Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.27.6.6
      1  1.27.6.6  nathanw /*	$NetBSD: clock.c,v 1.27.6.6 2002/10/18 02:35:50 nathanw Exp $	*/
      2  1.27.6.2      scw 
      3  1.27.6.2      scw /*
      4  1.27.6.2      scw  * Copyright (c) 1988 University of Utah.
      5  1.27.6.2      scw  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  1.27.6.2      scw  * All rights reserved.
      7  1.27.6.2      scw  *
      8  1.27.6.2      scw  * This code is derived from software contributed to Berkeley by
      9  1.27.6.2      scw  * the Systems Programming Group of the University of Utah Computer
     10  1.27.6.2      scw  * Science Department.
     11  1.27.6.2      scw  *
     12  1.27.6.2      scw  * Redistribution and use in source and binary forms, with or without
     13  1.27.6.2      scw  * modification, are permitted provided that the following conditions
     14  1.27.6.2      scw  * are met:
     15  1.27.6.2      scw  * 1. Redistributions of source code must retain the above copyright
     16  1.27.6.2      scw  *    notice, this list of conditions and the following disclaimer.
     17  1.27.6.2      scw  * 2. Redistributions in binary form must reproduce the above copyright
     18  1.27.6.2      scw  *    notice, this list of conditions and the following disclaimer in the
     19  1.27.6.2      scw  *    documentation and/or other materials provided with the distribution.
     20  1.27.6.2      scw  * 3. All advertising materials mentioning features or use of this software
     21  1.27.6.2      scw  *    must display the following acknowledgement:
     22  1.27.6.2      scw  *	This product includes software developed by the University of
     23  1.27.6.2      scw  *	California, Berkeley and its contributors.
     24  1.27.6.2      scw  * 4. Neither the name of the University nor the names of its contributors
     25  1.27.6.2      scw  *    may be used to endorse or promote products derived from this software
     26  1.27.6.2      scw  *    without specific prior written permission.
     27  1.27.6.2      scw  *
     28  1.27.6.2      scw  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  1.27.6.2      scw  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  1.27.6.2      scw  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  1.27.6.2      scw  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  1.27.6.2      scw  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  1.27.6.2      scw  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  1.27.6.2      scw  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  1.27.6.2      scw  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  1.27.6.2      scw  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  1.27.6.2      scw  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  1.27.6.2      scw  * SUCH DAMAGE.
     39  1.27.6.2      scw  *
     40  1.27.6.2      scw  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  1.27.6.2      scw  *
     42  1.27.6.2      scw  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  1.27.6.2      scw  */
     44  1.27.6.2      scw 
     45  1.27.6.2      scw #include <sys/param.h>
     46  1.27.6.2      scw #include <sys/kernel.h>
     47  1.27.6.2      scw #include <sys/systm.h>
     48  1.27.6.2      scw #include <sys/device.h>
     49  1.27.6.2      scw #include <sys/uio.h>
     50  1.27.6.2      scw #include <sys/conf.h>
     51  1.27.6.2      scw #include <sys/proc.h>
     52  1.27.6.2      scw 
     53  1.27.6.2      scw #include <dev/clock_subr.h>
     54  1.27.6.2      scw 
     55  1.27.6.2      scw #include <machine/psl.h>
     56  1.27.6.2      scw #include <machine/cpu.h>
     57  1.27.6.2      scw #include <machine/iomap.h>
     58  1.27.6.2      scw #include <machine/mfp.h>
     59  1.27.6.2      scw #include <atari/dev/clockreg.h>
     60  1.27.6.2      scw #include <atari/atari/device.h>
     61  1.27.6.2      scw 
     62  1.27.6.2      scw #if defined(GPROF) && defined(PROFTIMER)
     63  1.27.6.2      scw #include <machine/profile.h>
     64  1.27.6.2      scw #endif
     65  1.27.6.2      scw 
     66  1.27.6.2      scw /*
     67  1.27.6.2      scw  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     68  1.27.6.2      scw  * of 200. Therefore the timer runs at an effective rate of:
     69  1.27.6.2      scw  * 2457600/200 = 12288Hz.
