Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.31
      1  1.31  jdolecek /*	$NetBSD: clock.c,v 1.31 2002/10/23 09:10:48 jdolecek Exp $	*/
      2   1.1       leo 
      3   1.1       leo /*
      4   1.1       leo  * Copyright (c) 1988 University of Utah.
      5   1.1       leo  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6   1.1       leo  * All rights reserved.
      7   1.1       leo  *
      8   1.1       leo  * This code is derived from software contributed to Berkeley by
      9   1.1       leo  * the Systems Programming Group of the University of Utah Computer
     10   1.1       leo  * Science Department.
     11   1.1       leo  *
     12   1.1       leo  * Redistribution and use in source and binary forms, with or without
     13   1.1       leo  * modification, are permitted provided that the following conditions
     14   1.1       leo  * are met:
     15   1.1       leo  * 1. Redistributions of source code must retain the above copyright
     16   1.1       leo  *    notice, this list of conditions and the following disclaimer.
     17   1.1       leo  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       leo  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       leo  *    documentation and/or other materials provided with the distribution.
     20   1.1       leo  * 3. All advertising materials mentioning features or use of this software
     21   1.1       leo  *    must display the following acknowledgement:
     22   1.1       leo  *	This product includes software developed by the University of
     23   1.1       leo  *	California, Berkeley and its contributors.
     24   1.1       leo  * 4. Neither the name of the University nor the names of its contributors
     25   1.1       leo  *    may be used to endorse or promote products derived from this software
     26   1.1       leo  *    without specific prior written permission.
     27   1.1       leo  *
     28   1.1       leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29   1.1       leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30   1.1       leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31   1.1       leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32   1.1       leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33   1.1       leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34   1.1       leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35   1.1       leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36   1.1       leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37   1.1       leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38   1.1       leo  * SUCH DAMAGE.
     39   1.1       leo  *
     40   1.1       leo  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41   1.1       leo  *
     42   1.1       leo  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43   1.1       leo  */
     44   1.1       leo 
     45   1.1       leo #include <sys/param.h>
     46   1.1       leo #include <sys/kernel.h>
     47   1.9       leo #include <sys/systm.h>
     48   1.1       leo #include <sys/device.h>
     49  1.14       leo #include <sys/uio.h>
     50  1.14       leo #include <sys/conf.h>
     51  1.31  jdolecek #include <sys/event.h>
     52  1.18       leo 
     53  1.18       leo #include <dev/clock_subr.h>
     54  1.18       leo 
     55   1.1       leo #include <machine/psl.h>
     56   1.1       leo #include <machine/cpu.h>
     57   1.1       leo #include <machine/iomap.h>
     58   1.1       leo #include <machine/mfp.h>
     59   1.1       leo #include <atari/dev/clockreg.h>
     60  1.14       leo #include <atari/atari/device.h>
     61   1.1       leo 
     62   1.4       leo #if defined(GPROF) && defined(PROFTIMER)
     63   1.4       leo #include <machine/profile.h>
     64   1.1       leo #endif
     65   1.1       leo 
     66   1.1       leo /*
     67   1.5       leo  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     68   1.5       leo  * of 200. Therefore the timer runs at an effective rate of:
     69   1.5       leo  * 2457600/200 = 12288Hz.
     70   1.5       leo  */
     71   1.5       leo #define CLOCK_HZ	12288
     72   1.5       leo 
     73   1.5       leo /*
     74   1.1       leo  * Machine-dependent clock routines.
     75   1.1       leo  *
     76   1.1       leo  * Inittodr initializes the time of day hardware which provides
     77   1.1       leo  * date functions.
     78   1.1       leo  *
     79   1.1       leo  * Resettodr restores the time of day hardware after a time change.
     80   1.1       leo  */
     81   1.1       leo 
     82  1.14       leo struct clock_softc {
     83  1.14       leo 	struct device	sc_dev;
     84  1.14       leo 	int		sc_flags;
     85  1.14       leo };
     86  1.14       leo 
     87  1.14       leo /*
     88  1.14       leo  *  'sc_flags' state info. Only used by the rtc-device functions.
