Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.32.2.2
      1  1.32.2.1     skrll /*	$NetBSD: clock.c,v 1.32.2.2 2004/09/18 14:32:55 skrll Exp $	*/
      2       1.1       leo 
      3       1.1       leo /*
      4       1.1       leo  * Copyright (c) 1982, 1990 The Regents of the University of California.
      5       1.1       leo  * All rights reserved.
      6       1.1       leo  *
      7       1.1       leo  * This code is derived from software contributed to Berkeley by
      8       1.1       leo  * the Systems Programming Group of the University of Utah Computer
      9       1.1       leo  * Science Department.
     10       1.1       leo  *
     11       1.1       leo  * Redistribution and use in source and binary forms, with or without
     12       1.1       leo  * modification, are permitted provided that the following conditions
     13       1.1       leo  * are met:
     14       1.1       leo  * 1. Redistributions of source code must retain the above copyright
     15       1.1       leo  *    notice, this list of conditions and the following disclaimer.
     16       1.1       leo  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.1       leo  *    notice, this list of conditions and the following disclaimer in the
     18       1.1       leo  *    documentation and/or other materials provided with the distribution.
     19  1.32.2.1     skrll  * 3. Neither the name of the University nor the names of its contributors
     20  1.32.2.1     skrll  *    may be used to endorse or promote products derived from this software
     21  1.32.2.1     skrll  *    without specific prior written permission.
     22  1.32.2.1     skrll  *
     23  1.32.2.1     skrll  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  1.32.2.1     skrll  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  1.32.2.1     skrll  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  1.32.2.1     skrll  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  1.32.2.1     skrll  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  1.32.2.1     skrll  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  1.32.2.1     skrll  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  1.32.2.1     skrll  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  1.32.2.1     skrll  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  1.32.2.1     skrll  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  1.32.2.1     skrll  * SUCH DAMAGE.
     34  1.32.2.1     skrll  *
     35  1.32.2.1     skrll  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     36  1.32.2.1     skrll  *
     37  1.32.2.1     skrll  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     38  1.32.2.1     skrll  */
     39  1.32.2.1     skrll /*
     40  1.32.2.1     skrll  * Copyright (c) 1988 University of Utah.
     41  1.32.2.1     skrll  *
     42  1.32.2.1     skrll  * This code is derived from software contributed to Berkeley by
     43  1.32.2.1     skrll  * the Systems Programming Group of the University of Utah Computer
     44  1.32.2.1     skrll  * Science Department.
     45  1.32.2.1     skrll  *
     46  1.32.2.1     skrll  * Redistribution and use in source and binary forms, with or without
     47  1.32.2.1     skrll  * modification, are permitted provided that the following conditions
     48  1.32.2.1     skrll  * are met:
     49  1.32.2.1     skrll  * 1. Redistributions of source code must retain the above copyright
     50  1.32.2.1     skrll  *    notice, this list of conditions and the following disclaimer.
     51  1.32.2.1     skrll  * 2. Redistributions in binary form must reproduce the above copyright
     52  1.32.2.1     skrll  *    notice, this list of conditions and the following disclaimer in the
     53  1.32.2.1     skrll  *    documentation and/or other materials provided with the distribution.
     54       1.1       leo  * 3. All advertising materials mentioning features or use of this software
     55       1.1       leo  *    must display the following acknowledgement:
     56       1.1       leo  *	This product includes software developed by the University of
     57       1.1       leo  *	California, Berkeley and its contributors.
     58       1.1       leo  * 4. Neither the name of the University nor the names of its contributors
     59       1.1       leo  *    may be used to endorse or promote products derived from this software
     60       1.1       leo  *    without specific prior written permission.
     61       1.1       leo  *
     62       1.1       leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63       1.1       leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64       1.1       leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65       1.1       leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66       1.1       leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67       1.1       leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68       1.1       leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69       1.1       leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70       1.1       leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71       1.1       leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72       1.1       leo  * SUCH DAMAGE.