     70  1.27.6.2      scw  */
     71  1.27.6.2      scw #define CLOCK_HZ	12288
     72  1.27.6.2      scw 
     73  1.27.6.2      scw /*
     74  1.27.6.2      scw  * Machine-dependent clock routines.
     75  1.27.6.2      scw  *
     76  1.27.6.2      scw  * Inittodr initializes the time of day hardware which provides
     77  1.27.6.2      scw  * date functions.
     78  1.27.6.2      scw  *
     79  1.27.6.2      scw  * Resettodr restores the time of day hardware after a time change.
     80  1.27.6.2      scw  */
     81  1.27.6.2      scw 
     82  1.27.6.2      scw struct clock_softc {
     83  1.27.6.2      scw 	struct device	sc_dev;
     84  1.27.6.2      scw 	int		sc_flags;
     85  1.27.6.2      scw };
     86  1.27.6.2      scw 
     87  1.27.6.2      scw /*
     88  1.27.6.2      scw  *  'sc_flags' state info. Only used by the rtc-device functions.
     89  1.27.6.2      scw  */
     90  1.27.6.2      scw #define	RTC_OPEN	1
     91  1.27.6.2      scw 
     92  1.27.6.2      scw dev_type_open(rtcopen);
     93  1.27.6.2      scw dev_type_close(rtcclose);
     94  1.27.6.2      scw dev_type_read(rtcread);
     95  1.27.6.2      scw dev_type_write(rtcwrite);
     96  1.27.6.2      scw 
     97  1.27.6.2      scw static void	clockattach __P((struct device *, struct device *, void *));
     98  1.27.6.2      scw static int	clockmatch __P((struct device *, struct cfdata *, void *));
     99  1.27.6.2      scw 
    100  1.27.6.6  nathanw CFATTACH_DECL(clock, sizeof(struct clock_softc),
    101  1.27.6.6  nathanw     clockmatch, clockattach, NULL, NULL);
    102  1.27.6.2      scw 
    103  1.27.6.2      scw extern struct cfdriver clock_cd;
    104  1.27.6.2      scw 
    105  1.27.6.5  nathanw const struct cdevsw rtc_cdevsw = {
    106  1.27.6.5  nathanw 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    107  1.27.6.5  nathanw 	nostop, notty, nopoll, nommap,
    108  1.27.6.5  nathanw };
    109  1.27.6.5  nathanw 
    110  1.27.6.2      scw void statintr __P((struct clockframe));
    111  1.27.6.2      scw 
    112  1.27.6.2      scw static u_long	gettod __P((void));
    113  1.27.6.2      scw static int	twodigits __P((char *, int));
    114  1.27.6.2      scw 
    115  1.27.6.2      scw static int	divisor;	/* Systemclock divisor	*/
    116  1.27.6.2      scw 
    117  1.27.6.2      scw /*
    118  1.27.6.2      scw  * Statistics and profile clock intervals and variances. Variance must
    119  1.27.6.2      scw  * be a power of 2. Since this gives us an even number, not an odd number,
    120  1.27.6.2      scw  * we discard one case and compensate. That is, a variance of 64 would
    121  1.27.6.2      scw  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    122  1.27.6.2      scw  * This is symmetric around the point 32, or statvar/2, and thus averages
    123  1.27.6.2      scw  * to that value (assuming uniform random numbers).
    124  1.27.6.2      scw  */
    125  1.27.6.2      scw #ifdef STATCLOCK
    126  1.27.6.2      scw static int	statvar = 32;	/* {stat,prof}clock variance		*/
    127  1.27.6.2      scw static int	statmin;	/* statclock divisor - variance/2	*/
    128  1.27.6.2      scw static int	profmin;	/* profclock divisor - variance/2	*/
    129  1.27.6.2      scw static int	clk2min;	/* current, from above choices		*/
    130  1.27.6.2      scw #endif
    131  1.27.6.2      scw 
    132  1.27.6.2      scw int
    133  1.27.6.2      scw clockmatch(pdp, cfp, auxp)
    134  1.27.6.2      scw struct device	*pdp;
    135  1.27.6.2      scw struct cfdata	*cfp;
    136  1.27.6.2      scw void		*auxp;
    137  1.27.6.2      scw {
    138  1.27.6.2      scw 	if (!atari_realconfig) {
    139  1.27.6.2      scw 	    /*
    140  1.27.6.2      scw 	     * Initialize Timer-B in the ST-MFP. This timer is used by
    141  1.27.6.2      scw 	     * the 'delay' function below. This timer is setup to be
    142  1.27.6.2      scw 	     * continueously counting from 255 back to zero at a
    143  1.27.6.2      scw 	     * frequency of 614400Hz. We do this *early* in the
    144  1.27.6.2      scw 	     * initialisation process.