     89  1.14       leo  */
     90  1.14       leo #define	RTC_OPEN	1
     91  1.14       leo 
     92  1.14       leo dev_type_open(rtcopen);
     93  1.14       leo dev_type_close(rtcclose);
     94  1.14       leo dev_type_read(rtcread);
     95  1.14       leo dev_type_write(rtcwrite);
     96  1.14       leo 
     97  1.14       leo static void	clockattach __P((struct device *, struct device *, void *));
     98  1.17       leo static int	clockmatch __P((struct device *, struct cfdata *, void *));
     99   1.1       leo 
    100  1.30   thorpej CFATTACH_DECL(clock, sizeof(struct clock_softc),
    101  1.30   thorpej     clockmatch, clockattach, NULL, NULL);
    102  1.10   thorpej 
    103  1.19   thorpej extern struct cfdriver clock_cd;
    104  1.28   gehenna 
    105  1.28   gehenna const struct cdevsw rtc_cdevsw = {
    106  1.28   gehenna 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    107  1.31  jdolecek 	nostop, notty, nopoll, nommap, nokqfilter,
    108  1.28   gehenna };
    109   1.1       leo 
    110  1.16       leo void statintr __P((struct clockframe));
    111   1.9       leo 
    112   1.1       leo static u_long	gettod __P((void));
    113  1.14       leo static int	twodigits __P((char *, int));
    114   1.1       leo 
    115   1.5       leo static int	divisor;	/* Systemclock divisor	*/
    116   1.5       leo 
    117   1.5       leo /*
    118   1.5       leo  * Statistics and profile clock intervals and variances. Variance must
    119   1.5       leo  * be a power of 2. Since this gives us an even number, not an odd number,
    120   1.5       leo  * we discard one case and compensate. That is, a variance of 64 would
    121   1.5       leo  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    122  1.26       wiz  * This is symmetric around the point 32, or statvar/2, and thus averages
    123   1.5       leo  * to that value (assuming uniform random numbers).
    124   1.5       leo  */
    125   1.5       leo #ifdef STATCLOCK
    126   1.5       leo static int	statvar = 32;	/* {stat,prof}clock variance		*/
    127   1.5       leo static int	statmin;	/* statclock divisor - variance/2	*/
    128   1.5       leo static int	profmin;	/* profclock divisor - variance/2	*/
    129  1.27       wiz static int	clk2min;	/* current, from above choices		*/
    130   1.5       leo #endif
    131   1.1       leo 
    132   1.1       leo int
    133  1.17       leo clockmatch(pdp, cfp, auxp)
    134  1.14       leo struct device	*pdp;
    135  1.17       leo struct cfdata	*cfp;
    136  1.17       leo void		*auxp;
    137   1.1       leo {
    138  1.15       leo 	if (!atari_realconfig) {
    139  1.15       leo 	    /*
    140  1.15       leo 	     * Initialize Timer-B in the ST-MFP. This timer is used by
    141  1.15       leo 	     * the 'delay' function below. This timer is setup to be
    142  1.15       leo 	     * continueously counting from 255 back to zero at a
    143  1.15       leo 	     * frequency of 614400Hz. We do this *early* in the
    144  1.15       leo 	     * initialisation process.
    145  1.15       leo 	     */
    146  1.15       leo 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
    147  1.15       leo 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    148  1.15       leo 	    MFP->mf_tbdr  = 0;
    149  1.15       leo 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    150  1.15       leo 
    151  1.15       leo 	    /*
    152  1.15       leo 	     * Initialize the time structure
    153  1.15       leo 	     */
    154  1.15       leo 	    time.tv_sec  = 0;
    155  1.15       leo 	    time.tv_usec = 0;
    156  1.15       leo 
    157  1.15       leo 	    return 0;
    158  1.15       leo 	}
    159   1.1       leo 	if(!strcmp("clock", auxp))
    160   1.1       leo 		return(1);
    161   1.1       leo 	return(0);
    162   1.1       leo }
    163   1.1       leo 
    164   1.1       leo /*
    165   1.1       leo  * Start the real-time clock.