     73       1.1       leo  *
     74       1.1       leo  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     75       1.1       leo  *
     76       1.1       leo  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     77       1.1       leo  */
     78       1.1       leo 
     79  1.32.2.1     skrll #include <sys/cdefs.h>
     80  1.32.2.1     skrll __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.32.2.2 2004/09/18 14:32:55 skrll Exp $");
     81  1.32.2.1     skrll 
     82       1.1       leo #include <sys/param.h>
     83       1.1       leo #include <sys/kernel.h>
     84       1.9       leo #include <sys/systm.h>
     85       1.1       leo #include <sys/device.h>
     86      1.14       leo #include <sys/uio.h>
     87      1.14       leo #include <sys/conf.h>
     88      1.32   thorpej #include <sys/proc.h>
     89      1.31  jdolecek #include <sys/event.h>
     90      1.18       leo 
     91      1.18       leo #include <dev/clock_subr.h>
     92      1.18       leo 
     93       1.1       leo #include <machine/psl.h>
     94       1.1       leo #include <machine/cpu.h>
     95       1.1       leo #include <machine/iomap.h>
     96       1.1       leo #include <machine/mfp.h>
     97       1.1       leo #include <atari/dev/clockreg.h>
     98      1.14       leo #include <atari/atari/device.h>
     99       1.1       leo 
    100       1.4       leo #if defined(GPROF) && defined(PROFTIMER)
    101       1.4       leo #include <machine/profile.h>
    102       1.1       leo #endif
    103       1.1       leo 
    104       1.1       leo /*
    105       1.5       leo  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
    106       1.5       leo  * of 200. Therefore the timer runs at an effective rate of:
    107       1.5       leo  * 2457600/200 = 12288Hz.
    108       1.5       leo  */
    109       1.5       leo #define CLOCK_HZ	12288
    110       1.5       leo 
    111       1.5       leo /*
    112       1.1       leo  * Machine-dependent clock routines.
    113       1.1       leo  *
    114       1.1       leo  * Inittodr initializes the time of day hardware which provides
    115       1.1       leo  * date functions.
    116       1.1       leo  *
    117       1.1       leo  * Resettodr restores the time of day hardware after a time change.
    118       1.1       leo  */
    119       1.1       leo 
    120      1.14       leo struct clock_softc {
    121      1.14       leo 	struct device	sc_dev;
    122      1.14       leo 	int		sc_flags;
    123      1.14       leo };
    124      1.14       leo 
    125      1.14       leo /*
    126      1.14       leo  *  'sc_flags' state info. Only used by the rtc-device functions.
    127      1.14       leo  */
    128      1.14       leo #define	RTC_OPEN	1
    129      1.14       leo 
    130      1.14       leo dev_type_open(rtcopen);
    131      1.14       leo dev_type_close(rtcclose);
    132      1.14       leo dev_type_read(rtcread);
    133      1.14       leo dev_type_write(rtcwrite);
    134      1.14       leo 
    135      1.14       leo static void	clockattach __P((struct device *, struct device *, void *));
    136      1.17       leo static int	clockmatch __P((struct device *, struct cfdata *, void *));
    137       1.1       leo 
    138      1.30   thorpej CFATTACH_DECL(clock, sizeof(struct clock_softc),
    139      1.30   thorpej     clockmatch, clockattach, NULL, NULL);
    140      1.10   thorpej 
    141      1.19   thorpej extern struct cfdriver clock_cd;
    142      1.28   gehenna 
    143      1.28   gehenna const struct cdevsw rtc_cdevsw = {
    144      1.28   gehenna 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    145      1.31  jdolecek 	nostop, notty, nopoll, nommap, nokqfilter,
    146      1.28   gehenna };
    147       1.1       leo 
    148      1.16       leo void statintr __P((struct clockframe));
    149       1.9       leo 
    150       1.1       leo static u_long	gettod __P((void));
    151      1.14       leo static int	twodigits __P((char *, int));
    152       1.1       leo 
    153       1.5       leo static int	divisor;	/* Systemclock divisor	*/
    154       1.5       leo 
    155       1.5       leo /*
    156       1.5       leo  * Statistics and profile clock intervals and variances. Variance must
    157       1.5       leo  * be a power of 2. Since this gives us an even number, not an odd number,
    158       1.5       leo  * we discard one case and compensate. That is, a variance of 64 would
    159       1.5       leo  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    160      1.26       wiz  * This is symmetric around the point 32, or statvar/2, and thus averages
    161       1.5       leo  * to that value (assuming uniform random numbers).
