Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.3
      1  1.3  leo /*	$NetBSD: clock.c,v 1.3 1995/05/28 19:38:49 leo Exp $	*/
      2  1.1  leo 
      3  1.1  leo /*
      4  1.1  leo  * Copyright (c) 1988 University of Utah.
      5  1.1  leo  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  1.1  leo  * All rights reserved.
      7  1.1  leo  *
      8  1.1  leo  * This code is derived from software contributed to Berkeley by
      9  1.1  leo  * the Systems Programming Group of the University of Utah Computer
     10  1.1  leo  * Science Department.
     11  1.1  leo  *
     12  1.1  leo  * Redistribution and use in source and binary forms, with or without
     13  1.1  leo  * modification, are permitted provided that the following conditions
     14  1.1  leo  * are met:
     15  1.1  leo  * 1. Redistributions of source code must retain the above copyright
     16  1.1  leo  *    notice, this list of conditions and the following disclaimer.
     17  1.1  leo  * 2. Redistributions in binary form must reproduce the above copyright
     18  1.1  leo  *    notice, this list of conditions and the following disclaimer in the
     19  1.1  leo  *    documentation and/or other materials provided with the distribution.
     20  1.1  leo  * 3. All advertising materials mentioning features or use of this software
     21  1.1  leo  *    must display the following acknowledgement:
     22  1.1  leo  *	This product includes software developed by the University of
     23  1.1  leo  *	California, Berkeley and its contributors.
     24  1.1  leo  * 4. Neither the name of the University nor the names of its contributors
     25  1.1  leo  *    may be used to endorse or promote products derived from this software
     26  1.1  leo  *    without specific prior written permission.
     27  1.1  leo  *
     28  1.1  leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  1.1  leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  1.1  leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  1.1  leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  1.1  leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  1.1  leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  1.1  leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  1.1  leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  1.1  leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  1.1  leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  1.1  leo  * SUCH DAMAGE.
     39  1.1  leo  *
     40  1.1  leo  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  1.1  leo  *
     42  1.1  leo  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  1.1  leo  */
     44  1.1  leo 
     45  1.1  leo #include <sys/param.h>
     46  1.1  leo #include <sys/kernel.h>
     47  1.1  leo #include <sys/device.h>
     48  1.1  leo #include <machine/psl.h>
     49  1.1  leo #include <machine/cpu.h>
     50  1.1  leo #include <machine/iomap.h>
     51  1.1  leo #include <machine/mfp.h>
     52  1.1  leo #include <atari/dev/clockreg.h>
     53  1.1  leo 
     54  1.1  leo #if defined(PROF) && defined(PROFTIMER)
     55  1.1  leo #include <sys/PROF.h>
     56  1.1  leo #endif
     57  1.1  leo 
     58  1.1  leo 
     59  1.1  leo /*
     60  1.1  leo  * Machine-dependent clock routines.
     61  1.1  leo  *
     62  1.1  leo  * Startrtclock restarts the real-time clock, which provides
     63  1.1  leo  * hardclock interrupts to kern_clock.c.
     64  1.1  leo  *
     65  1.1  leo  * Inittodr initializes the time of day hardware which provides
     66  1.1  leo  * date functions.
     67  1.1  leo  *
     68  1.1  leo  * Resettodr restores the time of day hardware after a time change.
     69  1.1  leo  *
     70  1.1  leo  * A note on the real-time clock:
     71  1.1  leo  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
     72  1.1  leo  * This is because the counter decrements to zero after N+1 enabled clock
     73  1.1  leo  * periods where N is the value loaded into the counter.