    166   1.1       leo  */
    167   1.1       leo void clockattach(pdp, dp, auxp)
    168   1.1       leo struct device	*pdp, *dp;
    169  1.14       leo void		*auxp;
    170   1.1       leo {
    171  1.14       leo 	struct clock_softc *sc = (void *)dp;
    172  1.14       leo 
    173  1.14       leo 	sc->sc_flags = 0;
    174  1.14       leo 
    175   1.1       leo 	/*
    176   1.3       leo 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    177   1.3       leo 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    178   1.3       leo 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    179   1.3       leo 	 * following expression works for 48, 64 or 96 hz.
    180   1.1       leo 	 */
    181   1.5       leo 	divisor       = CLOCK_HZ/hz;
    182   1.2       leo 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    183   1.2       leo 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    184   1.2       leo 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    185   1.1       leo 
    186   1.5       leo 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    187  1.13  christos 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    188   1.5       leo 								hz, 64);
    189   1.5       leo 		hz = 64;
    190   1.5       leo 	}
    191  1.13  christos 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    192   1.1       leo 
    193   1.5       leo #ifdef STATCLOCK
    194   1.5       leo 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    195   1.5       leo 		stathz = hz;
    196   1.5       leo 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    197   1.5       leo 		profhz = hz << 1;
    198   1.5       leo 
    199   1.5       leo 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    200   1.5       leo 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    201   1.5       leo 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    202   1.5       leo 
    203   1.5       leo 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    204   1.5       leo 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    205   1.5       leo 	clk2min  = statmin;
    206   1.5       leo #endif /* STATCLOCK */
    207  1.14       leo 
    208   1.1       leo }
    209   1.1       leo 
    210   1.1       leo void cpu_initclocks()
    211   1.1       leo {
    212   1.3       leo 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    213  1.20       leo 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    214   1.2       leo 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    215   1.2       leo 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    216   1.5       leo 
    217   1.5       leo #ifdef STATCLOCK
    218   1.5       leo 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    219  1.20       leo 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    220   1.5       leo 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    221   1.5       leo 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    222   1.5       leo #endif /* STATCLOCK */
    223   1.1       leo }
    224   1.1       leo 
    225   1.9       leo void
    226   1.5       leo setstatclockrate(newhz)
    227   1.5       leo 	int newhz;
    228   1.1       leo {
    229   1.5       leo #ifdef STATCLOCK
    230   1.5       leo 	if (newhz == stathz)
    231   1.5       leo 		clk2min = statmin;
    232   1.5       leo 	else clk2min = profmin;
    233   1.5       leo #endif /* STATCLOCK */
    234   1.1       leo }
    235   1.1       leo 
    236   1.5       leo #ifdef STATCLOCK
    237   1.5       leo void
    238   1.5       leo statintr(frame)
    239  1.16       leo 	struct clockframe frame;
    240   1.5       leo {
    241   1.5       leo 	register int	var, r;
    242   1.5       leo 
    243   1.5       leo 	var = statvar - 1;
    244   1.5       leo 	do {
    245   1.5       leo 		r = random() & var;
    246   1.5       leo 	} while(r == 0);
    247   1.5       leo 
    248   1.5       leo 	/*
    249   1.5       leo 	 * Note that we are always lagging behind as the new divisor
    250   1.5       leo 	 * value will not be loaded until the next interrupt. This
    251   1.5       leo 	 * shouldn't disturb the median frequency (I think ;-) ) as
    252   1.5       leo 	 * only the value used when switching frequencies is used
    253   1.5       leo 	 * twice. This shouldn't happen very often.