    162       1.5       leo  */
    163       1.5       leo #ifdef STATCLOCK
    164       1.5       leo static int	statvar = 32;	/* {stat,prof}clock variance		*/
    165       1.5       leo static int	statmin;	/* statclock divisor - variance/2	*/
    166       1.5       leo static int	profmin;	/* profclock divisor - variance/2	*/
    167      1.27       wiz static int	clk2min;	/* current, from above choices		*/
    168       1.5       leo #endif
    169       1.1       leo 
    170       1.1       leo int
    171      1.17       leo clockmatch(pdp, cfp, auxp)
    172      1.14       leo struct device	*pdp;
    173      1.17       leo struct cfdata	*cfp;
    174      1.17       leo void		*auxp;
    175       1.1       leo {
    176      1.15       leo 	if (!atari_realconfig) {
    177      1.15       leo 	    /*
    178      1.15       leo 	     * Initialize Timer-B in the ST-MFP. This timer is used by
    179      1.15       leo 	     * the 'delay' function below. This timer is setup to be
    180      1.15       leo 	     * continueously counting from 255 back to zero at a
    181      1.15       leo 	     * frequency of 614400Hz. We do this *early* in the
    182      1.15       leo 	     * initialisation process.
    183      1.15       leo 	     */
    184      1.15       leo 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
    185      1.15       leo 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    186      1.15       leo 	    MFP->mf_tbdr  = 0;
    187      1.15       leo 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    188      1.15       leo 
    189      1.15       leo 	    /*
    190      1.15       leo 	     * Initialize the time structure
    191      1.15       leo 	     */
    192      1.15       leo 	    time.tv_sec  = 0;
    193      1.15       leo 	    time.tv_usec = 0;
    194      1.15       leo 
    195      1.15       leo 	    return 0;
    196      1.15       leo 	}
    197       1.1       leo 	if(!strcmp("clock", auxp))
    198       1.1       leo 		return(1);
    199       1.1       leo 	return(0);
    200       1.1       leo }
    201       1.1       leo 
    202       1.1       leo /*
    203       1.1       leo  * Start the real-time clock.
    204       1.1       leo  */
    205       1.1       leo void clockattach(pdp, dp, auxp)
    206       1.1       leo struct device	*pdp, *dp;
    207      1.14       leo void		*auxp;
    208       1.1       leo {
    209      1.14       leo 	struct clock_softc *sc = (void *)dp;
    210      1.14       leo 
    211      1.14       leo 	sc->sc_flags = 0;
    212      1.14       leo 
    213       1.1       leo 	/*
    214       1.3       leo 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    215       1.3       leo 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    216       1.3       leo 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    217       1.3       leo 	 * following expression works for 48, 64 or 96 hz.
    218       1.1       leo 	 */
    219       1.5       leo 	divisor       = CLOCK_HZ/hz;
    220       1.2       leo 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    221       1.2       leo 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    222       1.2       leo 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    223       1.1       leo 
    224       1.5       leo 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    225      1.13  christos 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    226       1.5       leo 								hz, 64);
    227       1.5       leo 		hz = 64;
    228       1.5       leo 	}
    229      1.13  christos 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    230       1.1       leo 
    231       1.5       leo #ifdef STATCLOCK
    232       1.5       leo 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    233       1.5       leo 		stathz = hz;
    234       1.5       leo 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    235       1.5       leo 		profhz = hz << 1;
    236       1.5       leo 
    237       1.5       leo 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    238       1.5       leo 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    239       1.5       leo 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    240       1.5       leo 
    241       1.5       leo 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    242       1.5       leo 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    243       1.5       leo 	clk2min  = statmin;
    244       1.5       leo #endif /* STATCLOCK */
    245      1.14       leo 
    246       1.1       leo }
    247       1.1       leo 
    248       1.1       leo void cpu_initclocks()
    249       1.1       leo {
    250       1.3       leo 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    251      1.20       leo 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    252       1.2       leo 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    253       1.2       leo 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    254       1.5       leo 
