1.1       leo 	return(delta);
    287        1.1       leo }
    288        1.1       leo 
    289        1.2       leo #define TIMB_FREQ	614400
    290        1.2       leo #define TIMB_LIMIT	256
    291        1.1       leo 
    292        1.1       leo /*
    293        1.1       leo  * Wait "n" microseconds.
    294        1.2       leo  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    295        1.1       leo  * Note: timer had better have been programmed before this is first used!
    296        1.1       leo  */
    297       1.14       leo void
    298       1.14       leo delay(n)
    299        1.1       leo int	n;
    300        1.1       leo {
    301        1.1       leo 	int	tick, otick;
    302        1.1       leo 
    303        1.1       leo 	/*
    304        1.1       leo 	 * Read the counter first, so that the rest of the setup overhead is
    305        1.1       leo 	 * counted.
    306        1.1       leo 	 */
    307        1.2       leo 	otick = MFP->mf_tbdr;
    308        1.1       leo 
    309        1.1       leo 	/*
    310        1.1       leo 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    311        1.1       leo 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    312        1.1       leo 	 * loss of significance.
    313        1.1       leo 	 */
    314        1.1       leo 	n -= 5;
    315        1.1       leo 	if(n < 0)
    316        1.1       leo 		return;
    317        1.1       leo 	{
    318        1.1       leo 	    u_int	temp;
    319        1.1       leo 
    320        1.1       leo 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    321       1.23       leo 					       : "d" (TIMB_FREQ), "d" (n));
    322        1.1       leo 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    323        1.1       leo 					       : "d"(1000000),"d"(temp),"0"(n));
    324        1.1       leo 	}
    325        1.1       leo 
    326        1.1       leo 	while(n > 0) {
    327        1.2       leo 		tick = MFP->mf_tbdr;
    328        1.1       leo 		if(tick > otick)
    329        1.2       leo 			n -= TIMB_LIMIT - (tick - otick);
    330        1.1       leo 		else n -= otick - tick;
    331        1.1       leo 		otick = tick;
    332        1.1       leo 	}
    333        1.1       leo }
    334        1.1       leo 
    335        1.4       leo #ifdef GPROF
    336        1.1       leo /*
    337        1.1       leo  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    338        1.1       leo  * Assumes it is called with clock interrupts blocked.
    339        1.1       leo  */
    340        1.1       leo profclock(pc, ps)
    341        1.1       leo 	caddr_t pc;
    342        1.1       leo 	int ps;
    343        1.1       leo {
    344        1.1       leo 	/*
    345        1.1       leo 	 * Came from user mode.
    346        1.1       leo 	 * If this process is being profiled record the tick.
    347        1.1       leo 	 */
    348        1.1       leo 	if (USERMODE(ps)) {
    349        1.1       leo 		if (p->p_stats.p_prof.pr_scale)
    350        1.1       leo 			addupc(pc, &curproc->p_stats.p_prof, 1);
    351        1.1       leo 	}
    352        1.1       leo 	/*
    353        1.1       leo 	 * Came from kernel (supervisor) mode.
    354        1.1       leo 	 * If we are profiling the kernel, record the tick.
    355        1.1       leo 	 */
    356        1.1       leo 	else if (profiling < 2) {
    357        1.1       leo 		register int s = pc - s_lowpc;
    358        1.1       leo 
    359        1.1       leo 		if (s < s_textsize)
    360        1.1       leo 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    361        1.1       leo 	}
    362        1.1       leo 	/*
    363        1.1       leo 	 * Kernel profiling was on but has been disabled.
    364        1.1       leo 	 * Mark as no longer profiling kernel and if all profiling done,
    365        1.1       leo 	 * disable the clock.
    366        1.1       leo 	 */
    367        1.1       leo 	if (profiling && (profon & PRF_KERNEL)) {
    368        1.1       leo 		profon &= ~PRF_KERNEL;
    369        1.1       leo 		if (profon == PRF_NONE)
    370        1.1       leo 			stopprofclock();
    371        1.1       leo 	}
    372        1.1       leo }
    373        1.1       leo #endif
    374        1.7       leo 
    375        1.7       leo /***********************************************************************
    376        1.7       leo  *                   Real Time Clock support                           *
    377        1.7       leo  ***********************************************************************/
    378        1.7       leo 
    379        1.7       leo u_int mc146818_read(rtc, regno)
    380        1.7       leo void	*rtc;
    381        1.7       leo u_int	regno;
    382        1.7       leo {
    383        1.7       leo 	((struct rtc *)rtc)->rtc_regno = regno;
    384        1.7       leo 	return(((struct rtc *)rtc)->rtc_data & 0377);
    385        1.7       leo }
    386        1.7       leo 
    387        1.7       leo void mc146818_write(rtc, regno, value)
    388        1.7       leo void	*rtc;
    389        1.7       leo u_int	regno, value;
    390        1.7       leo {
    391        1.7       leo 	((struct rtc *)rtc)->rtc_regno = regno;
    392        1.7       leo 	((struct rtc *)rtc)->rtc_data  = value;
    393        1.7       leo }
    394        1.1       leo 
    395        1.1       leo /*
    396       1.14       leo  * Initialize the time of day register, assuming the RTC runs in UTC.
