clock.c revision 1.31 1 1.31 jdolecek /* $NetBSD: clock.c,v 1.31 2002/10/23 09:10:48 jdolecek Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.1 leo * Copyright (c) 1988 University of Utah.
5 1.1 leo * Copyright (c) 1982, 1990 The Regents of the University of California.
6 1.1 leo * All rights reserved.
7 1.1 leo *
8 1.1 leo * This code is derived from software contributed to Berkeley by
9 1.1 leo * the Systems Programming Group of the University of Utah Computer
10 1.1 leo * Science Department.
11 1.1 leo *
12 1.1 leo * Redistribution and use in source and binary forms, with or without
13 1.1 leo * modification, are permitted provided that the following conditions
14 1.1 leo * are met:
15 1.1 leo * 1. Redistributions of source code must retain the above copyright
16 1.1 leo * notice, this list of conditions and the following disclaimer.
17 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 leo * notice, this list of conditions and the following disclaimer in the
19 1.1 leo * documentation and/or other materials provided with the distribution.
20 1.1 leo * 3. All advertising materials mentioning features or use of this software
21 1.1 leo * must display the following acknowledgement:
22 1.1 leo * This product includes software developed by the University of
23 1.1 leo * California, Berkeley and its contributors.
24 1.1 leo * 4. Neither the name of the University nor the names of its contributors
25 1.1 leo * may be used to endorse or promote products derived from this software
26 1.1 leo * without specific prior written permission.
27 1.1 leo *
28 1.1 leo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 leo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 leo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 leo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 leo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 leo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 leo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 leo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 leo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 leo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 leo * SUCH DAMAGE.
39 1.1 leo *
40 1.1 leo * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 1.1 leo *
42 1.1 leo * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 1.1 leo */
44 1.1 leo
45 1.1 leo #include <sys/param.h>
46 1.1 leo #include <sys/kernel.h>
47 1.9 leo #include <sys/systm.h>
48 1.1 leo #include <sys/device.h>
49 1.14 leo #include <sys/uio.h>
50 1.14 leo #include <sys/conf.h>
51 1.31 jdolecek #include <sys/event.h>
52 1.18 leo
53 1.18 leo #include <dev/clock_subr.h>
54 1.18 leo
55 1.1 leo #include <machine/psl.h>
56 1.1 leo #include <machine/cpu.h>
57 1.1 leo #include <machine/iomap.h>
58 1.1 leo #include <machine/mfp.h>
59 1.1 leo #include <atari/dev/clockreg.h>
60 1.14 leo #include <atari/atari/device.h>
61 1.1 leo
62 1.4 leo #if defined(GPROF) && defined(PROFTIMER)
63 1.4 leo #include <machine/profile.h>
64 1.1 leo #endif
65 1.1 leo
66 1.1 leo /*
67 1.5 leo * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
68 1.5 leo * of 200. Therefore the timer runs at an effective rate of:
69 1.5 leo * 2457600/200 = 12288Hz.
70 1.5 leo */
71 1.5 leo #define CLOCK_HZ 12288
72 1.5 leo
73 1.5 leo /*
74 1.1 leo * Machine-dependent clock routines.
75 1.1 leo *
76 1.1 leo * Inittodr initializes the time of day hardware which provides
77 1.1 leo * date functions.
78 1.1 leo *
79 1.1 leo * Resettodr restores the time of day hardware after a time change.
80 1.1 leo */
81 1.1 leo
82 1.14 leo struct clock_softc {
83 1.14 leo struct device sc_dev;
84 1.14 leo int sc_flags;
85 1.14 leo };
86 1.14 leo
87 1.14 leo /*
88 1.14 leo * 'sc_flags' state info. Only used by the rtc-device functions.