     74  1.1  leo  */
     75  1.1  leo 
     76  1.1  leo int	clockmatch __P((struct device *, struct cfdata *, void *));
     77  1.1  leo void	clockattach __P((struct device *, struct device *, void *));
     78  1.1  leo 
     79  1.1  leo struct cfdriver clockcd = {
     80  1.1  leo 	NULL, "clock", (cfmatch_t)clockmatch, clockattach,
     81  1.1  leo 	DV_DULL, sizeof(struct device), NULL, 0
     82  1.1  leo };
     83  1.1  leo 
     84  1.1  leo static u_long	gettod __P((void));
     85  1.1  leo static int	settod __P((u_long));
     86  1.1  leo 
     87  1.1  leo static int	divisor;
     88  1.1  leo 
     89  1.1  leo int
     90  1.1  leo clockmatch(pdp, cfp, auxp)
     91  1.1  leo struct device *pdp;
     92  1.1  leo struct cfdata *cfp;
     93  1.1  leo void *auxp;
     94  1.1  leo {
     95  1.1  leo 	if(!strcmp("clock", auxp))
     96  1.1  leo 		return(1);
     97  1.1  leo 	return(0);
     98  1.1  leo }
     99  1.1  leo 
    100  1.1  leo /*
    101  1.1  leo  * Start the real-time clock.
    102  1.1  leo  */
    103  1.1  leo void clockattach(pdp, dp, auxp)
    104  1.1  leo struct device	*pdp, *dp;
    105  1.1  leo void			*auxp;
    106  1.1  leo {
    107  1.1  leo 	/*
    108  1.3  leo 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    109  1.3  leo 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    110  1.3  leo 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    111  1.3  leo 	 * following expression works for 48, 64 or 96 hz.
    112  1.1  leo 	 */
    113  1.3  leo 	divisor       = 12288/hz;
    114  1.2  leo 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    115  1.2  leo 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    116  1.2  leo 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    117  1.1  leo 
    118  1.3  leo 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    119  1.1  leo 
    120  1.1  leo 	/*
    121  1.2  leo 	 * Initialize Timer-B in the ST-MFP. This timer is used by the 'delay'
    122  1.1  leo 	 * function below. This time is setup to be continueously counting from
    123  1.1  leo 	 * 255 back to zero at a frequency of 614400Hz.
    124  1.1  leo 	 */
    125  1.2  leo 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
    126  1.2  leo 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    127  1.2  leo 	MFP->mf_tbdr  = 0;
    128  1.2  leo 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    129  1.1  leo 
    130  1.1  leo }
    131  1.1  leo 
    132  1.1  leo void cpu_initclocks()
    133  1.1  leo {
    134  1.3  leo 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    135  1.2  leo 	MFP->mf_ipra &= ~IA_TIMA;	/* Clear pending interrupts	*/
    136  1.2  leo 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    137  1.2  leo 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    138  1.1  leo }
    139  1.1  leo 
    140  1.1  leo setstatclockrate(hz)
    141  1.1  leo 	int hz;
    142  1.1  leo {
    143  1.1  leo }
    144  1.1  leo 
    145  1.1  leo /*
    146  1.1  leo  * Returns number of usec since last recorded clock "tick"
    147  1.1  leo  * (i.e. clock interrupt).
    148  1.1  leo  */
    149  1.1  leo clkread()
    150  1.1  leo {
    151  1.3  leo 	u_int	delta;
    152  1.3  leo 
    153  1.3  leo 	delta = ((divisor - MFP->mf_tadr) * tick) / divisor;
    154  1.1  leo 	/*
    155  1.1  leo 	 * Account for pending clock interrupts
    156  1.1  leo 	 */
    157  1.2  leo 	if(MFP->mf_iera & IA_TIMA)
    158  1.1  leo 		return(delta + tick);
    159  1.1  leo 	return(delta);
    160  1.1  leo }
    161  1.1  leo 
    162  1.2  leo #define TIMB_FREQ	614400
    163  1.2  leo #define TIMB_LIMIT	256
    164  1.1  leo 
    165  1.1  leo /*
    166  1.1  leo  * Wait "n" microseconds.
    167  1.2  leo  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    168  1.1  leo  * Note: timer had better have been programmed before this is first used!