    255       1.5       leo #ifdef STATCLOCK
    256       1.5       leo 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    257      1.20       leo 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    258       1.5       leo 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    259       1.5       leo 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    260       1.5       leo #endif /* STATCLOCK */
    261       1.1       leo }
    262       1.1       leo 
    263       1.9       leo void
    264       1.5       leo setstatclockrate(newhz)
    265       1.5       leo 	int newhz;
    266       1.1       leo {
    267       1.5       leo #ifdef STATCLOCK
    268       1.5       leo 	if (newhz == stathz)
    269       1.5       leo 		clk2min = statmin;
    270       1.5       leo 	else clk2min = profmin;
    271       1.5       leo #endif /* STATCLOCK */
    272       1.1       leo }
    273       1.1       leo 
    274       1.5       leo #ifdef STATCLOCK
    275       1.5       leo void
    276       1.5       leo statintr(frame)
    277      1.16       leo 	struct clockframe frame;
    278       1.5       leo {
    279       1.5       leo 	register int	var, r;
    280       1.5       leo 
    281       1.5       leo 	var = statvar - 1;
    282       1.5       leo 	do {
    283       1.5       leo 		r = random() & var;
    284       1.5       leo 	} while(r == 0);
    285       1.5       leo 
    286       1.5       leo 	/*
    287       1.5       leo 	 * Note that we are always lagging behind as the new divisor
    288       1.5       leo 	 * value will not be loaded until the next interrupt. This
    289       1.5       leo 	 * shouldn't disturb the median frequency (I think ;-) ) as
    290       1.5       leo 	 * only the value used when switching frequencies is used
    291       1.5       leo 	 * twice. This shouldn't happen very often.
    292       1.5       leo 	 */
    293       1.5       leo 	MFP->mf_tcdr = clk2min + r;
    294       1.5       leo 
    295      1.16       leo 	statclock(&frame);
    296       1.5       leo }
    297       1.5       leo #endif /* STATCLOCK */
    298       1.5       leo 
    299       1.1       leo /*
    300       1.1       leo  * Returns number of usec since last recorded clock "tick"
    301       1.1       leo  * (i.e. clock interrupt).
    302       1.1       leo  */
    303       1.9       leo long
    304       1.1       leo clkread()
    305       1.1       leo {
    306       1.3       leo 	u_int	delta;
    307      1.22       leo 	u_char	ipra, tadr;
    308       1.3       leo 
    309      1.22       leo 	/*
    310      1.22       leo 	 * Note: Order is important!
    311      1.22       leo 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
    312      1.22       leo 	 * the situation that very low value in 'tadr' is read (== a big delta)
    313      1.22       leo 	 * while also acccounting for a full 'tick' because the counter went
    314      1.22       leo 	 * through zero during the calculations.
    315      1.22       leo 	 */
    316      1.22       leo 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
    317      1.22       leo 
    318      1.22       leo 	delta = ((divisor - tadr) * tick) / divisor;
    319       1.1       leo 	/*
    320       1.1       leo 	 * Account for pending clock interrupts
    321       1.1       leo 	 */
    322      1.22       leo 	if(ipra & IA_TIMA)
    323       1.1       leo 		return(delta + tick);
    324       1.1       leo 	return(delta);
    325       1.1       leo }
    326       1.1       leo 
    327       1.2       leo #define TIMB_FREQ	614400
    328       1.2       leo #define TIMB_LIMIT	256
    329       1.1       leo 
    330       1.1       leo /*
    331       1.1       leo  * Wait "n" microseconds.
    332       1.2       leo  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    333       1.1       leo  * Note: timer had better have been programmed before this is first used!
    334       1.1       leo  */
    335      1.14       leo void
    336      1.14       leo delay(n)
    337       1.1       leo int	n;
    338       1.1       leo {
    339       1.1       leo 	int	tick, otick;
    340       1.1       leo 
    341       1.1       leo 	/*
    342       1.1       leo 	 * Read the counter first, so that the rest of the setup overhead is
    343       1.1       leo 	 * counted.
    344       1.1       leo 	 */
    345       1.2       leo 	otick = MFP->mf_tbdr;
    346       1.1       leo 
    347       1.1       leo 	/*
    348       1.1       leo 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    349       1.1       leo 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    350       1.1       leo 	 * loss of significance.