89 1.14 leo */
90 1.14 leo #define RTC_OPEN 1
91 1.14 leo
92 1.14 leo dev_type_open(rtcopen);
93 1.14 leo dev_type_close(rtcclose);
94 1.14 leo dev_type_read(rtcread);
95 1.14 leo dev_type_write(rtcwrite);
96 1.14 leo
97 1.14 leo static void clockattach __P((struct device *, struct device *, void *));
98 1.17 leo static int clockmatch __P((struct device *, struct cfdata *, void *));
99 1.1 leo
100 1.30 thorpej CFATTACH_DECL(clock, sizeof(struct clock_softc),
101 1.30 thorpej clockmatch, clockattach, NULL, NULL);
102 1.10 thorpej
103 1.19 thorpej extern struct cfdriver clock_cd;
104 1.28 gehenna
105 1.28 gehenna const struct cdevsw rtc_cdevsw = {
106 1.28 gehenna rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
107 1.31 jdolecek nostop, notty, nopoll, nommap, nokqfilter,
108 1.28 gehenna };
109 1.1 leo
110 1.16 leo void statintr __P((struct clockframe));
111 1.9 leo
112 1.1 leo static u_long gettod __P((void));
113 1.14 leo static int twodigits __P((char *, int));
114 1.1 leo
115 1.5 leo static int divisor; /* Systemclock divisor */
116 1.5 leo
117 1.5 leo /*
118 1.5 leo * Statistics and profile clock intervals and variances. Variance must
119 1.5 leo * be a power of 2. Since this gives us an even number, not an odd number,
120 1.5 leo * we discard one case and compensate. That is, a variance of 64 would
121 1.5 leo * give us offsets in [0..63]. Instead, we take offsets in [1..63].
122 1.26 wiz * This is symmetric around the point 32, or statvar/2, and thus averages
123 1.5 leo * to that value (assuming uniform random numbers).
124 1.5 leo */
125 1.5 leo #ifdef STATCLOCK
126 1.5 leo static int statvar = 32; /* {stat,prof}clock variance */
127 1.5 leo static int statmin; /* statclock divisor - variance/2 */
128 1.5 leo static int profmin; /* profclock divisor - variance/2 */
129 1.27 wiz static int clk2min; /* current, from above choices */
130 1.5 leo #endif
131 1.1 leo
132 1.1 leo int
133 1.17 leo clockmatch(pdp, cfp, auxp)
134 1.14 leo struct device *pdp;
135 1.17 leo struct cfdata *cfp;
136 1.17 leo void *auxp;
137 1.1 leo {
138 1.15 leo if (!atari_realconfig) {
139 1.15 leo /*
140 1.15 leo * Initialize Timer-B in the ST-MFP. This timer is used by
141 1.15 leo * the 'delay' function below. This timer is setup to be
142 1.15 leo * continueously counting from 255 back to zero at a
143 1.15 leo * frequency of 614400Hz. We do this *early* in the
144 1.15 leo * initialisation process.
145 1.15 leo */
146 1.15 leo MFP->mf_tbcr = 0; /* Stop timer */
147 1.15 leo MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
148 1.15 leo MFP->mf_tbdr = 0;
149 1.15 leo MFP->mf_tbcr = T_Q004; /* Start timer */
150 1.15 leo
151 1.15 leo /*
152 1.15 leo * Initialize the time structure
153 1.15 leo */
154 1.15 leo time.tv_sec = 0;
155 1.15 leo time.tv_usec = 0;
156 1.15 leo
157 1.15 leo return 0;
158 1.15 leo }
159 1.1 leo if(!strcmp("clock", auxp))
160 1.1 leo return(1);
161 1.1 leo return(0);
162 1.1 leo }
163 1.1 leo
164 1.1 leo /*
165 1.1 leo * Start the real-time clock.
166 1.1 leo */
167 1.1 leo void clockattach(pdp, dp, auxp)
168 1.1 leo struct device *pdp, *dp;
169 1.14 leo void *auxp;
170 1.1 leo {
171 1.14 leo struct clock_softc *sc = (void *)dp;
172 1.14 leo
173 1.14 leo sc->sc_flags = 0;
174 1.14 leo
175 1.1 leo /*
176 1.3 leo * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
177 1.3 leo * The MFP clock runs at 2457600Hz. Therefore the timer runs
178 1.3 leo * at an effective rate of: 2457600/200 = 12288Hz. The
179 1.3 leo * following expression works for 48, 64 or 96 hz.
