clock.c revision 1.27.2.1 1 1.27.2.1 fvdl /* $NetBSD: clock.c,v 1.27.2.1 2001/10/10 11:55:59 fvdl Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.1 leo * Copyright (c) 1988 University of Utah.
5 1.1 leo * Copyright (c) 1982, 1990 The Regents of the University of California.
6 1.1 leo * All rights reserved.
7 1.1 leo *
8 1.1 leo * This code is derived from software contributed to Berkeley by
9 1.1 leo * the Systems Programming Group of the University of Utah Computer
10 1.1 leo * Science Department.
11 1.1 leo *
12 1.1 leo * Redistribution and use in source and binary forms, with or without
13 1.1 leo * modification, are permitted provided that the following conditions
14 1.1 leo * are met:
15 1.1 leo * 1. Redistributions of source code must retain the above copyright
16 1.1 leo * notice, this list of conditions and the following disclaimer.
17 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 leo * notice, this list of conditions and the following disclaimer in the
19 1.1 leo * documentation and/or other materials provided with the distribution.
20 1.1 leo * 3. All advertising materials mentioning features or use of this software
21 1.1 leo * must display the following acknowledgement:
22 1.1 leo * This product includes software developed by the University of
23 1.1 leo * California, Berkeley and its contributors.
24 1.1 leo * 4. Neither the name of the University nor the names of its contributors
25 1.1 leo * may be used to endorse or promote products derived from this software
26 1.1 leo * without specific prior written permission.
27 1.1 leo *
28 1.1 leo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 leo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 leo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 leo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 leo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 leo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 leo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 leo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 leo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 leo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 leo * SUCH DAMAGE.
39 1.1 leo *
40 1.1 leo * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 1.1 leo *
42 1.1 leo * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 1.1 leo */
44 1.1 leo
45 1.1 leo #include <sys/param.h>
46 1.1 leo #include <sys/kernel.h>
47 1.9 leo #include <sys/systm.h>
48 1.1 leo #include <sys/device.h>
49 1.14 leo #include <sys/uio.h>
50 1.14 leo #include <sys/conf.h>
51 1.27.2.1 fvdl #include <sys/vnode.h>
52 1.18 leo
53 1.18 leo #include <dev/clock_subr.h>
54 1.18 leo
55 1.1 leo #include <machine/psl.h>
56 1.1 leo #include <machine/cpu.h>
57 1.1 leo #include <machine/iomap.h>
58 1.1 leo #include <machine/mfp.h>
59 1.1 leo #include <atari/dev/clockreg.h>
60 1.14 leo #include <atari/atari/device.h>
61 1.1 leo
62 1.4 leo #if defined(GPROF) && defined(PROFTIMER)
63 1.4 leo #include <machine/profile.h>
64 1.1 leo #endif
65 1.1 leo
66 1.1 leo /*
67 1.5 leo * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
68 1.5 leo * of 200. Therefore the timer runs at an effective rate of:
69 1.5 leo * 2457600/200 = 12288Hz.
70 1.5 leo */
71 1.5 leo #define CLOCK_HZ 12288
72 1.5 leo
73 1.5 leo /*
74 1.1 leo * Machine-dependent clock routines.
75 1.1 leo *
76 1.1 leo * Inittodr initializes the time of day hardware which provides
77 1.1 leo * date functions.
78 1.1 leo *
79 1.1 leo * Resettodr restores the time of day hardware after a time change.
80 1.1 leo */
81 1.1 leo
82 1.14 leo struct clock_softc {
83 1.14 leo struct device sc_dev;
84 1.14 leo int sc_flags;
85 1.14 leo };
86 1.14 leo
87 1.14 leo /*
88 1.14 leo * 'sc_flags' state info. Only used by the rtc-device functions.