    145  1.27.6.2      scw 	     */
    146  1.27.6.2      scw 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
    147  1.27.6.2      scw 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    148  1.27.6.2      scw 	    MFP->mf_tbdr  = 0;
    149  1.27.6.2      scw 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    150  1.27.6.2      scw 
    151  1.27.6.2      scw 	    /*
    152  1.27.6.2      scw 	     * Initialize the time structure
    153  1.27.6.2      scw 	     */
    154  1.27.6.2      scw 	    time.tv_sec  = 0;
    155  1.27.6.2      scw 	    time.tv_usec = 0;
    156  1.27.6.2      scw 
    157  1.27.6.2      scw 	    return 0;
    158  1.27.6.2      scw 	}
    159  1.27.6.2      scw 	if(!strcmp("clock", auxp))
    160  1.27.6.2      scw 		return(1);
    161  1.27.6.2      scw 	return(0);
    162  1.27.6.2      scw }
    163  1.27.6.2      scw 
    164  1.27.6.2      scw /*
    165  1.27.6.2      scw  * Start the real-time clock.
    166  1.27.6.2      scw  */
    167  1.27.6.2      scw void clockattach(pdp, dp, auxp)
    168  1.27.6.2      scw struct device	*pdp, *dp;
    169  1.27.6.2      scw void		*auxp;
    170  1.27.6.2      scw {
    171  1.27.6.2      scw 	struct clock_softc *sc = (void *)dp;
    172  1.27.6.2      scw 
    173  1.27.6.2      scw 	sc->sc_flags = 0;
    174  1.27.6.2      scw 
    175  1.27.6.2      scw 	/*
    176  1.27.6.2      scw 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    177  1.27.6.2      scw 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    178  1.27.6.2      scw 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    179  1.27.6.2      scw 	 * following expression works for 48, 64 or 96 hz.
    180  1.27.6.2      scw 	 */
    181  1.27.6.2      scw 	divisor       = CLOCK_HZ/hz;
    182  1.27.6.2      scw 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    183  1.27.6.2      scw 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    184  1.27.6.2      scw 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    185  1.27.6.2      scw 
    186  1.27.6.2      scw 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    187  1.27.6.2      scw 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    188  1.27.6.2      scw 								hz, 64);
    189  1.27.6.2      scw 		hz = 64;
    190  1.27.6.2      scw 	}
    191  1.27.6.2      scw 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    192  1.27.6.2      scw 
    193  1.27.6.2      scw #ifdef STATCLOCK
    194  1.27.6.2      scw 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    195  1.27.6.2      scw 		stathz = hz;
    196  1.27.6.2      scw 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    197  1.27.6.2      scw 		profhz = hz << 1;
    198  1.27.6.2      scw 
    199  1.27.6.2      scw 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    200  1.27.6.2      scw 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    201  1.27.6.2      scw 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    202  1.27.6.2      scw 
    203  1.27.6.2      scw 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    204  1.27.6.2      scw 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    205  1.27.6.2      scw 	clk2min  = statmin;
    206  1.27.6.2      scw #endif /* STATCLOCK */
    207  1.27.6.2      scw 
    208  1.27.6.2      scw }
    209  1.27.6.2      scw 
    210  1.27.6.2      scw void cpu_initclocks()
    211  1.27.6.2      scw {
    212  1.27.6.2      scw 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    213  1.27.6.2      scw 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    214  1.27.6.2      scw 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    215  1.27.6.2      scw 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    216  1.27.6.2      scw 
    217  1.27.6.2      scw #ifdef STATCLOCK