180 1.1 leo */
181 1.5 leo divisor = CLOCK_HZ/hz;
182 1.2 leo MFP->mf_tacr = 0; /* Stop timer */
183 1.2 leo MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
184 1.2 leo MFP->mf_tadr = divisor; /* Set divisor */
185 1.1 leo
186 1.5 leo if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
187 1.13 christos printf (": illegal value %d for systemclock, reset to %d\n\t",
188 1.5 leo hz, 64);
189 1.5 leo hz = 64;
190 1.5 leo }
191 1.13 christos printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
192 1.1 leo
193 1.5 leo #ifdef STATCLOCK
194 1.5 leo if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
195 1.5 leo stathz = hz;
196 1.5 leo if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
197 1.5 leo profhz = hz << 1;
198 1.5 leo
199 1.5 leo MFP->mf_tcdcr &= 0x7; /* Stop timer */
200 1.5 leo MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
201 1.5 leo MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
202 1.5 leo
203 1.5 leo statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
204 1.5 leo profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
205 1.5 leo clk2min = statmin;
206 1.5 leo #endif /* STATCLOCK */
207 1.14 leo
208 1.1 leo }
209 1.1 leo
210 1.1 leo void cpu_initclocks()
211 1.1 leo {
212 1.3 leo MFP->mf_tacr = T_Q200; /* Start timer */
213 1.20 leo MFP->mf_ipra = (u_int8_t)~IA_TIMA;/* Clear pending interrupts */
214 1.2 leo MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
215 1.2 leo MFP->mf_imra |= IA_TIMA; /* ..... */
216 1.5 leo
217 1.5 leo #ifdef STATCLOCK
218 1.5 leo MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
219 1.20 leo MFP->mf_iprb = (u_int8_t)~IB_TIMC;/* Clear pending interrupts */
220 1.5 leo MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
221 1.5 leo MFP->mf_imrb |= IB_TIMC; /* ..... */
222 1.5 leo #endif /* STATCLOCK */
223 1.1 leo }
224 1.1 leo
225 1.9 leo void
226 1.5 leo setstatclockrate(newhz)
227 1.5 leo int newhz;
228 1.1 leo {
229 1.5 leo #ifdef STATCLOCK
230 1.5 leo if (newhz == stathz)
231 1.5 leo clk2min = statmin;
232 1.5 leo else clk2min = profmin;
233 1.5 leo #endif /* STATCLOCK */
234 1.1 leo }
235 1.1 leo
236 1.5 leo #ifdef STATCLOCK
237 1.5 leo void
238 1.5 leo statintr(frame)
239 1.16 leo struct clockframe frame;
240 1.5 leo {
241 1.5 leo register int var, r;
242 1.5 leo
243 1.5 leo var = statvar - 1;
244 1.5 leo do {
245 1.5 leo r = random() & var;
246 1.5 leo } while(r == 0);
247 1.5 leo
248 1.5 leo /*
249 1.5 leo * Note that we are always lagging behind as the new divisor
250 1.5 leo * value will not be loaded until the next interrupt. This
251 1.5 leo * shouldn't disturb the median frequency (I think ;-) ) as
252 1.5 leo * only the value used when switching frequencies is used
253 1.5 leo * twice. This shouldn't happen very often.
254 1.5 leo */
255 1.5 leo MFP->mf_tcdr = clk2min + r;
256 1.5 leo
257 1.16 leo statclock(&frame);
258 1.5 leo }
259 1.5 leo #endif /* STATCLOCK */
260 1.5 leo
261 1.1 leo /*
262 1.1 leo * Returns number of usec since last recorded clock "tick"
263 1.1 leo * (i.e. clock interrupt).
264 1.1 leo */
265 1.9 leo long
266 1.1 leo clkread()
267 1.1 leo {
268 1.3 leo u_int delta;
269 1.22 leo u_char ipra, tadr;
270 1.3 leo
271 1.22 leo /*
272 1.22 leo * Note: Order is important!
273 1.22 leo * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
274 1.22 leo * the situation that very low value in 'tadr' is read (== a big delta)
275 1.22 leo * while also acccounting for a full 'tick' because the counter went
276 1.22 leo * through zero during the calculations.
277 1.22 leo */
278 1.22 leo ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
279 1.22 leo
280 1.22 leo delta = ((divisor - tadr) * tick) / divisor;
281 1.1 leo /*
282 1.1 leo * Account for pending clock interrupts
283 1.1 leo */
284 1.22 leo if(ipra & IA_TIMA)
285 1.1 leo return(delta + tick);
286 1.1 leo return(delta);
287 1.1 leo }
288 1.1 leo
289 1.2 leo #define TIMB_FREQ 614400
290 1.2 leo #define TIMB_LIMIT 256
291 1.1 leo
292 1.1 leo /*
293 1.1 leo * Wait "n" microseconds.