89 1.14 leo */
90 1.14 leo #define RTC_OPEN 1
91 1.14 leo
92 1.14 leo /* {b,c}devsw[] function prototypes for rtc functions */
93 1.14 leo dev_type_open(rtcopen);
94 1.14 leo dev_type_close(rtcclose);
95 1.14 leo dev_type_read(rtcread);
96 1.14 leo dev_type_write(rtcwrite);
97 1.14 leo
98 1.14 leo static void clockattach __P((struct device *, struct device *, void *));
99 1.17 leo static int clockmatch __P((struct device *, struct cfdata *, void *));
100 1.1 leo
101 1.10 thorpej struct cfattach clock_ca = {
102 1.14 leo sizeof(struct clock_softc), clockmatch, clockattach
103 1.10 thorpej };
104 1.10 thorpej
105 1.19 thorpej extern struct cfdriver clock_cd;
106 1.1 leo
107 1.16 leo void statintr __P((struct clockframe));
108 1.9 leo
109 1.1 leo static u_long gettod __P((void));
110 1.14 leo static int twodigits __P((char *, int));
111 1.1 leo
112 1.5 leo static int divisor; /* Systemclock divisor */
113 1.5 leo
114 1.5 leo /*
115 1.5 leo * Statistics and profile clock intervals and variances. Variance must
116 1.5 leo * be a power of 2. Since this gives us an even number, not an odd number,
117 1.5 leo * we discard one case and compensate. That is, a variance of 64 would
118 1.5 leo * give us offsets in [0..63]. Instead, we take offsets in [1..63].
119 1.26 wiz * This is symmetric around the point 32, or statvar/2, and thus averages
120 1.5 leo * to that value (assuming uniform random numbers).
121 1.5 leo */
122 1.5 leo #ifdef STATCLOCK
123 1.5 leo static int statvar = 32; /* {stat,prof}clock variance */
124 1.5 leo static int statmin; /* statclock divisor - variance/2 */
125 1.5 leo static int profmin; /* profclock divisor - variance/2 */
126 1.27 wiz static int clk2min; /* current, from above choices */
127 1.5 leo #endif
128 1.1 leo
129 1.1 leo int
130 1.17 leo clockmatch(pdp, cfp, auxp)
131 1.14 leo struct device *pdp;
132 1.17 leo struct cfdata *cfp;
133 1.17 leo void *auxp;
134 1.1 leo {
135 1.15 leo if (!atari_realconfig) {
136 1.15 leo /*
137 1.15 leo * Initialize Timer-B in the ST-MFP. This timer is used by
138 1.15 leo * the 'delay' function below. This timer is setup to be
139 1.15 leo * continueously counting from 255 back to zero at a
140 1.15 leo * frequency of 614400Hz. We do this *early* in the
141 1.15 leo * initialisation process.
142 1.15 leo */
143 1.15 leo MFP->mf_tbcr = 0; /* Stop timer */
144 1.15 leo MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
145 1.15 leo MFP->mf_tbdr = 0;
146 1.15 leo MFP->mf_tbcr = T_Q004; /* Start timer */
147 1.15 leo
148 1.15 leo /*
149 1.15 leo * Initialize the time structure
150 1.15 leo */
151 1.15 leo time.tv_sec = 0;
152 1.15 leo time.tv_usec = 0;
153 1.15 leo
154 1.15 leo return 0;
155 1.15 leo }
156 1.1 leo if(!strcmp("clock", auxp))
157 1.1 leo return(1);
158 1.1 leo return(0);
159 1.1 leo }
160 1.1 leo
161 1.1 leo /*
162 1.1 leo * Start the real-time clock.
163 1.1 leo */
164 1.1 leo void clockattach(pdp, dp, auxp)
165 1.1 leo struct device *pdp, *dp;
166 1.14 leo void *auxp;
167 1.1 leo {
168 1.14 leo struct clock_softc *sc = (void *)dp;
169 1.14 leo
170 1.14 leo sc->sc_flags = 0;
171 1.14 leo
172 1.1 leo /*
173 1.3 leo * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
174 1.3 leo * The MFP clock runs at 2457600Hz. Therefore the timer runs
175 1.3 leo * at an effective rate of: 2457600/200 = 12288Hz. The
176 1.3 leo * following expression works for 48, 64 or 96 hz.