    218  1.27.6.2      scw 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    219  1.27.6.2      scw 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    220  1.27.6.2      scw 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    221  1.27.6.2      scw 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    222  1.27.6.2      scw #endif /* STATCLOCK */
    223  1.27.6.2      scw }
    224  1.27.6.2      scw 
    225  1.27.6.2      scw void
    226  1.27.6.2      scw setstatclockrate(newhz)
    227  1.27.6.2      scw 	int newhz;
    228  1.27.6.2      scw {
    229  1.27.6.2      scw #ifdef STATCLOCK
    230  1.27.6.2      scw 	if (newhz == stathz)
    231  1.27.6.2      scw 		clk2min = statmin;
    232  1.27.6.2      scw 	else clk2min = profmin;
    233  1.27.6.2      scw #endif /* STATCLOCK */
    234  1.27.6.2      scw }
    235  1.27.6.2      scw 
    236  1.27.6.2      scw #ifdef STATCLOCK
    237  1.27.6.2      scw void
    238  1.27.6.2      scw statintr(frame)
    239  1.27.6.2      scw 	struct clockframe frame;
    240  1.27.6.2      scw {
    241  1.27.6.2      scw 	register int	var, r;
    242  1.27.6.2      scw 
    243  1.27.6.2      scw 	var = statvar - 1;
    244  1.27.6.2      scw 	do {
    245  1.27.6.2      scw 		r = random() & var;
    246  1.27.6.2      scw 	} while(r == 0);
    247  1.27.6.2      scw 
    248  1.27.6.2      scw 	/*
    249  1.27.6.2      scw 	 * Note that we are always lagging behind as the new divisor
    250  1.27.6.2      scw 	 * value will not be loaded until the next interrupt. This
    251  1.27.6.2      scw 	 * shouldn't disturb the median frequency (I think ;-) ) as
    252  1.27.6.2      scw 	 * only the value used when switching frequencies is used
    253  1.27.6.2      scw 	 * twice. This shouldn't happen very often.
    254  1.27.6.2      scw 	 */
    255  1.27.6.2      scw 	MFP->mf_tcdr = clk2min + r;
    256  1.27.6.2      scw 
    257  1.27.6.2      scw 	statclock(&frame);
    258  1.27.6.2      scw }
    259  1.27.6.2      scw #endif /* STATCLOCK */
    260  1.27.6.2      scw 
    261  1.27.6.2      scw /*
    262  1.27.6.2      scw  * Returns number of usec since last recorded clock "tick"
    263  1.27.6.2      scw  * (i.e. clock interrupt).
    264  1.27.6.2      scw  */
    265  1.27.6.2      scw long
    266  1.27.6.2      scw clkread()
    267  1.27.6.2      scw {
    268  1.27.6.2      scw 	u_int	delta;
    269  1.27.6.2      scw 	u_char	ipra, tadr;
    270  1.27.6.2      scw 
    271  1.27.6.2      scw 	/*
    272  1.27.6.2      scw 	 * Note: Order is important!
    273  1.27.6.2      scw 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
    274  1.27.6.2      scw 	 * the situation that very low value in 'tadr' is read (== a big delta)
    275  1.27.6.2      scw 	 * while also acccounting for a full 'tick' because the counter went
    276  1.27.6.2      scw 	 * through zero during the calculations.
    277  1.27.6.2      scw 	 */
    278  1.27.6.2      scw 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
    279  1.27.6.2      scw 
    280  1.27.6.2      scw 	delta = ((divisor - tadr) * tick) / divisor;
    281  1.27.6.2      scw 	/*
    282  1.27.6.2      scw 	 * Account for pending clock interrupts
    283  1.27.6.2      scw 	 */
    284  1.27.6.2      scw 	if(ipra & IA_TIMA)
    285  1.27.6.2      scw 		return(delta + tick);
    286  1.27.6.2      scw 	return(delta);
    287  1.27.6.2      scw }
    288  1.27.6.2      scw 
    289  1.27.6.2      scw #define TIMB_FREQ	614400
    290  1.27.6.2      scw #define TIMB_LIMIT	256
    291  1.27.6.2      scw 
    292  1.27.6.2      scw /*
    293  1.27.6.2      scw  * Wait "n" microseconds.
    294  1.27.6.2      scw  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    295  1.27.6.2      scw  * Note: timer had better have been programmed before this is first used!