    254   1.5       leo 	 */
    255   1.5       leo 	MFP->mf_tcdr = clk2min + r;
    256   1.5       leo 
    257  1.16       leo 	statclock(&frame);
    258   1.5       leo }
    259   1.5       leo #endif /* STATCLOCK */
    260   1.5       leo 
    261   1.1       leo /*
    262   1.1       leo  * Returns number of usec since last recorded clock "tick"
    263   1.1       leo  * (i.e. clock interrupt).
    264   1.1       leo  */
    265   1.9       leo long
    266   1.1       leo clkread()
    267   1.1       leo {
    268   1.3       leo 	u_int	delta;
    269  1.22       leo 	u_char	ipra, tadr;
    270   1.3       leo 
    271  1.22       leo 	/*
    272  1.22       leo 	 * Note: Order is important!
    273  1.22       leo 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
    274  1.22       leo 	 * the situation that very low value in 'tadr' is read (== a big delta)
    275  1.22       leo 	 * while also acccounting for a full 'tick' because the counter went
    276  1.22       leo 	 * through zero during the calculations.
    277  1.22       leo 	 */
    278  1.22       leo 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
    279  1.22       leo 
    280  1.22       leo 	delta = ((divisor - tadr) * tick) / divisor;
    281   1.1       leo 	/*
    282   1.1       leo 	 * Account for pending clock interrupts
    283   1.1       leo 	 */
    284  1.22       leo 	if(ipra & IA_TIMA)
    285   1.1       leo 		return(delta + tick);
    286   1.1       leo 	return(delta);
    287   1.1       leo }
    288   1.1       leo 
    289   1.2       leo #define TIMB_FREQ	614400
    290   1.2       leo #define TIMB_LIMIT	256
    291   1.1       leo 
    292   1.1       leo /*
    293   1.1       leo  * Wait "n" microseconds.
    294   1.2       leo  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    295   1.1       leo  * Note: timer had better have been programmed before this is first used!
    296   1.1       leo  */
    297  1.14       leo void
    298  1.14       leo delay(n)
    299   1.1       leo int	n;
    300   1.1       leo {
    301   1.1       leo 	int	tick, otick;
    302   1.1       leo 
    303   1.1       leo 	/*
    304   1.1       leo 	 * Read the counter first, so that the rest of the setup overhead is
    305   1.1       leo 	 * counted.
    306   1.1       leo 	 */
    307   1.2       leo 	otick = MFP->mf_tbdr;
    308   1.1       leo 
    309   1.1       leo 	/*
    310   1.1       leo 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    311   1.1       leo 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    312   1.1       leo 	 * loss of significance.
    313   1.1       leo 	 */
    314   1.1       leo 	n -= 5;
    315   1.1       leo 	if(n < 0)
    316   1.1       leo 		return;
    317   1.1       leo 	{
    318   1.1       leo 	    u_int	temp;
    319   1.1       leo 
    320   1.1       leo 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    321  1.23       leo 					       : "d" (TIMB_FREQ), "d" (n));
    322   1.1       leo 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    323   1.1       leo 					       : "d"(1000000),"d"(temp),"0"(n));
    324   1.1       leo 	}
    325   1.1       leo 
    326   1.1       leo 	while(n > 0) {
    327   1.2       leo 		tick = MFP->mf_tbdr;
    328   1.1       leo 		if(tick > otick)
    329   1.2       leo 			n -= TIMB_LIMIT - (tick - otick);
    330   1.1       leo 		else n -= otick - tick;
    331   1.1       leo 		otick = tick;
    332   1.1       leo 	}
    333   1.1       leo }
    334   1.1       leo 
    335   1.4       leo #ifdef GPROF
    336   1.1       leo /*
    337   1.1       leo  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    338   1.1       leo  * Assumes it is called with clock interrupts blocked.
    339   1.1       leo  */
    340   1.1       leo profclock(pc, ps)
    341   1.1       leo 	caddr_t pc;
    342   1.1       leo 	int ps;
    343   1.1       leo {
    344   1.1       leo 	/*
    345   1.1       leo 	 * Came from user mode.