177 1.1 leo */
178 1.5 leo divisor = CLOCK_HZ/hz;
179 1.2 leo MFP->mf_tacr = 0; /* Stop timer */
180 1.2 leo MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
181 1.2 leo MFP->mf_tadr = divisor; /* Set divisor */
182 1.1 leo
183 1.5 leo if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
184 1.13 christos printf (": illegal value %d for systemclock, reset to %d\n\t",
185 1.5 leo hz, 64);
186 1.5 leo hz = 64;
187 1.5 leo }
188 1.13 christos printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
189 1.1 leo
190 1.5 leo #ifdef STATCLOCK
191 1.5 leo if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
192 1.5 leo stathz = hz;
193 1.5 leo if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
194 1.5 leo profhz = hz << 1;
195 1.5 leo
196 1.5 leo MFP->mf_tcdcr &= 0x7; /* Stop timer */
197 1.5 leo MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
198 1.5 leo MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
199 1.5 leo
200 1.5 leo statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
201 1.5 leo profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
202 1.5 leo clk2min = statmin;
203 1.5 leo #endif /* STATCLOCK */
204 1.14 leo
205 1.1 leo }
206 1.1 leo
207 1.1 leo void cpu_initclocks()
208 1.1 leo {
209 1.3 leo MFP->mf_tacr = T_Q200; /* Start timer */
210 1.20 leo MFP->mf_ipra = (u_int8_t)~IA_TIMA;/* Clear pending interrupts */
211 1.2 leo MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
212 1.2 leo MFP->mf_imra |= IA_TIMA; /* ..... */
213 1.5 leo
214 1.5 leo #ifdef STATCLOCK
215 1.5 leo MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
216 1.20 leo MFP->mf_iprb = (u_int8_t)~IB_TIMC;/* Clear pending interrupts */
217 1.5 leo MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
218 1.5 leo MFP->mf_imrb |= IB_TIMC; /* ..... */
219 1.5 leo #endif /* STATCLOCK */
220 1.1 leo }
221 1.1 leo
222 1.9 leo void
223 1.5 leo setstatclockrate(newhz)
224 1.5 leo int newhz;
225 1.1 leo {
226 1.5 leo #ifdef STATCLOCK
227 1.5 leo if (newhz == stathz)
228 1.5 leo clk2min = statmin;
229 1.5 leo else clk2min = profmin;
230 1.5 leo #endif /* STATCLOCK */
231 1.1 leo }
232 1.1 leo
233 1.5 leo #ifdef STATCLOCK
234 1.5 leo void
235 1.5 leo statintr(frame)
236 1.16 leo struct clockframe frame;
237 1.5 leo {
238 1.5 leo register int var, r;
239 1.5 leo
240 1.5 leo var = statvar - 1;
241 1.5 leo do {
242 1.5 leo r = random() & var;
243 1.5 leo } while(r == 0);
244 1.5 leo
245 1.5 leo /*
246 1.5 leo * Note that we are always lagging behind as the new divisor
247 1.5 leo * value will not be loaded until the next interrupt. This
248 1.5 leo * shouldn't disturb the median frequency (I think ;-) ) as
249 1.5 leo * only the value used when switching frequencies is used
250 1.5 leo * twice. This shouldn't happen very often.
251 1.5 leo */
252 1.5 leo MFP->mf_tcdr = clk2min + r;
253 1.5 leo
254 1.16 leo statclock(&frame);
255 1.5 leo }
256 1.5 leo #endif /* STATCLOCK */
257 1.5 leo
258 1.1 leo /*
259 1.1 leo * Returns number of usec since last recorded clock "tick"
260 1.1 leo * (i.e. clock interrupt).
261 1.1 leo */
262 1.9 leo long
263 1.1 leo clkread()
264 1.1 leo {
265 1.3 leo u_int delta;
266 1.22 leo u_char ipra, tadr;
267 1.3 leo
268 1.22 leo /*
269 1.22 leo * Note: Order is important!
270 1.22 leo * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
271 1.22 leo * the situation that very low value in 'tadr' is read (== a big delta)
272 1.22 leo * while also acccounting for a full 'tick' because the counter went
273 1.22 leo * through zero during the calculations.
274 1.22 leo */
275 1.22 leo ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
276 1.22 leo
277 1.22 leo delta = ((divisor - tadr) * tick) / divisor;
278 1.1 leo /*
279 1.1 leo * Account for pending clock interrupts
280 1.1 leo */
281 1.22 leo if(ipra & IA_TIMA)
282 1.1 leo return(delta + tick);
283 1.1 leo return(delta);
284 1.1 leo }
285 1.1 leo
286 1.2 leo #define TIMB_FREQ 614400
287 1.2 leo #define TIMB_LIMIT 256
288 1.1 leo
289 1.1 leo /*
290 1.1 leo * Wait "n" microseconds.
291 1.2 leo * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
292 1.1 leo * Note: timer had better have been programmed before this is first used!