294 1.2 leo * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
295 1.1 leo * Note: timer had better have been programmed before this is first used!
296 1.1 leo */
297 1.14 leo void
298 1.14 leo delay(n)
299 1.1 leo int n;
300 1.1 leo {
301 1.1 leo int tick, otick;
302 1.1 leo
303 1.1 leo /*
304 1.1 leo * Read the counter first, so that the rest of the setup overhead is
305 1.1 leo * counted.
306 1.1 leo */
307 1.2 leo otick = MFP->mf_tbdr;
308 1.1 leo
309 1.1 leo /*
310 1.1 leo * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
311 1.1 leo * we can take advantage of the intermediate 64-bit quantity to prevent
312 1.1 leo * loss of significance.
313 1.1 leo */
314 1.1 leo n -= 5;
315 1.1 leo if(n < 0)
316 1.1 leo return;
317 1.1 leo {
318 1.1 leo u_int temp;
319 1.1 leo
320 1.1 leo __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
321 1.23 leo : "d" (TIMB_FREQ), "d" (n));
322 1.1 leo __asm __volatile ("divul %1,%2:%0" : "=d" (n)
323 1.1 leo : "d"(1000000),"d"(temp),"0"(n));
324 1.1 leo }
325 1.1 leo
326 1.1 leo while(n > 0) {
327 1.2 leo tick = MFP->mf_tbdr;
328 1.1 leo if(tick > otick)
329 1.2 leo n -= TIMB_LIMIT - (tick - otick);
330 1.1 leo else n -= otick - tick;
331 1.1 leo otick = tick;
332 1.1 leo }
333 1.1 leo }
334 1.1 leo
335 1.4 leo #ifdef GPROF
336 1.1 leo /*
337 1.1 leo * profclock() is expanded in line in lev6intr() unless profiling kernel.
338 1.1 leo * Assumes it is called with clock interrupts blocked.
339 1.1 leo */
340 1.1 leo profclock(pc, ps)
341 1.1 leo caddr_t pc;
342 1.1 leo int ps;
343 1.1 leo {
344 1.1 leo /*
345 1.1 leo * Came from user mode.
346 1.1 leo * If this process is being profiled record the tick.
347 1.1 leo */
348 1.1 leo if (USERMODE(ps)) {
349 1.1 leo if (p->p_stats.p_prof.pr_scale)
350 1.1 leo addupc(pc, &curproc->p_stats.p_prof, 1);
351 1.1 leo }
352 1.1 leo /*
353 1.1 leo * Came from kernel (supervisor) mode.
354 1.1 leo * If we are profiling the kernel, record the tick.
355 1.1 leo */
356 1.1 leo else if (profiling < 2) {
357 1.1 leo register int s = pc - s_lowpc;
358 1.1 leo
359 1.1 leo if (s < s_textsize)
360 1.1 leo kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
361 1.1 leo }
362 1.1 leo /*
363 1.1 leo * Kernel profiling was on but has been disabled.
364 1.1 leo * Mark as no longer profiling kernel and if all profiling done,
365 1.1 leo * disable the clock.
366 1.1 leo */
367 1.1 leo if (profiling && (profon & PRF_KERNEL)) {
368 1.1 leo profon &= ~PRF_KERNEL;
369 1.1 leo if (profon == PRF_NONE)
370 1.1 leo stopprofclock();
371 1.1 leo }
372 1.1 leo }
373 1.1 leo #endif
374 1.7 leo
375 1.7 leo /***********************************************************************
376 1.7 leo * Real Time Clock support *
377 1.7 leo ***********************************************************************/
378 1.7 leo
379 1.7 leo u_int mc146818_read(rtc, regno)
380 1.7 leo void *rtc;
381 1.7 leo u_int regno;
382 1.7 leo {
383 1.7 leo ((struct rtc *)rtc)->rtc_regno = regno;
384 1.7 leo return(((struct rtc *)rtc)->rtc_data & 0377);
385 1.7 leo }
386 1.7 leo
387 1.7 leo void mc146818_write(rtc, regno, value)
388 1.7 leo void *rtc;
389 1.7 leo u_int regno, value;
390 1.7 leo {
391 1.7 leo ((struct rtc *)rtc)->rtc_regno = regno;
392 1.7 leo ((struct rtc *)rtc)->rtc_data = value;
393 1.7 leo }
394 1.1 leo
395 1.1 leo /*
396 1.14 leo * Initialize the time of day register, assuming the RTC runs in UTC.