    346   1.1       leo 	 * If this process is being profiled record the tick.
    347   1.1       leo 	 */
    348   1.1       leo 	if (USERMODE(ps)) {
    349   1.1       leo 		if (p->p_stats.p_prof.pr_scale)
    350   1.1       leo 			addupc(pc, &curproc->p_stats.p_prof, 1);
    351   1.1       leo 	}
    352   1.1       leo 	/*
    353   1.1       leo 	 * Came from kernel (supervisor) mode.
    354   1.1       leo 	 * If we are profiling the kernel, record the tick.
    355   1.1       leo 	 */
    356   1.1       leo 	else if (profiling < 2) {
    357   1.1       leo 		register int s = pc - s_lowpc;
    358   1.1       leo 
    359   1.1       leo 		if (s < s_textsize)
    360   1.1       leo 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    361   1.1       leo 	}
    362   1.1       leo 	/*
    363   1.1       leo 	 * Kernel profiling was on but has been disabled.
    364   1.1       leo 	 * Mark as no longer profiling kernel and if all profiling done,
    365   1.1       leo 	 * disable the clock.
    366   1.1       leo 	 */
    367   1.1       leo 	if (profiling && (profon & PRF_KERNEL)) {
    368   1.1       leo 		profon &= ~PRF_KERNEL;
    369   1.1       leo 		if (profon == PRF_NONE)
    370   1.1       leo 			stopprofclock();
    371   1.1       leo 	}
    372   1.1       leo }
    373   1.1       leo #endif
    374   1.7       leo 
    375   1.7       leo /***********************************************************************
    376   1.7       leo  *                   Real Time Clock support                           *
    377   1.7       leo  ***********************************************************************/
    378   1.7       leo 
    379   1.7       leo u_int mc146818_read(rtc, regno)
    380   1.7       leo void	*rtc;
    381   1.7       leo u_int	regno;
    382   1.7       leo {
    383   1.7       leo 	((struct rtc *)rtc)->rtc_regno = regno;
    384   1.7       leo 	return(((struct rtc *)rtc)->rtc_data & 0377);
    385   1.7       leo }
    386   1.7       leo 
    387   1.7       leo void mc146818_write(rtc, regno, value)
    388   1.7       leo void	*rtc;
    389   1.7       leo u_int	regno, value;
    390   1.7       leo {
    391   1.7       leo 	((struct rtc *)rtc)->rtc_regno = regno;
    392   1.7       leo 	((struct rtc *)rtc)->rtc_data  = value;
    393   1.7       leo }
    394   1.1       leo 
    395   1.1       leo /*
    396  1.14       leo  * Initialize the time of day register, assuming the RTC runs in UTC.
    397  1.14       leo  * Since we've got the 'rtc' device, this functionality should be removed
    398  1.14       leo  * from the kernel. The only problem to be solved before that can happen
    399  1.14       leo  * is the possibility of init(1) providing a way (rc.boot?) to set
    400  1.14       leo  * the RTC before single-user mode is entered.
    401   1.1       leo  */
    402   1.9       leo void
    403   1.1       leo inittodr(base)
    404   1.1       leo time_t base;
    405   1.1       leo {
    406   1.1       leo 	/* Battery clock does not store usec's, so forget about it. */
    407  1.14       leo 	time.tv_sec  = gettod();
    408  1.11       leo 	time.tv_usec = 0;
    409   1.1       leo }
    410   1.1       leo 
    411  1.14       leo /*
    412  1.14       leo  * Function turned into a No-op. Use /dev/rtc to update the RTC.