293 1.1 leo */
294 1.14 leo void
295 1.14 leo delay(n)
296 1.1 leo int n;
297 1.1 leo {
298 1.1 leo int tick, otick;
299 1.1 leo
300 1.1 leo /*
301 1.1 leo * Read the counter first, so that the rest of the setup overhead is
302 1.1 leo * counted.
303 1.1 leo */
304 1.2 leo otick = MFP->mf_tbdr;
305 1.1 leo
306 1.1 leo /*
307 1.1 leo * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
308 1.1 leo * we can take advantage of the intermediate 64-bit quantity to prevent
309 1.1 leo * loss of significance.
310 1.1 leo */
311 1.1 leo n -= 5;
312 1.1 leo if(n < 0)
313 1.1 leo return;
314 1.1 leo {
315 1.1 leo u_int temp;
316 1.1 leo
317 1.1 leo __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
318 1.23 leo : "d" (TIMB_FREQ), "d" (n));
319 1.1 leo __asm __volatile ("divul %1,%2:%0" : "=d" (n)
320 1.1 leo : "d"(1000000),"d"(temp),"0"(n));
321 1.1 leo }
322 1.1 leo
323 1.1 leo while(n > 0) {
324 1.2 leo tick = MFP->mf_tbdr;
325 1.1 leo if(tick > otick)
326 1.2 leo n -= TIMB_LIMIT - (tick - otick);
327 1.1 leo else n -= otick - tick;
328 1.1 leo otick = tick;
329 1.1 leo }
330 1.1 leo }
331 1.1 leo
332 1.4 leo #ifdef GPROF
333 1.1 leo /*
334 1.1 leo * profclock() is expanded in line in lev6intr() unless profiling kernel.
335 1.1 leo * Assumes it is called with clock interrupts blocked.
336 1.1 leo */
337 1.1 leo profclock(pc, ps)
338 1.1 leo caddr_t pc;
339 1.1 leo int ps;
340 1.1 leo {
341 1.1 leo /*
342 1.1 leo * Came from user mode.
343 1.1 leo * If this process is being profiled record the tick.
344 1.1 leo */
345 1.1 leo if (USERMODE(ps)) {
346 1.1 leo if (p->p_stats.p_prof.pr_scale)
347 1.1 leo addupc(pc, &curproc->p_stats.p_prof, 1);
348 1.1 leo }
349 1.1 leo /*
350 1.1 leo * Came from kernel (supervisor) mode.
351 1.1 leo * If we are profiling the kernel, record the tick.
352 1.1 leo */
353 1.1 leo else if (profiling < 2) {
354 1.1 leo register int s = pc - s_lowpc;
355 1.1 leo
356 1.1 leo if (s < s_textsize)
357 1.1 leo kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
358 1.1 leo }
359 1.1 leo /*
360 1.1 leo * Kernel profiling was on but has been disabled.
361 1.1 leo * Mark as no longer profiling kernel and if all profiling done,
362 1.1 leo * disable the clock.
363 1.1 leo */
364 1.1 leo if (profiling && (profon & PRF_KERNEL)) {
365 1.1 leo profon &= ~PRF_KERNEL;
366 1.1 leo if (profon == PRF_NONE)
367 1.1 leo stopprofclock();
368 1.1 leo }
369 1.1 leo }
370 1.1 leo #endif
371 1.7 leo
372 1.7 leo /***********************************************************************
373 1.7 leo * Real Time Clock support *
374 1.7 leo ***********************************************************************/
375 1.7 leo
376 1.7 leo u_int mc146818_read(rtc, regno)
377 1.7 leo void *rtc;
378 1.7 leo u_int regno;
379 1.7 leo {
380 1.7 leo ((struct rtc *)rtc)->rtc_regno = regno;
381 1.7 leo return(((struct rtc *)rtc)->rtc_data & 0377);
382 1.7 leo }
383 1.7 leo
384 1.7 leo void mc146818_write(rtc, regno, value)
385 1.7 leo void *rtc;
386 1.7 leo u_int regno, value;
387 1.7 leo {
388 1.7 leo ((struct rtc *)rtc)->rtc_regno = regno;
389 1.7 leo ((struct rtc *)rtc)->rtc_data = value;
390 1.7 leo }
391 1.1 leo
392 1.1 leo /*
393 1.14 leo * Initialize the time of day register, assuming the RTC runs in UTC.
394 1.14 leo * Since we've got the 'rtc' device, this functionality should be removed
395 1.14 leo * from the kernel. The only problem to be solved before that can happen
396 1.14 leo * is the possibility of init(1) providing a way (rc.boot?) to set
397 1.14 leo * the RTC before single-user mode is entered.