    296  1.27.6.2      scw  */
    297  1.27.6.2      scw void
    298  1.27.6.2      scw delay(n)
    299  1.27.6.2      scw int	n;
    300  1.27.6.2      scw {
    301  1.27.6.2      scw 	int	tick, otick;
    302  1.27.6.2      scw 
    303  1.27.6.2      scw 	/*
    304  1.27.6.2      scw 	 * Read the counter first, so that the rest of the setup overhead is
    305  1.27.6.2      scw 	 * counted.
    306  1.27.6.2      scw 	 */
    307  1.27.6.2      scw 	otick = MFP->mf_tbdr;
    308  1.27.6.2      scw 
    309  1.27.6.2      scw 	/*
    310  1.27.6.2      scw 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    311  1.27.6.2      scw 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    312  1.27.6.2      scw 	 * loss of significance.
    313  1.27.6.2      scw 	 */
    314  1.27.6.2      scw 	n -= 5;
    315  1.27.6.2      scw 	if(n < 0)
    316  1.27.6.2      scw 		return;
    317  1.27.6.2      scw 	{
    318  1.27.6.2      scw 	    u_int	temp;
    319  1.27.6.2      scw 
    320  1.27.6.2      scw 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    321  1.27.6.2      scw 					       : "d" (TIMB_FREQ), "d" (n));
    322  1.27.6.2      scw 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    323  1.27.6.2      scw 					       : "d"(1000000),"d"(temp),"0"(n));
    324  1.27.6.2      scw 	}
    325  1.27.6.2      scw 
    326  1.27.6.2      scw 	while(n > 0) {
    327  1.27.6.2      scw 		tick = MFP->mf_tbdr;
    328  1.27.6.2      scw 		if(tick > otick)
    329  1.27.6.2      scw 			n -= TIMB_LIMIT - (tick - otick);
    330  1.27.6.2      scw 		else n -= otick - tick;
    331  1.27.6.2      scw 		otick = tick;
    332  1.27.6.2      scw 	}
    333  1.27.6.2      scw }
    334  1.27.6.2      scw 
    335  1.27.6.2      scw #ifdef GPROF
    336  1.27.6.2      scw /*
    337  1.27.6.2      scw  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    338  1.27.6.2      scw  * Assumes it is called with clock interrupts blocked.
    339  1.27.6.2      scw  */
    340  1.27.6.2      scw profclock(pc, ps)
    341  1.27.6.2      scw 	caddr_t pc;
    342  1.27.6.2      scw 	int ps;
    343  1.27.6.2      scw {
    344  1.27.6.2      scw 	/*
    345  1.27.6.2      scw 	 * Came from user mode.
    346  1.27.6.2      scw 	 * If this process is being profiled record the tick.
    347  1.27.6.2      scw 	 */
    348  1.27.6.2      scw 	if (USERMODE(ps)) {
    349  1.27.6.2      scw 		if (p->p_stats.p_prof.pr_scale)
    350  1.27.6.3  nathanw 			addupc(pc, &curproc->p_stats.p_prof, 1);
    351  1.27.6.2      scw 	}
    352  1.27.6.2      scw 	/*
    353  1.27.6.2      scw 	 * Came from kernel (supervisor) mode.
    354  1.27.6.2      scw 	 * If we are profiling the kernel, record the tick.
    355  1.27.6.2      scw 	 */
    356  1.27.6.2      scw 	else if (profiling < 2) {
    357  1.27.6.2      scw 		register int s = pc - s_lowpc;
    358  1.27.6.2      scw 
    359  1.27.6.2      scw 		if (s < s_textsize)
    360  1.27.6.2      scw 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    361  1.27.6.2      scw 	}
    362  1.27.6.2      scw 	/*
    363  1.27.6.2      scw 	 * Kernel profiling was on but has been disabled.
    364  1.27.6.2      scw 	 * Mark as no longer profiling kernel and if all profiling done,
    365  1.27.6.2      scw 	 * disable the clock.