    397       1.14       leo  * Since we've got the 'rtc' device, this functionality should be removed
    398       1.14       leo  * from the kernel. The only problem to be solved before that can happen
    399       1.14       leo  * is the possibility of init(1) providing a way (rc.boot?) to set
    400       1.14       leo  * the RTC before single-user mode is entered.
    401        1.1       leo  */
    402        1.9       leo void
    403        1.1       leo inittodr(base)
    404        1.1       leo time_t base;
    405        1.1       leo {
    406        1.1       leo 	/* Battery clock does not store usec's, so forget about it. */
    407       1.14       leo 	time.tv_sec  = gettod();
    408       1.11       leo 	time.tv_usec = 0;
    409        1.1       leo }
    410        1.1       leo 
    411       1.14       leo /*
    412       1.14       leo  * Function turned into a No-op. Use /dev/rtc to update the RTC.
    413       1.14       leo  */
    414        1.9       leo void
    415        1.1       leo resettodr()
    416        1.1       leo {
    417       1.14       leo 	return;
    418        1.1       leo }
    419        1.1       leo 
    420        1.1       leo static u_long
    421        1.1       leo gettod()
    422        1.1       leo {
    423       1.18       leo 	int			sps;
    424       1.18       leo 	mc_todregs		clkregs;
    425       1.25       leo 	u_int			regb;
    426       1.18       leo 	struct clock_ymdhms	dt;
    427        1.3       leo 
    428        1.3       leo 	sps = splhigh();
    429       1.25       leo 	regb = mc146818_read(RTC, MC_REGB);
    430        1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    431        1.3       leo 	splx(sps);
    432        1.1       leo 
    433       1.25       leo 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    434       1.25       leo 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    435       1.25       leo 		printf("Error: Nonstandard RealTimeClock Configuration -"
    436       1.25       leo 			" value ignored\n"
    437       1.25       leo 			"       A write to /dev/rtc will correct this.\n");
    438       1.25       leo 			return(0);
    439       1.25       leo 	}
    440        1.9       leo 	if(clkregs[MC_SEC] > 59)
    441        1.8       leo 		return(0);
    442        1.9       leo 	if(clkregs[MC_MIN] > 59)
    443        1.8       leo 		return(0);
    444        1.9       leo 	if(clkregs[MC_HOUR] > 23)
    445        1.1       leo 		return(0);
    446        1.3       leo 	if(range_test(clkregs[MC_DOM], 1, 31))
    447        1.1       leo 		return(0);
    448        1.3       leo 	if (range_test(clkregs[MC_MONTH], 1, 12))
    449        1.1       leo 		return(0);
    450       1.24       leo 	if(clkregs[MC_YEAR] > 99)
    451        1.1       leo 		return(0);
    452        1.1       leo 
    453       1.18       leo 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    454       1.18       leo 	dt.dt_mon  = clkregs[MC_MONTH];
    455       1.18       leo 	dt.dt_day  = clkregs[MC_DOM];
    456       1.18       leo 	dt.dt_hour = clkregs[MC_HOUR];
    457       1.18       leo 	dt.dt_min  = clkregs[MC_MIN];
    458       1.18       leo 	dt.dt_sec  = clkregs[MC_SEC];
    459        1.1       leo 
    460       1.18       leo 	return(clock_ymdhms_to_secs(&dt));
    461        1.1       leo }
    462       1.14       leo /***********************************************************************
    463       1.14       leo  *                   RTC-device support				       *
    464       1.14       leo  ***********************************************************************/
    465       1.14       leo int
    466       1.14       leo rtcopen(dev, flag, mode, p)
    467       1.14       leo 	dev_t		dev;
    468       1.14       leo 	int		flag, mode;
    469       1.14       leo 	struct proc	*p;
    470       1.14       leo {
    471       1.14       leo 	int			unit = minor(dev);
    472       1.14       leo 	struct clock_softc	*sc;
    473       1.14       leo 
    474       1.14       leo 	if (unit >= clock_cd.cd_ndevs)
    475       1.14       leo 		return ENXIO;
    476       1.14       leo 	sc = clock_cd.cd_devs[unit];
    477       1.14       leo 	if (!sc)
    478       1.14       leo 		return ENXIO;
    479       1.14       leo 	if (sc->sc_flags & RTC_OPEN)
    480       1.14       leo 		return EBUSY;
    481       1.14       leo 
    482       1.14       leo 	sc->sc_flags = RTC_OPEN;
    483       1.14       leo 	return 0;
    484       1.14       leo }
    485        1.1       leo 
    486       1.14       leo int
    487       1.14       leo rtcclose(dev, flag, mode, p)
    488       1.14       leo 	dev_t		dev;
    489       1.14       leo 	int		flag;
    490       1.14       leo 	int		mode;
    491       1.14       leo 	struct proc	*p;
    492        1.1       leo {