    169  1.1  leo  */
    170  1.1  leo void delay(n)
    171  1.1  leo int	n;
    172  1.1  leo {
    173  1.1  leo 	int	tick, otick;
    174  1.1  leo 
    175  1.1  leo 	/*
    176  1.1  leo 	 * Read the counter first, so that the rest of the setup overhead is
    177  1.1  leo 	 * counted.
    178  1.1  leo 	 */
    179  1.2  leo 	otick = MFP->mf_tbdr;
    180  1.1  leo 
    181  1.1  leo 	/*
    182  1.1  leo 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    183  1.1  leo 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    184  1.1  leo 	 * loss of significance.
    185  1.1  leo 	 */
    186  1.1  leo 	n -= 5;
    187  1.1  leo 	if(n < 0)
    188  1.1  leo 		return;
    189  1.1  leo 	{
    190  1.1  leo 	    u_int	temp;
    191  1.1  leo 
    192  1.1  leo 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    193  1.2  leo 					       : "d" (TIMB_FREQ));
    194  1.1  leo 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    195  1.1  leo 					       : "d"(1000000),"d"(temp),"0"(n));
    196  1.1  leo 	}
    197  1.1  leo 
    198  1.1  leo 	while(n > 0) {
    199  1.2  leo 		tick = MFP->mf_tbdr;
    200  1.1  leo 		if(tick > otick)
    201  1.2  leo 			n -= TIMB_LIMIT - (tick - otick);
    202  1.1  leo 		else n -= otick - tick;
    203  1.1  leo 		otick = tick;
    204  1.1  leo 	}
    205  1.1  leo }
    206  1.1  leo 
    207  1.1  leo #ifdef PROFTIMER
    208  1.1  leo /*
    209  1.1  leo  * This code allows the amiga kernel to use one of the extra timers on
    210  1.1  leo  * the clock chip for profiling, instead of the regular system timer.
    211  1.1  leo  * The advantage of this is that the profiling timer can be turned up to
    212  1.1  leo  * a higher interrupt rate, giving finer resolution timing. The profclock
    213  1.1  leo  * routine is called from the lev6intr in locore, and is a specialized
    214  1.1  leo  * routine that calls addupc. The overhead then is far less than if
    215  1.1  leo  * hardclock/softclock was called. Further, the context switch code in
    216  1.1  leo  * locore has been changed to turn the profile clock on/off when switching
    217  1.1  leo  * into/out of a process that is profiling (startprofclock/stopprofclock).
    218  1.1  leo  * This reduces the impact of the profiling clock on other users, and might
    219  1.1  leo  * possibly increase the accuracy of the profiling.
    220  1.1  leo  */
    221  1.1  leo int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
    222  1.1  leo int  profscale = 0;		/* Scale factor from sys clock to prof clock */
    223  1.1  leo char profon    = 0;		/* Is profiling clock on? */
    224  1.1  leo 
    225  1.1  leo /* profon values - do not change, locore.s assumes these values */
    226  1.1  leo #define PRF_NONE	0x00
    227  1.1  leo #define	PRF_USER	0x01
    228  1.1  leo #define	PRF_KERNEL	0x80
    229  1.1  leo 
    230  1.1  leo initprofclock()
    231  1.1  leo {
    232  1.1  leo #if NCLOCK > 0
    233  1.1  leo 	struct proc *p = curproc;		/* XXX */
    234  1.1  leo 
    235  1.1  leo 	/*
    236  1.1  leo 	 * If the high-res timer is running, force profiling off.
    237  1.1  leo 	 * Unfortunately, this gets reflected back to the user not as
    238  1.1  leo 	 * an error but as a lack of results.
    239  1.1  leo 	 */
    240  1.1  leo 	if (clockon) {
    241  1.1  leo 		p->p_stats->p_prof.pr_scale = 0;
    242  1.1  leo 		return;
    243  1.1  leo 	}
    244  1.1  leo 	/*
    245  1.1  leo 	 * Keep track of the number of user processes that are profiling
    246  1.1  leo 	 * by checking the scale value.