    413  1.14       leo  */
    414   1.9       leo void
    415   1.1       leo resettodr()
    416   1.1       leo {
    417  1.14       leo 	return;
    418   1.1       leo }
    419   1.1       leo 
    420   1.1       leo static u_long
    421   1.1       leo gettod()
    422   1.1       leo {
    423  1.18       leo 	int			sps;
    424  1.18       leo 	mc_todregs		clkregs;
    425  1.25       leo 	u_int			regb;
    426  1.18       leo 	struct clock_ymdhms	dt;
    427   1.3       leo 
    428   1.3       leo 	sps = splhigh();
    429  1.25       leo 	regb = mc146818_read(RTC, MC_REGB);
    430   1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    431   1.3       leo 	splx(sps);
    432   1.1       leo 
    433  1.25       leo 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    434  1.25       leo 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    435  1.25       leo 		printf("Error: Nonstandard RealTimeClock Configuration -"
    436  1.25       leo 			" value ignored\n"
    437  1.25       leo 			"       A write to /dev/rtc will correct this.\n");
    438  1.25       leo 			return(0);
    439  1.25       leo 	}
    440   1.9       leo 	if(clkregs[MC_SEC] > 59)
    441   1.8       leo 		return(0);
    442   1.9       leo 	if(clkregs[MC_MIN] > 59)
    443   1.8       leo 		return(0);
    444   1.9       leo 	if(clkregs[MC_HOUR] > 23)
    445   1.1       leo 		return(0);
    446   1.3       leo 	if(range_test(clkregs[MC_DOM], 1, 31))
    447   1.1       leo 		return(0);
    448   1.3       leo 	if (range_test(clkregs[MC_MONTH], 1, 12))
    449   1.1       leo 		return(0);
    450  1.24       leo 	if(clkregs[MC_YEAR] > 99)
    451   1.1       leo 		return(0);
    452   1.1       leo 
    453  1.18       leo 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    454  1.18       leo 	dt.dt_mon  = clkregs[MC_MONTH];
    455  1.18       leo 	dt.dt_day  = clkregs[MC_DOM];
    456  1.18       leo 	dt.dt_hour = clkregs[MC_HOUR];
    457  1.18       leo 	dt.dt_min  = clkregs[MC_MIN];
    458  1.18       leo 	dt.dt_sec  = clkregs[MC_SEC];
    459   1.1       leo 
    460  1.18       leo 	return(clock_ymdhms_to_secs(&dt));
    461   1.1       leo }
    462  1.14       leo /***********************************************************************
    463  1.14       leo  *                   RTC-device support				       *
    464  1.14       leo  ***********************************************************************/
    465  1.14       leo int
    466  1.14       leo rtcopen(dev, flag, mode, p)
    467  1.14       leo 	dev_t		dev;
    468  1.14       leo 	int		flag, mode;
    469  1.14       leo 	struct proc	*p;
    470  1.14       leo {
    471  1.14       leo 	int			unit = minor(dev);
    472  1.14       leo 	struct clock_softc	*sc;
    473  1.14       leo 
    474  1.14       leo 	if (unit >= clock_cd.cd_ndevs)
    475  1.14       leo 		return ENXIO;
    476  1.14       leo 	sc = clock_cd.cd_devs[unit];
    477  1.14       leo 	if (!sc)
    478  1.14       leo 		return ENXIO;
    479  1.14       leo 	if (sc->sc_flags & RTC_OPEN)
    480  1.14       leo 		return EBUSY;
    481  1.14       leo 
    482  1.14       leo 	sc->sc_flags = RTC_OPEN;
    483  1.14       leo 	return 0;
    484  1.14       leo }
    485   1.1       leo 
    486  1.14       leo int
    487  1.14       leo rtcclose(dev, flag, mode, p)
    488  1.14       leo 	dev_t		dev;
    489  1.14       leo 	int		flag;
    490  1.14       leo 	int		mode;
    491  1.14       leo 	struct proc	*p;
    492   1.1       leo {
    493  1.14       leo 	int			unit = minor(dev);
    494  1.14       leo 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
    495  1.14       leo 
    496  1.14       leo 	sc->sc_flags = 0;
    497  1.14       leo 	return 0;
    498  1.14       leo }
    499  1.14       leo 
    500  1.14       leo int
    501  1.14       leo rtcread(dev, uio, flags)
    502  1.14       leo 	dev_t		dev;
    503  1.14       leo 	struct uio	*uio;