397 1.14 leo * Since we've got the 'rtc' device, this functionality should be removed
398 1.14 leo * from the kernel. The only problem to be solved before that can happen
399 1.14 leo * is the possibility of init(1) providing a way (rc.boot?) to set
400 1.14 leo * the RTC before single-user mode is entered.
401 1.1 leo */
402 1.9 leo void
403 1.1 leo inittodr(base)
404 1.1 leo time_t base;
405 1.1 leo {
406 1.1 leo /* Battery clock does not store usec's, so forget about it. */
407 1.14 leo time.tv_sec = gettod();
408 1.11 leo time.tv_usec = 0;
409 1.1 leo }
410 1.1 leo
411 1.14 leo /*
412 1.14 leo * Function turned into a No-op. Use /dev/rtc to update the RTC.
413 1.14 leo */
414 1.9 leo void
415 1.1 leo resettodr()
416 1.1 leo {
417 1.14 leo return;
418 1.1 leo }
419 1.1 leo
420 1.1 leo static u_long
421 1.1 leo gettod()
422 1.1 leo {
423 1.18 leo int sps;
424 1.18 leo mc_todregs clkregs;
425 1.25 leo u_int regb;
426 1.18 leo struct clock_ymdhms dt;
427 1.3 leo
428 1.3 leo sps = splhigh();
429 1.25 leo regb = mc146818_read(RTC, MC_REGB);
430 1.3 leo MC146818_GETTOD(RTC, &clkregs);
431 1.3 leo splx(sps);
432 1.1 leo
433 1.25 leo regb &= MC_REGB_24HR|MC_REGB_BINARY;
434 1.25 leo if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
435 1.25 leo printf("Error: Nonstandard RealTimeClock Configuration -"
436 1.25 leo " value ignored\n"
437 1.25 leo " A write to /dev/rtc will correct this.\n");
438 1.25 leo return(0);
439 1.25 leo }
440 1.9 leo if(clkregs[MC_SEC] > 59)
441 1.8 leo return(0);
442 1.9 leo if(clkregs[MC_MIN] > 59)
443 1.8 leo return(0);
444 1.9 leo if(clkregs[MC_HOUR] > 23)
445 1.1 leo return(0);
446 1.3 leo if(range_test(clkregs[MC_DOM], 1, 31))
447 1.1 leo return(0);
448 1.3 leo if (range_test(clkregs[MC_MONTH], 1, 12))
449 1.1 leo return(0);
450 1.24 leo if(clkregs[MC_YEAR] > 99)
451 1.1 leo return(0);
452 1.1 leo
453 1.18 leo dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
454 1.18 leo dt.dt_mon = clkregs[MC_MONTH];
455 1.18 leo dt.dt_day = clkregs[MC_DOM];
456 1.18 leo dt.dt_hour = clkregs[MC_HOUR];
457 1.18 leo dt.dt_min = clkregs[MC_MIN];
458 1.18 leo dt.dt_sec = clkregs[MC_SEC];
459 1.1 leo
460 1.18 leo return(clock_ymdhms_to_secs(&dt));
461 1.1 leo }
462 1.14 leo /***********************************************************************
463 1.14 leo * RTC-device support *
464 1.14 leo ***********************************************************************/
465 1.14 leo int
466 1.14 leo rtcopen(dev, flag, mode, p)
467 1.14 leo dev_t dev;
468 1.14 leo int flag, mode;
469 1.14 leo struct proc *p;
470 1.14 leo {
471 1.14 leo int unit = minor(dev);
472 1.14 leo struct clock_softc *sc;
473 1.14 leo
474 1.14 leo if (unit >= clock_cd.cd_ndevs)
475 1.14 leo return ENXIO;
476 1.14 leo sc = clock_cd.cd_devs[unit];
477 1.14 leo if (!sc)
478 1.14 leo return ENXIO;
479 1.14 leo if (sc->sc_flags & RTC_OPEN)
480 1.14 leo return EBUSY;
481 1.14 leo
482 1.14 leo sc->sc_flags = RTC_OPEN;
483 1.14 leo return 0;
484 1.14 leo }
485 1.1 leo
486 1.14 leo int
487 1.14 leo rtcclose(dev, flag, mode, p)
488 1.14 leo dev_t dev;
489 1.14 leo int flag;
490 1.14 leo int mode;
491 1.14 leo struct proc *p;
492 1.1 leo {