    247  1.1  leo 	 *
    248  1.1  leo 	 * XXX: this all assumes that the profiling code is well behaved;
    249  1.1  leo 	 * i.e. profil() is called once per process with pcscale non-zero
    250  1.1  leo 	 * to turn it on, and once with pcscale zero to turn it off.
    251  1.1  leo 	 * Also assumes you don't do any forks or execs.  Oh well, there
    252  1.1  leo 	 * is always adb...
    253  1.1  leo 	 */
    254  1.1  leo 	if (p->p_stats->p_prof.pr_scale)
    255  1.1  leo 		profprocs++;
    256  1.1  leo 	else
    257  1.1  leo 		profprocs--;
    258  1.1  leo #endif
    259  1.1  leo 	/*
    260  1.1  leo 	 * The profile interrupt interval must be an even divisor
    261  1.1  leo 	 * of the CLK_INTERVAL so that scaling from a system clock
    262  1.1  leo 	 * tick to a profile clock tick is possible using integer math.
    263  1.1  leo 	 */
    264  1.1  leo 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
    265  1.1  leo 		profint = CLK_INTERVAL;
    266  1.1  leo 	profscale = CLK_INTERVAL / profint;
    267  1.1  leo }
    268  1.1  leo 
    269  1.1  leo startprofclock()
    270  1.1  leo {
    271  1.1  leo   unsigned short interval;
    272  1.1  leo 
    273  1.1  leo   /* stop timer B */
    274  1.1  leo   ciab.crb = ciab.crb & 0xc0;
    275  1.1  leo 
    276  1.1  leo   /* load interval into registers.
    277  1.1  leo      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
    278  1.1  leo 
    279  1.1  leo   interval = profint - 1;
    280  1.1  leo 
    281  1.1  leo   /* order of setting is important ! */
    282  1.1  leo   ciab.tblo = interval & 0xff;
    283  1.1  leo   ciab.tbhi = interval >> 8;
    284  1.1  leo 
    285  1.1  leo   /* enable interrupts for timer B */
    286  1.1  leo   ciab.icr = (1<<7) | (1<<1);
    287  1.1  leo 
    288  1.1  leo   /* start timer B in continuous shot mode */
    289  1.1  leo   ciab.crb = (ciab.crb & 0xc0) | 1;
    290  1.1  leo }
    291  1.1  leo 
    292  1.1  leo stopprofclock()
    293  1.1  leo {
    294  1.1  leo   /* stop timer B */
    295  1.1  leo   ciab.crb = ciab.crb & 0xc0;
    296  1.1  leo }
    297  1.1  leo 
    298  1.1  leo #ifdef PROF
    299  1.1  leo /*
    300  1.1  leo  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    301  1.1  leo  * Assumes it is called with clock interrupts blocked.
    302  1.1  leo  */
    303  1.1  leo profclock(pc, ps)
    304  1.1  leo 	caddr_t pc;
    305  1.1  leo 	int ps;
    306  1.1  leo {
    307  1.1  leo 	/*
    308  1.1  leo 	 * Came from user mode.
    309  1.1  leo 	 * If this process is being profiled record the tick.
    310  1.1  leo 	 */
    311  1.1  leo 	if (USERMODE(ps)) {
    312  1.1  leo 		if (p->p_stats.p_prof.pr_scale)
    313  1.1  leo 			addupc(pc, &curproc->p_stats.p_prof, 1);
    314  1.1  leo 	}
    315  1.1  leo 	/*
    316  1.1  leo 	 * Came from kernel (supervisor) mode.
    317  1.1  leo 	 * If we are profiling the kernel, record the tick.