    366  1.27.6.2      scw 	 */
    367  1.27.6.2      scw 	if (profiling && (profon & PRF_KERNEL)) {
    368  1.27.6.2      scw 		profon &= ~PRF_KERNEL;
    369  1.27.6.2      scw 		if (profon == PRF_NONE)
    370  1.27.6.2      scw 			stopprofclock();
    371  1.27.6.2      scw 	}
    372  1.27.6.2      scw }
    373  1.27.6.2      scw #endif
    374  1.27.6.2      scw 
    375  1.27.6.2      scw /***********************************************************************
    376  1.27.6.2      scw  *                   Real Time Clock support                           *
    377  1.27.6.2      scw  ***********************************************************************/
    378  1.27.6.2      scw 
    379  1.27.6.2      scw u_int mc146818_read(rtc, regno)
    380  1.27.6.2      scw void	*rtc;
    381  1.27.6.2      scw u_int	regno;
    382  1.27.6.2      scw {
    383  1.27.6.2      scw 	((struct rtc *)rtc)->rtc_regno = regno;
    384  1.27.6.2      scw 	return(((struct rtc *)rtc)->rtc_data & 0377);
    385  1.27.6.2      scw }
    386  1.27.6.2      scw 
    387  1.27.6.2      scw void mc146818_write(rtc, regno, value)
    388  1.27.6.2      scw void	*rtc;
    389  1.27.6.2      scw u_int	regno, value;
    390  1.27.6.2      scw {
    391  1.27.6.2      scw 	((struct rtc *)rtc)->rtc_regno = regno;
    392  1.27.6.2      scw 	((struct rtc *)rtc)->rtc_data  = value;
    393  1.27.6.2      scw }
    394  1.27.6.2      scw 
    395  1.27.6.2      scw /*
    396  1.27.6.2      scw  * Initialize the time of day register, assuming the RTC runs in UTC.
    397  1.27.6.2      scw  * Since we've got the 'rtc' device, this functionality should be removed
    398  1.27.6.2      scw  * from the kernel. The only problem to be solved before that can happen
    399  1.27.6.2      scw  * is the possibility of init(1) providing a way (rc.boot?) to set
    400  1.27.6.2      scw  * the RTC before single-user mode is entered.
    401  1.27.6.2      scw  */
    402  1.27.6.2      scw void
    403  1.27.6.2      scw inittodr(base)
    404  1.27.6.2      scw time_t base;
    405  1.27.6.2      scw {
    406  1.27.6.2      scw 	/* Battery clock does not store usec's, so forget about it. */
    407  1.27.6.2      scw 	time.tv_sec  = gettod();
    408  1.27.6.2      scw 	time.tv_usec = 0;
    409  1.27.6.2      scw }
    410  1.27.6.2      scw 
    411  1.27.6.2      scw /*
    412  1.27.6.2      scw  * Function turned into a No-op. Use /dev/rtc to update the RTC.
    413  1.27.6.2      scw  */
    414  1.27.6.2      scw void
    415  1.27.6.2      scw resettodr()
    416  1.27.6.2      scw {
    417  1.27.6.2      scw 	return;
    418  1.27.6.2      scw }
    419  1.27.6.2      scw 
    420  1.27.6.2      scw static u_long
    421  1.27.6.2      scw gettod()
    422  1.27.6.2      scw {
    423  1.27.6.2      scw 	int			sps;
    424  1.27.6.2      scw 	mc_todregs		clkregs;
    425  1.27.6.2      scw 	u_int			regb;
    426  1.27.6.2      scw 	struct clock_ymdhms	dt;
    427  1.27.6.2      scw 
    428  1.27.6.2      scw 	sps = splhigh();
    429  1.27.6.2      scw 	regb = mc146818_read(RTC, MC_REGB);
    430  1.27.6.2      scw 	MC146818_GETTOD(RTC, &clkregs);
    431  1.27.6.2      scw 	splx(sps);
    432  1.27.6.2      scw 
    433  1.27.6.2      scw 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    434  1.27.6.2      scw 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    435  1.27.6.2      scw 		printf("Error: Nonstandard RealTimeClock Configuration -"
    436  1.27.6.2      scw 			" value ignored\n"
    437  1.27.6.2      scw 			"       A write to /dev/rtc will correct this.\n");
    438  1.27.6.2      scw 			return(0);