    351       1.1       leo 	 */
    352       1.1       leo 	n -= 5;
    353       1.1       leo 	if(n < 0)
    354       1.1       leo 		return;
    355       1.1       leo 	{
    356       1.1       leo 	    u_int	temp;
    357       1.1       leo 
    358       1.1       leo 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    359      1.23       leo 					       : "d" (TIMB_FREQ), "d" (n));
    360       1.1       leo 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    361       1.1       leo 					       : "d"(1000000),"d"(temp),"0"(n));
    362       1.1       leo 	}
    363       1.1       leo 
    364       1.1       leo 	while(n > 0) {
    365       1.2       leo 		tick = MFP->mf_tbdr;
    366       1.1       leo 		if(tick > otick)
    367       1.2       leo 			n -= TIMB_LIMIT - (tick - otick);
    368       1.1       leo 		else n -= otick - tick;
    369       1.1       leo 		otick = tick;
    370       1.1       leo 	}
    371       1.1       leo }
    372       1.1       leo 
    373       1.4       leo #ifdef GPROF
    374       1.1       leo /*
    375       1.1       leo  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    376       1.1       leo  * Assumes it is called with clock interrupts blocked.
    377       1.1       leo  */
    378       1.1       leo profclock(pc, ps)
    379       1.1       leo 	caddr_t pc;
    380       1.1       leo 	int ps;
    381       1.1       leo {
    382       1.1       leo 	/*
    383       1.1       leo 	 * Came from user mode.
    384       1.1       leo 	 * If this process is being profiled record the tick.
    385       1.1       leo 	 */
    386       1.1       leo 	if (USERMODE(ps)) {
    387       1.1       leo 		if (p->p_stats.p_prof.pr_scale)
    388       1.1       leo 			addupc(pc, &curproc->p_stats.p_prof, 1);
    389       1.1       leo 	}
    390       1.1       leo 	/*
    391       1.1       leo 	 * Came from kernel (supervisor) mode.
    392       1.1       leo 	 * If we are profiling the kernel, record the tick.
    393       1.1       leo 	 */
    394       1.1       leo 	else if (profiling < 2) {
    395       1.1       leo 		register int s = pc - s_lowpc;
    396       1.1       leo 
    397       1.1       leo 		if (s < s_textsize)
    398       1.1       leo 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    399       1.1       leo 	}
    400       1.1       leo 	/*
    401       1.1       leo 	 * Kernel profiling was on but has been disabled.
    402       1.1       leo 	 * Mark as no longer profiling kernel and if all profiling done,
    403       1.1       leo 	 * disable the clock.
    404       1.1       leo 	 */
    405       1.1       leo 	if (profiling && (profon & PRF_KERNEL)) {
    406       1.1       leo 		profon &= ~PRF_KERNEL;
    407       1.1       leo 		if (profon == PRF_NONE)
    408       1.1       leo 			stopprofclock();
    409       1.1       leo 	}
    410       1.1       leo }
    411       1.1       leo #endif
    412       1.7       leo 
    413       1.7       leo /***********************************************************************
    414       1.7       leo  *                   Real Time Clock support                           *
    415       1.7       leo  ***********************************************************************/
    416       1.7       leo 
    417       1.7       leo u_int mc146818_read(rtc, regno)
    418       1.7       leo void	*rtc;
    419       1.7       leo u_int	regno;
    420       1.7       leo {
    421       1.7       leo 	((struct rtc *)rtc)->rtc_regno = regno;
    422       1.7       leo 	return(((struct rtc *)rtc)->rtc_data & 0377);
    423       1.7       leo }
    424       1.7       leo 
    425       1.7       leo void mc146818_write(rtc, regno, value)
    426       1.7       leo void	*rtc;
    427       1.7       leo u_int	regno, value;
    428       1.7       leo {
    429       1.7       leo 	((struct rtc *)rtc)->rtc_regno = regno;
    430       1.7       leo 	((struct rtc *)rtc)->rtc_data  = value;
    431       1.7       leo }
    432       1.1       leo 
    433       1.1       leo /*
    434      1.14       leo  * Initialize the time of day register, assuming the RTC runs in UTC.
    435      1.14       leo  * Since we've got the 'rtc' device, this functionality should be removed
    436      1.14       leo  * from the kernel. The only problem to be solved before that can happen
    437      1.14       leo  * is the possibility of init(1) providing a way (rc.boot?) to set
    438      1.14       leo  * the RTC before single-user mode is entered.