398 1.1 leo */
399 1.9 leo void
400 1.1 leo inittodr(base)
401 1.1 leo time_t base;
402 1.1 leo {
403 1.1 leo /* Battery clock does not store usec's, so forget about it. */
404 1.14 leo time.tv_sec = gettod();
405 1.11 leo time.tv_usec = 0;
406 1.1 leo }
407 1.1 leo
408 1.14 leo /*
409 1.14 leo * Function turned into a No-op. Use /dev/rtc to update the RTC.
410 1.14 leo */
411 1.9 leo void
412 1.1 leo resettodr()
413 1.1 leo {
414 1.14 leo return;
415 1.1 leo }
416 1.1 leo
417 1.1 leo static u_long
418 1.1 leo gettod()
419 1.1 leo {
420 1.18 leo int sps;
421 1.18 leo mc_todregs clkregs;
422 1.25 leo u_int regb;
423 1.18 leo struct clock_ymdhms dt;
424 1.3 leo
425 1.3 leo sps = splhigh();
426 1.25 leo regb = mc146818_read(RTC, MC_REGB);
427 1.3 leo MC146818_GETTOD(RTC, &clkregs);
428 1.3 leo splx(sps);
429 1.1 leo
430 1.25 leo regb &= MC_REGB_24HR|MC_REGB_BINARY;
431 1.25 leo if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
432 1.25 leo printf("Error: Nonstandard RealTimeClock Configuration -"
433 1.25 leo " value ignored\n"
434 1.25 leo " A write to /dev/rtc will correct this.\n");
435 1.25 leo return(0);
436 1.25 leo }
437 1.9 leo if(clkregs[MC_SEC] > 59)
438 1.8 leo return(0);
439 1.9 leo if(clkregs[MC_MIN] > 59)
440 1.8 leo return(0);
441 1.9 leo if(clkregs[MC_HOUR] > 23)
442 1.1 leo return(0);
443 1.3 leo if(range_test(clkregs[MC_DOM], 1, 31))
444 1.1 leo return(0);
445 1.3 leo if (range_test(clkregs[MC_MONTH], 1, 12))
446 1.1 leo return(0);
447 1.24 leo if(clkregs[MC_YEAR] > 99)
448 1.1 leo return(0);
449 1.1 leo
450 1.18 leo dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
451 1.18 leo dt.dt_mon = clkregs[MC_MONTH];
452 1.18 leo dt.dt_day = clkregs[MC_DOM];
453 1.18 leo dt.dt_hour = clkregs[MC_HOUR];
454 1.18 leo dt.dt_min = clkregs[MC_MIN];
455 1.18 leo dt.dt_sec = clkregs[MC_SEC];
456 1.1 leo
457 1.18 leo return(clock_ymdhms_to_secs(&dt));
458 1.1 leo }
459 1.14 leo /***********************************************************************
460 1.14 leo * RTC-device support *
461 1.14 leo ***********************************************************************/
462 1.14 leo int
463 1.27.2.1 fvdl rtcopen(devvp, flag, mode, p)
464 1.27.2.1 fvdl struct vnode *devvp;
465 1.14 leo int flag, mode;
466 1.14 leo struct proc *p;
467 1.14 leo {
468 1.27.2.1 fvdl dev_t dev = vdev_rdev(devvp);
469 1.14 leo int unit = minor(dev);
470 1.14 leo struct clock_softc *sc;
471 1.14 leo
472 1.14 leo if (unit >= clock_cd.cd_ndevs)
473 1.14 leo return ENXIO;
474 1.14 leo sc = clock_cd.cd_devs[unit];
475 1.14 leo if (!sc)
476 1.14 leo return ENXIO;
477 1.14 leo if (sc->sc_flags & RTC_OPEN)
478 1.14 leo return EBUSY;
479 1.14 leo
480 1.27.2.1 fvdl vdev_setprivdata(devvp, sc);
481 1.27.2.1 fvdl
482 1.14 leo sc->sc_flags = RTC_OPEN;
483 1.14 leo return 0;
484 1.14 leo }
485 1.1 leo
486 1.14 leo int
487 1.27.2.1 fvdl rtcclose(devvp, flag, mode, p)
488 1.27.2.1 fvdl struct vnode *devvp;
489 1.14 leo int flag;
490 1.14 leo int mode;
491 1.14 leo struct proc *p;
492 1.1 leo {
493 1.27.2.1 fvdl struct clock_softc *sc = vdev_privdata(devvp);
494 1.14 leo