    439  1.27.6.2      scw 	}
    440  1.27.6.2      scw 	if(clkregs[MC_SEC] > 59)
    441  1.27.6.2      scw 		return(0);
    442  1.27.6.2      scw 	if(clkregs[MC_MIN] > 59)
    443  1.27.6.2      scw 		return(0);
    444  1.27.6.2      scw 	if(clkregs[MC_HOUR] > 23)
    445  1.27.6.2      scw 		return(0);
    446  1.27.6.2      scw 	if(range_test(clkregs[MC_DOM], 1, 31))
    447  1.27.6.2      scw 		return(0);
    448  1.27.6.2      scw 	if (range_test(clkregs[MC_MONTH], 1, 12))
    449  1.27.6.2      scw 		return(0);
    450  1.27.6.2      scw 	if(clkregs[MC_YEAR] > 99)
    451  1.27.6.2      scw 		return(0);
    452  1.27.6.2      scw 
    453  1.27.6.2      scw 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    454  1.27.6.2      scw 	dt.dt_mon  = clkregs[MC_MONTH];
    455  1.27.6.2      scw 	dt.dt_day  = clkregs[MC_DOM];
    456  1.27.6.2      scw 	dt.dt_hour = clkregs[MC_HOUR];
    457  1.27.6.2      scw 	dt.dt_min  = clkregs[MC_MIN];
    458  1.27.6.2      scw 	dt.dt_sec  = clkregs[MC_SEC];
    459  1.27.6.2      scw 
    460  1.27.6.2      scw 	return(clock_ymdhms_to_secs(&dt));
    461  1.27.6.2      scw }
    462  1.27.6.2      scw /***********************************************************************
    463  1.27.6.2      scw  *                   RTC-device support				       *
    464  1.27.6.2      scw  ***********************************************************************/
    465  1.27.6.2      scw int
    466  1.27.6.2      scw rtcopen(dev, flag, mode, p)
    467  1.27.6.2      scw 	dev_t		dev;
    468  1.27.6.2      scw 	int		flag, mode;
    469  1.27.6.2      scw 	struct proc	*p;
    470  1.27.6.2      scw {
    471  1.27.6.2      scw 	int			unit = minor(dev);
    472  1.27.6.2      scw 	struct clock_softc	*sc;
    473  1.27.6.2      scw 
    474  1.27.6.2      scw 	if (unit >= clock_cd.cd_ndevs)
    475  1.27.6.2      scw 		return ENXIO;
    476  1.27.6.2      scw 	sc = clock_cd.cd_devs[unit];
    477  1.27.6.2      scw 	if (!sc)
    478  1.27.6.2      scw 		return ENXIO;
    479  1.27.6.2      scw 	if (sc->sc_flags & RTC_OPEN)
    480  1.27.6.2      scw 		return EBUSY;
    481  1.27.6.2      scw 
    482  1.27.6.2      scw 	sc->sc_flags = RTC_OPEN;
    483  1.27.6.2      scw 	return 0;
    484  1.27.6.2      scw }
    485  1.27.6.2      scw 
    486  1.27.6.2      scw int
    487  1.27.6.2      scw rtcclose(dev, flag, mode, p)
    488  1.27.6.2      scw 	dev_t		dev;
    489  1.27.6.2      scw 	int		flag;
    490  1.27.6.2      scw 	int		mode;
    491  1.27.6.2      scw 	struct proc	*p;
    492  1.27.6.2      scw {
    493  1.27.6.2      scw 	int			unit = minor(dev);
    494  1.27.6.2      scw 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
    495  1.27.6.2      scw 
    496  1.27.6.2      scw 	sc->sc_flags = 0;
    497  1.27.6.2      scw 	return 0;
    498  1.27.6.2      scw }
    499  1.27.6.2      scw 
    500  1.27.6.2      scw int
    501  1.27.6.2      scw rtcread(dev, uio, flags)
    502  1.27.6.2      scw 	dev_t		dev;
    503  1.27.6.2      scw 	struct uio	*uio;
    504  1.27.6.2      scw 	int		flags;
    505  1.27.6.2      scw {
    506  1.27.6.2      scw 	struct clock_softc	*sc;
    507  1.27.6.2      scw 	mc_todregs		clkregs;
    508  1.27.6.2      scw 	int			s, length;
    509  1.27.6.2      scw 	char			buffer[16];
    510  1.27.6.2      scw 
    511  1.27.6.2      scw 	sc = clock_cd.cd_devs[minor(dev)];
    512  1.27.6.2      scw 
    513  1.27.6.2      scw 	s = splhigh();
    514  1.27.6.2      scw 	MC146818_GETTOD(RTC, &clkregs);
    515  1.27.6.2      scw 	splx(s);
    516  1.27.6.2      scw 