    439       1.1       leo  */
    440       1.9       leo void
    441       1.1       leo inittodr(base)
    442       1.1       leo time_t base;
    443       1.1       leo {
    444       1.1       leo 	/* Battery clock does not store usec's, so forget about it. */
    445      1.14       leo 	time.tv_sec  = gettod();
    446      1.11       leo 	time.tv_usec = 0;
    447       1.1       leo }
    448       1.1       leo 
    449      1.14       leo /*
    450      1.14       leo  * Function turned into a No-op. Use /dev/rtc to update the RTC.
    451      1.14       leo  */
    452       1.9       leo void
    453       1.1       leo resettodr()
    454       1.1       leo {
    455      1.14       leo 	return;
    456       1.1       leo }
    457       1.1       leo 
    458       1.1       leo static u_long
    459       1.1       leo gettod()
    460       1.1       leo {
    461      1.18       leo 	int			sps;
    462      1.18       leo 	mc_todregs		clkregs;
    463      1.25       leo 	u_int			regb;
    464      1.18       leo 	struct clock_ymdhms	dt;
    465       1.3       leo 
    466       1.3       leo 	sps = splhigh();
    467      1.25       leo 	regb = mc146818_read(RTC, MC_REGB);
    468       1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    469       1.3       leo 	splx(sps);
    470       1.1       leo 
    471      1.25       leo 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    472      1.25       leo 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    473      1.25       leo 		printf("Error: Nonstandard RealTimeClock Configuration -"
    474      1.25       leo 			" value ignored\n"
    475      1.25       leo 			"       A write to /dev/rtc will correct this.\n");
    476      1.25       leo 			return(0);
    477      1.25       leo 	}
    478       1.9       leo 	if(clkregs[MC_SEC] > 59)
    479       1.8       leo 		return(0);
    480       1.9       leo 	if(clkregs[MC_MIN] > 59)
    481       1.8       leo 		return(0);
    482       1.9       leo 	if(clkregs[MC_HOUR] > 23)
    483       1.1       leo 		return(0);
    484       1.3       leo 	if(range_test(clkregs[MC_DOM], 1, 31))
    485       1.1       leo 		return(0);
    486       1.3       leo 	if (range_test(clkregs[MC_MONTH], 1, 12))
    487       1.1       leo 		return(0);
    488      1.24       leo 	if(clkregs[MC_YEAR] > 99)
    489       1.1       leo 		return(0);
    490       1.1       leo 
    491      1.18       leo 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    492      1.18       leo 	dt.dt_mon  = clkregs[MC_MONTH];
    493      1.18       leo 	dt.dt_day  = clkregs[MC_DOM];
    494      1.18       leo 	dt.dt_hour = clkregs[MC_HOUR];
    495      1.18       leo 	dt.dt_min  = clkregs[MC_MIN];
    496      1.18       leo 	dt.dt_sec  = clkregs[MC_SEC];
    497       1.1       leo 
    498      1.18       leo 	return(clock_ymdhms_to_secs(&dt));
    499       1.1       leo }
    500      1.14       leo /***********************************************************************
    501      1.14       leo  *                   RTC-device support				       *
    502      1.14       leo  ***********************************************************************/
    503      1.14       leo int
    504      1.14       leo rtcopen(dev, flag, mode, p)
    505      1.14       leo 	dev_t		dev;
    506      1.14       leo 	int		flag, mode;
    507      1.14       leo 	struct proc	*p;
    508      1.14       leo {
    509      1.14       leo 	int			unit = minor(dev);
    510      1.14       leo 	struct clock_softc	*sc;
    511      1.14       leo 
    512      1.14       leo 	if (unit >= clock_cd.cd_ndevs)
    513      1.14       leo 		return ENXIO;
    514      1.14       leo 	sc = clock_cd.cd_devs[unit];
    515      1.14       leo 	if (!sc)
    516      1.14       leo 		return ENXIO;
    517      1.14       leo 	if (sc->sc_flags & RTC_OPEN)
    518      1.14       leo 		return EBUSY;
    519      1.14       leo 
    520      1.14       leo 	sc->sc_flags = RTC_OPEN;
    521      1.14       leo 	return 0;
    522      1.14       leo }
    523       1.1       leo 
    524      1.14       leo int
    525      1.14       leo rtcclose(dev, flag, mode, p)
    526      1.14       leo 	dev_t		dev;
    527      1.14       leo 	int		flag;
    528      1.14       leo 	int		mode;
    529      1.14       leo 	struct proc	*p;