493 1.14 leo int unit = minor(dev);
494 1.14 leo struct clock_softc *sc = clock_cd.cd_devs[unit];
495 1.14 leo
496 1.14 leo sc->sc_flags = 0;
497 1.14 leo return 0;
498 1.14 leo }
499 1.14 leo
500 1.14 leo int
501 1.14 leo rtcread(dev, uio, flags)
502 1.14 leo dev_t dev;
503 1.14 leo struct uio *uio;
504 1.14 leo int flags;
505 1.14 leo {
506 1.14 leo struct clock_softc *sc;
507 1.14 leo mc_todregs clkregs;
508 1.14 leo int s, length;
509 1.14 leo char buffer[16];
510 1.14 leo
511 1.14 leo sc = clock_cd.cd_devs[minor(dev)];
512 1.14 leo
513 1.14 leo s = splhigh();
514 1.14 leo MC146818_GETTOD(RTC, &clkregs);
515 1.14 leo splx(s);
516 1.14 leo
517 1.21 leo sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
518 1.21 leo clkregs[MC_YEAR] + GEMSTARTOFTIME,
519 1.14 leo clkregs[MC_MONTH], clkregs[MC_DOM],
520 1.14 leo clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
521 1.14 leo
522 1.14 leo if (uio->uio_offset > strlen(buffer))
523 1.14 leo return 0;
524 1.1 leo
525 1.14 leo length = strlen(buffer) - uio->uio_offset;
526 1.14 leo if (length > uio->uio_resid)
527 1.14 leo length = uio->uio_resid;
528 1.1 leo
529 1.14 leo return(uiomove((caddr_t)buffer, length, uio));
530 1.14 leo }
531 1.14 leo
532 1.14 leo static int
533 1.14 leo twodigits(buffer, pos)
534 1.14 leo char *buffer;
535 1.14 leo int pos;
536 1.14 leo {
537 1.14 leo int result = 0;
538 1.14 leo
539 1.14 leo if (buffer[pos] >= '0' && buffer[pos] <= '9')
540 1.14 leo result = (buffer[pos] - '0') * 10;
541 1.14 leo if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
542 1.14 leo result += (buffer[pos+1] - '0');
543 1.14 leo return(result);
544 1.14 leo }
545 1.1 leo
546 1.14 leo int
547 1.14 leo rtcwrite(dev, uio, flags)
548 1.14 leo dev_t dev;
549 1.14 leo struct uio *uio;
550 1.14 leo int flags;
551 1.14 leo {
552 1.14 leo mc_todregs clkregs;
553 1.14 leo int s, length, error;
554 1.21 leo char buffer[16];
555 1.14 leo
556 1.14 leo /*
557 1.14 leo * We require atomic updates!
558 1.14 leo */
559 1.14 leo length = uio->uio_resid;
560 1.14 leo if (uio->uio_offset || (length != sizeof(buffer)
561 1.14 leo && length != sizeof(buffer - 1)))
562 1.14 leo return(EINVAL);
563 1.14 leo
564 1.14 leo if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
565 1.14 leo return(error);
566 1.1 leo
567 1.14 leo if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
568 1.14 leo return(EINVAL);
569 1.1 leo
570 1.14 leo s = splclock();
571 1.25 leo mc146818_write(RTC, MC_REGB,
572 1.25 leo mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
573 1.3 leo MC146818_GETTOD(RTC, &clkregs);
574 1.14 leo splx(s);
575 1.14 leo
576 1.21 leo clkregs[MC_SEC] = twodigits(buffer, 13);
577 1.21 leo clkregs[MC_MIN] = twodigits(buffer, 10);
578 1.21 leo clkregs[MC_HOUR] = twodigits(buffer, 8);
579 1.21 leo clkregs[MC_DOM] = twodigits(buffer, 6);
580 1.21 leo clkregs[MC_MONTH] = twodigits(buffer, 4);
581 1.21 leo s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
582 1.14 leo clkregs[MC_YEAR] = s - GEMSTARTOFTIME;
583 1.14 leo
584 1.14 leo s = splclock();
585 1.3 leo MC146818_PUTTOD(RTC, &clkregs);
586 1.14 leo splx(s);
587 1.1 leo
588 1.14 leo return(0);
589 1.1 leo }
590