    517  1.27.6.2      scw 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    518  1.27.6.2      scw 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    519  1.27.6.2      scw 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    520  1.27.6.2      scw 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    521  1.27.6.2      scw 
    522  1.27.6.2      scw 	if (uio->uio_offset > strlen(buffer))
    523  1.27.6.2      scw 		return 0;
    524  1.27.6.2      scw 
    525  1.27.6.2      scw 	length = strlen(buffer) - uio->uio_offset;
    526  1.27.6.2      scw 	if (length > uio->uio_resid)
    527  1.27.6.2      scw 		length = uio->uio_resid;
    528  1.27.6.2      scw 
    529  1.27.6.2      scw 	return(uiomove((caddr_t)buffer, length, uio));
    530  1.27.6.2      scw }
    531  1.27.6.2      scw 
    532  1.27.6.2      scw static int
    533  1.27.6.2      scw twodigits(buffer, pos)
    534  1.27.6.2      scw 	char *buffer;
    535  1.27.6.2      scw 	int pos;
    536  1.27.6.2      scw {
    537  1.27.6.2      scw 	int result = 0;
    538  1.27.6.2      scw 
    539  1.27.6.2      scw 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    540  1.27.6.2      scw 		result = (buffer[pos] - '0') * 10;
    541  1.27.6.2      scw 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    542  1.27.6.2      scw 		result += (buffer[pos+1] - '0');
    543  1.27.6.2      scw 	return(result);
    544  1.27.6.2      scw }
    545  1.27.6.2      scw 
    546  1.27.6.2      scw int
    547  1.27.6.2      scw rtcwrite(dev, uio, flags)
    548  1.27.6.2      scw 	dev_t		dev;
    549  1.27.6.2      scw 	struct uio	*uio;
    550  1.27.6.2      scw 	int		flags;
    551  1.27.6.2      scw {
    552  1.27.6.2      scw 	mc_todregs		clkregs;
    553  1.27.6.2      scw 	int			s, length, error;
    554  1.27.6.2      scw 	char			buffer[16];
    555  1.27.6.2      scw 
    556  1.27.6.2      scw 	/*
    557  1.27.6.2      scw 	 * We require atomic updates!
    558  1.27.6.2      scw 	 */
    559  1.27.6.2      scw 	length = uio->uio_resid;
    560  1.27.6.2      scw 	if (uio->uio_offset || (length != sizeof(buffer)
    561  1.27.6.2      scw 	  && length != sizeof(buffer - 1)))
    562  1.27.6.2      scw 		return(EINVAL);
    563  1.27.6.2      scw 
    564  1.27.6.2      scw 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
    565  1.27.6.2      scw 		return(error);
    566  1.27.6.2      scw 
    567  1.27.6.2      scw 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    568  1.27.6.2      scw 		return(EINVAL);
    569  1.27.6.2      scw 
    570  1.27.6.2      scw 	s = splclock();
    571  1.27.6.2      scw 	mc146818_write(RTC, MC_REGB,
    572  1.27.6.2      scw 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    573  1.27.6.2      scw 	MC146818_GETTOD(RTC, &clkregs);
    574  1.27.6.2      scw 	splx(s);
    575  1.27.6.2      scw 
    576  1.27.6.2      scw 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    577  1.27.6.2      scw 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    578  1.27.6.2      scw 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    579  1.27.6.2      scw 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    580  1.27.6.2      scw 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    581  1.27.6.2      scw 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    582  1.27.6.2      scw 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    583  1.27.6.2      scw 
    584  1.27.6.2      scw 	s = splclock();
    585  1.27.6.2      scw 	MC146818_PUTTOD(RTC, &clkregs);
    586  1.27.6.2      scw 	splx(s);
    587  1.27.6.2      scw 
    588  1.27.6.2      scw 	return(0);
    589  1.27.6.2      scw }
    590