495 1.14 leo sc->sc_flags = 0;
496 1.14 leo return 0;
497 1.14 leo }
498 1.14 leo
499 1.14 leo int
500 1.27.2.1 fvdl rtcread(devvp, uio, flags)
501 1.27.2.1 fvdl struct vnode *devvp;
502 1.14 leo struct uio *uio;
503 1.14 leo int flags;
504 1.14 leo {
505 1.14 leo struct clock_softc *sc;
506 1.14 leo mc_todregs clkregs;
507 1.14 leo int s, length;
508 1.14 leo char buffer[16];
509 1.14 leo
510 1.27.2.1 fvdl sc = vdev_privdata(devvp);
511 1.14 leo
512 1.14 leo s = splhigh();
513 1.14 leo MC146818_GETTOD(RTC, &clkregs);
514 1.14 leo splx(s);
515 1.14 leo
516 1.21 leo sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
517 1.21 leo clkregs[MC_YEAR] + GEMSTARTOFTIME,
518 1.14 leo clkregs[MC_MONTH], clkregs[MC_DOM],
519 1.14 leo clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
520 1.14 leo
521 1.14 leo if (uio->uio_offset > strlen(buffer))
522 1.14 leo return 0;
523 1.1 leo
524 1.14 leo length = strlen(buffer) - uio->uio_offset;
525 1.14 leo if (length > uio->uio_resid)
526 1.14 leo length = uio->uio_resid;
527 1.1 leo
528 1.14 leo return(uiomove((caddr_t)buffer, length, uio));
529 1.14 leo }
530 1.14 leo
531 1.14 leo static int
532 1.14 leo twodigits(buffer, pos)
533 1.14 leo char *buffer;
534 1.14 leo int pos;
535 1.14 leo {
536 1.14 leo int result = 0;
537 1.14 leo
538 1.14 leo if (buffer[pos] >= '0' && buffer[pos] <= '9')
539 1.14 leo result = (buffer[pos] - '0') * 10;
540 1.14 leo if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
541 1.14 leo result += (buffer[pos+1] - '0');
542 1.14 leo return(result);
543 1.14 leo }
544 1.1 leo
545 1.14 leo int
546 1.27.2.1 fvdl rtcwrite(devvp, uio, flags)
547 1.27.2.1 fvdl struct vnode *devvp;
548 1.14 leo struct uio *uio;
549 1.14 leo int flags;
550 1.14 leo {
551 1.14 leo mc_todregs clkregs;
552 1.14 leo int s, length, error;
553 1.21 leo char buffer[16];
554 1.14 leo
555 1.14 leo /*
556 1.14 leo * We require atomic updates!
557 1.14 leo */
558 1.14 leo length = uio->uio_resid;
559 1.14 leo if (uio->uio_offset || (length != sizeof(buffer)
560 1.14 leo && length != sizeof(buffer - 1)))
561 1.14 leo return(EINVAL);
562 1.14 leo
563 1.14 leo if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
564 1.14 leo return(error);
565 1.1 leo
566 1.14 leo if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
567 1.14 leo return(EINVAL);
568 1.1 leo
569 1.14 leo s = splclock();
570 1.25 leo mc146818_write(RTC, MC_REGB,
571 1.25 leo mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
572 1.3 leo MC146818_GETTOD(RTC, &clkregs);
573 1.14 leo splx(s);
574 1.14 leo
575 1.21 leo clkregs[MC_SEC] = twodigits(buffer, 13);
576 1.21 leo clkregs[MC_MIN] = twodigits(buffer, 10);
577 1.21 leo clkregs[MC_HOUR] = twodigits(buffer, 8);
578 1.21 leo clkregs[MC_DOM] = twodigits(buffer, 6);
579 1.21 leo clkregs[MC_MONTH] = twodigits(buffer, 4);
580 1.21 leo s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
581 1.14 leo clkregs[MC_YEAR] = s - GEMSTARTOFTIME;
582 1.14 leo
583 1.14 leo s = splclock();
584 1.3 leo MC146818_PUTTOD(RTC, &clkregs);
585 1.14 leo splx(s);
586 1.1 leo
587 1.14 leo return(0);
588 1.1 leo }
589