    318  1.1  leo 	 */
    319  1.1  leo 	else if (profiling < 2) {
    320  1.1  leo 		register int s = pc - s_lowpc;
    321  1.1  leo 
    322  1.1  leo 		if (s < s_textsize)
    323  1.1  leo 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    324  1.1  leo 	}
    325  1.1  leo 	/*
    326  1.1  leo 	 * Kernel profiling was on but has been disabled.
    327  1.1  leo 	 * Mark as no longer profiling kernel and if all profiling done,
    328  1.1  leo 	 * disable the clock.
    329  1.1  leo 	 */
    330  1.1  leo 	if (profiling && (profon & PRF_KERNEL)) {
    331  1.1  leo 		profon &= ~PRF_KERNEL;
    332  1.1  leo 		if (profon == PRF_NONE)
    333  1.1  leo 			stopprofclock();
    334  1.1  leo 	}
    335  1.1  leo }
    336  1.1  leo #endif
    337  1.1  leo #endif
    338  1.1  leo 
    339  1.1  leo /*
    340  1.1  leo  * Initialize the time of day register, based on the time base which is, e.g.
    341  1.1  leo  * from a filesystem.
    342  1.1  leo  */
    343  1.1  leo inittodr(base)
    344  1.1  leo time_t base;
    345  1.1  leo {
    346  1.1  leo 	u_long timbuf = base;	/* assume no battery clock exists */
    347  1.1  leo 
    348  1.1  leo 	timbuf = gettod();
    349  1.1  leo 
    350  1.1  leo 	if(timbuf < base) {
    351  1.1  leo 		printf("WARNING: bad date in battery clock\n");
    352  1.1  leo 		timbuf = base;
    353  1.1  leo 	}
    354  1.1  leo 
    355  1.1  leo 	/* Battery clock does not store usec's, so forget about it. */
    356  1.1  leo 	time.tv_sec = timbuf;
    357  1.1  leo }
    358  1.1  leo 
    359  1.1  leo resettodr()
    360  1.1  leo {
    361  1.1  leo 	if(settod(time.tv_sec) == 1)
    362  1.1  leo 		return;
    363  1.1  leo 	printf("Cannot set battery backed clock\n");
    364  1.1  leo }
    365  1.1  leo 
    366  1.1  leo static	char	dmsize[12] =
    367  1.1  leo {
    368  1.1  leo 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    369  1.1  leo };
    370  1.1  leo 
    371  1.1  leo static	char	ldmsize[12] =
    372  1.1  leo {
    373  1.1  leo 	31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    374  1.1  leo };
    375  1.1  leo 
    376  1.1  leo static u_long
    377  1.1  leo gettod()
    378  1.1  leo {
    379  1.3  leo 	int		i, sps;
    380  1.3  leo 	u_long		new_time = 0;
    381  1.3  leo 	char		*msize;
    382  1.3  leo 	mc_todregs	clkregs;
    383  1.3  leo 
    384  1.3  leo 	sps = splhigh();
    385  1.3  leo 	MC146818_GETTOD(RTC, &clkregs);
    386  1.3  leo 	splx(sps);
    387  1.1  leo 
    388  1.3  leo 	if(range_test(clkregs[MC_HOUR], 0, 23))
    389  1.1  leo 		return(0);
    390  1.3  leo 	if(range_test(clkregs[MC_DOM], 1, 31))
    391  1.1  leo 		return(0);
    392  1.3  leo 	if (range_test(clkregs[MC_MONTH], 1, 12))
    393  1.1  leo 		return(0);
    394  1.3  leo 	if(range_test(clkregs[MC_YEAR], 0, 2000 - GEMSTARTOFTIME))
    395  1.1  leo 		return(0);