    493       1.14       leo 	int			unit = minor(dev);
    494       1.14       leo 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
    495       1.14       leo 
    496       1.14       leo 	sc->sc_flags = 0;
    497       1.14       leo 	return 0;
    498       1.14       leo }
    499       1.14       leo 
    500       1.14       leo int
    501       1.14       leo rtcread(dev, uio, flags)
    502       1.14       leo 	dev_t		dev;
    503       1.14       leo 	struct uio	*uio;
    504       1.14       leo 	int		flags;
    505       1.14       leo {
    506       1.14       leo 	struct clock_softc	*sc;
    507       1.14       leo 	mc_todregs		clkregs;
    508       1.14       leo 	int			s, length;
    509       1.14       leo 	char			buffer[16];
    510       1.14       leo 
    511       1.14       leo 	sc = clock_cd.cd_devs[minor(dev)];
    512       1.14       leo 
    513       1.14       leo 	s = splhigh();
    514       1.14       leo 	MC146818_GETTOD(RTC, &clkregs);
    515       1.14       leo 	splx(s);
    516       1.14       leo 
    517       1.21       leo 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    518       1.21       leo 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    519       1.14       leo 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    520       1.14       leo 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    521       1.14       leo 
    522       1.14       leo 	if (uio->uio_offset > strlen(buffer))
    523       1.14       leo 		return 0;
    524        1.1       leo 
    525       1.14       leo 	length = strlen(buffer) - uio->uio_offset;
    526       1.14       leo 	if (length > uio->uio_resid)
    527       1.14       leo 		length = uio->uio_resid;
    528        1.1       leo 
    529       1.14       leo 	return(uiomove((caddr_t)buffer, length, uio));
    530       1.14       leo }
    531       1.14       leo 
    532       1.14       leo static int
    533       1.14       leo twodigits(buffer, pos)
    534       1.14       leo 	char *buffer;
    535       1.14       leo 	int pos;
    536       1.14       leo {
    537       1.14       leo 	int result = 0;
    538       1.14       leo 
    539       1.14       leo 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    540       1.14       leo 		result = (buffer[pos] - '0') * 10;
    541       1.14       leo 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    542       1.14       leo 		result += (buffer[pos+1] - '0');
    543       1.14       leo 	return(result);
    544       1.14       leo }
    545        1.1       leo 
    546       1.14       leo int
    547       1.14       leo rtcwrite(dev, uio, flags)
    548       1.14       leo 	dev_t		dev;
    549       1.14       leo 	struct uio	*uio;
    550       1.14       leo 	int		flags;
    551       1.14       leo {
    552       1.14       leo 	mc_todregs		clkregs;
    553       1.14       leo 	int			s, length, error;
    554       1.21       leo 	char			buffer[16];
    555       1.14       leo 
    556       1.14       leo 	/*
    557       1.14       leo 	 * We require atomic updates!
    558       1.14       leo 	 */
    559       1.14       leo 	length = uio->uio_resid;
    560       1.14       leo 	if (uio->uio_offset || (length != sizeof(buffer)
    561       1.14       leo 	  && length != sizeof(buffer - 1)))
    562       1.14       leo 		return(EINVAL);
    563       1.14       leo 
    564       1.14       leo 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
    565       1.14       leo 		return(error);
    566        1.1       leo 
    567       1.14       leo 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    568       1.14       leo 		return(EINVAL);
    569        1.1       leo 
    570       1.14       leo 	s = splclock();
    571       1.25       leo 	mc146818_write(RTC, MC_REGB,
    572       1.25       leo 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    573        1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    574       1.14       leo 	splx(s);
    575       1.14       leo 
    576       1.21       leo 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    577       1.21       leo 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    578       1.21       leo 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    579       1.21       leo 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    580       1.21       leo 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    581       1.21       leo 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    582       1.14       leo 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    583       1.14       leo 
    584       1.14       leo 	s = splclock();
    585        1.3       leo 	MC146818_PUTTOD(RTC, &clkregs);
    586       1.14       leo 	splx(s);
    587        1.1       leo 
    588       1.14       leo 	return(0);
    589        1.1       leo }
    590