    504  1.14       leo 	int		flags;
    505  1.14       leo {
    506  1.14       leo 	struct clock_softc	*sc;
    507  1.14       leo 	mc_todregs		clkregs;
    508  1.14       leo 	int			s, length;
    509  1.14       leo 	char			buffer[16];
    510  1.14       leo 
    511  1.14       leo 	sc = clock_cd.cd_devs[minor(dev)];
    512  1.14       leo 
    513  1.14       leo 	s = splhigh();
    514  1.14       leo 	MC146818_GETTOD(RTC, &clkregs);
    515  1.14       leo 	splx(s);
    516  1.14       leo 
    517  1.21       leo 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    518  1.21       leo 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    519  1.14       leo 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    520  1.14       leo 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    521  1.14       leo 
    522  1.14       leo 	if (uio->uio_offset > strlen(buffer))
    523  1.14       leo 		return 0;
    524   1.1       leo 
    525  1.14       leo 	length = strlen(buffer) - uio->uio_offset;
    526  1.14       leo 	if (length > uio->uio_resid)
    527  1.14       leo 		length = uio->uio_resid;
    528   1.1       leo 
    529  1.14       leo 	return(uiomove((caddr_t)buffer, length, uio));
    530  1.14       leo }
    531  1.14       leo 
    532  1.14       leo static int
    533  1.14       leo twodigits(buffer, pos)
    534  1.14       leo 	char *buffer;
    535  1.14       leo 	int pos;
    536  1.14       leo {
    537  1.14       leo 	int result = 0;
    538  1.14       leo 
    539  1.14       leo 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    540  1.14       leo 		result = (buffer[pos] - '0') * 10;
    541  1.14       leo 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    542  1.14       leo 		result += (buffer[pos+1] - '0');
    543  1.14       leo 	return(result);
    544  1.14       leo }
    545   1.1       leo 
    546  1.14       leo int
    547  1.14       leo rtcwrite(dev, uio, flags)
    548  1.14       leo 	dev_t		dev;
    549  1.14       leo 	struct uio	*uio;
    550  1.14       leo 	int		flags;
    551  1.14       leo {
    552  1.14       leo 	mc_todregs		clkregs;
    553  1.14       leo 	int			s, length, error;
    554  1.21       leo 	char			buffer[16];
    555  1.14       leo 
    556  1.14       leo 	/*
    557  1.14       leo 	 * We require atomic updates!
    558  1.14       leo 	 */
    559  1.14       leo 	length = uio->uio_resid;
    560  1.14       leo 	if (uio->uio_offset || (length != sizeof(buffer)
    561  1.14       leo 	  && length != sizeof(buffer - 1)))
    562  1.14       leo 		return(EINVAL);
    563  1.14       leo 
    564  1.14       leo 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
    565  1.14       leo 		return(error);
    566   1.1       leo 
    567  1.14       leo 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    568  1.14       leo 		return(EINVAL);
    569   1.1       leo 
    570  1.14       leo 	s = splclock();
    571  1.25       leo 	mc146818_write(RTC, MC_REGB,
    572  1.25       leo 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    573   1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    574  1.14       leo 	splx(s);
    575  1.14       leo 
    576  1.21       leo 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    577  1.21       leo 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    578  1.21       leo 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    579  1.21       leo 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    580  1.21       leo 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    581  1.21       leo 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    582  1.14       leo 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    583  1.14       leo 
    584  1.14       leo 	s = splclock();
    585   1.3       leo 	MC146818_PUTTOD(RTC, &clkregs);
    586  1.14       leo 	splx(s);
    587   1.1       leo 
    588  1.14       leo 	return(0);
    589   1.1       leo }
    590