    396  1.3  leo 	clkregs[MC_YEAR] += GEMSTARTOFTIME;
    397  1.1  leo 
    398  1.3  leo 	for(i = BSDSTARTOFTIME; i < clkregs[MC_YEAR]; i++) {
    399  1.1  leo 		if(is_leap(i))
    400  1.1  leo 			new_time += 366;
    401  1.1  leo 		else new_time += 365;
    402  1.1  leo 	}
    403  1.1  leo 
    404  1.3  leo 	msize = is_leap(clkregs[MC_YEAR]) ? ldmsize : dmsize;
    405  1.3  leo 	for(i = 0; i < (clkregs[MC_MONTH] - 1); i++)
    406  1.1  leo 		new_time += msize[i];
    407  1.3  leo 	new_time += clkregs[MC_DOM] - 1;
    408  1.3  leo 	new_time *= SECS_DAY;
    409  1.3  leo 	new_time += (clkregs[MC_HOUR] * 3600) + (clkregs[MC_MIN] * 60);
    410  1.3  leo 	return(new_time + clkregs[MC_SEC]);
    411  1.1  leo }
    412  1.1  leo 
    413  1.1  leo static int
    414  1.1  leo settod(newtime)
    415  1.1  leo u_long	newtime;
    416  1.1  leo {
    417  1.1  leo 	register long	days, rem, year;
    418  1.1  leo 	register char	*ml;
    419  1.3  leo 		 int	sps, sec, min, hour, month;
    420  1.3  leo 	mc_todregs	clkregs;
    421  1.1  leo 
    422  1.3  leo 	/* Number of days since Jan. 1 'BSDSTARTOFTIME'	*/
    423  1.1  leo 	days = newtime / SECS_DAY;
    424  1.1  leo 	rem  = newtime % SECS_DAY;
    425  1.1  leo 
    426  1.1  leo 	/*
    427  1.1  leo 	 * Calculate sec, min, hour
    428  1.1  leo 	 */
    429  1.1  leo 	hour = rem / SECS_HOUR;
    430  1.1  leo 	rem %= SECS_HOUR;
    431  1.1  leo 	min  = rem / 60;
    432  1.1  leo 	sec  = rem % 60;
    433  1.1  leo 
    434  1.1  leo 	/*
    435  1.1  leo 	 * Figure out the year. Day in year is left in 'days'.
    436  1.1  leo 	 */
    437  1.3  leo 	year = BSDSTARTOFTIME;
    438  1.1  leo 	while(days >= (rem = is_leap(year) ? 366 : 365)) {
    439  1.3  leo 		++year;
    440  1.3  leo 		days -= rem;
    441  1.1  leo 	}
    442  1.1  leo 
    443  1.1  leo 	/*
    444  1.1  leo 	 * Determine the month
    445  1.1  leo 	 */
    446  1.1  leo 	ml = is_leap(year) ? ldmsize : dmsize;
    447  1.1  leo 	for(month = 0; days >= ml[month]; ++month)
    448  1.1  leo 		days -= ml[month];
    449  1.1  leo 
    450  1.1  leo 	/*
    451  1.1  leo 	 * Now that everything is calculated, program the RTC
    452  1.1  leo 	 */
    453  1.3  leo 	mc146818_write(RTC, MC_REGA, MC_BASE_32_KHz);
    454  1.3  leo 	mc146818_write(RTC, MC_REGB, MC_REGB_24HR | MC_REGB_BINARY);
    455  1.3  leo 	sps = splhigh();
    456  1.3  leo 	MC146818_GETTOD(RTC, &clkregs);
    457  1.3  leo 	clkregs[MC_SEC]   = sec;
    458  1.3  leo 	clkregs[MC_MIN]   = min;
    459  1.3  leo 	clkregs[MC_HOUR]  = hour;
    460  1.3  leo 	clkregs[MC_DOM]   = days+1;
    461  1.3  leo 	clkregs[MC_MONTH] = month+1;
    462  1.3  leo 	clkregs[MC_YEAR]  = year - GEMSTARTOFTIME;
    463  1.3  leo 	MC146818_PUTTOD(RTC, &clkregs);
    464  1.3  leo 	splx(sps);
    465  1.1  leo 
    466  1.1  leo 	return(1);
    467  1.1  leo }
    468