    530       1.1       leo {
    531      1.14       leo 	int			unit = minor(dev);
    532      1.14       leo 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
    533      1.14       leo 
    534      1.14       leo 	sc->sc_flags = 0;
    535      1.14       leo 	return 0;
    536      1.14       leo }
    537      1.14       leo 
    538      1.14       leo int
    539      1.14       leo rtcread(dev, uio, flags)
    540      1.14       leo 	dev_t		dev;
    541      1.14       leo 	struct uio	*uio;
    542      1.14       leo 	int		flags;
    543      1.14       leo {
    544      1.14       leo 	struct clock_softc	*sc;
    545      1.14       leo 	mc_todregs		clkregs;
    546      1.14       leo 	int			s, length;
    547      1.14       leo 	char			buffer[16];
    548      1.14       leo 
    549      1.14       leo 	sc = clock_cd.cd_devs[minor(dev)];
    550      1.14       leo 
    551      1.14       leo 	s = splhigh();
    552      1.14       leo 	MC146818_GETTOD(RTC, &clkregs);
    553      1.14       leo 	splx(s);
    554      1.14       leo 
    555      1.21       leo 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    556      1.21       leo 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    557      1.14       leo 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    558      1.14       leo 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    559      1.14       leo 
    560      1.14       leo 	if (uio->uio_offset > strlen(buffer))
    561      1.14       leo 		return 0;
    562       1.1       leo 
    563      1.14       leo 	length = strlen(buffer) - uio->uio_offset;
    564      1.14       leo 	if (length > uio->uio_resid)
    565      1.14       leo 		length = uio->uio_resid;
    566       1.1       leo 
    567      1.14       leo 	return(uiomove((caddr_t)buffer, length, uio));
    568      1.14       leo }
    569      1.14       leo 
    570      1.14       leo static int
    571      1.14       leo twodigits(buffer, pos)
    572      1.14       leo 	char *buffer;
    573      1.14       leo 	int pos;
    574      1.14       leo {
    575      1.14       leo 	int result = 0;
    576      1.14       leo 
    577      1.14       leo 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    578      1.14       leo 		result = (buffer[pos] - '0') * 10;
    579      1.14       leo 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    580      1.14       leo 		result += (buffer[pos+1] - '0');
    581      1.14       leo 	return(result);
    582      1.14       leo }
    583       1.1       leo 
    584      1.14       leo int
    585      1.14       leo rtcwrite(dev, uio, flags)
    586      1.14       leo 	dev_t		dev;
    587      1.14       leo 	struct uio	*uio;
    588      1.14       leo 	int		flags;
    589      1.14       leo {
    590      1.14       leo 	mc_todregs		clkregs;
    591      1.14       leo 	int			s, length, error;
    592      1.21       leo 	char			buffer[16];
    593      1.14       leo 
    594      1.14       leo 	/*
    595      1.14       leo 	 * We require atomic updates!
    596      1.14       leo 	 */
    597      1.14       leo 	length = uio->uio_resid;
    598      1.14       leo 	if (uio->uio_offset || (length != sizeof(buffer)
    599      1.14       leo 	  && length != sizeof(buffer - 1)))
    600      1.14       leo 		return(EINVAL);
    601      1.14       leo 
    602      1.14       leo 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
    603      1.14       leo 		return(error);
    604       1.1       leo 
    605      1.14       leo 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    606      1.14       leo 		return(EINVAL);
    607       1.1       leo 
    608      1.14       leo 	s = splclock();
    609      1.25       leo 	mc146818_write(RTC, MC_REGB,
    610      1.25       leo 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    611       1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    612      1.14       leo 	splx(s);
    613      1.14       leo 
    614      1.21       leo 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    615      1.21       leo 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    616      1.21       leo 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    617      1.21       leo 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    618      1.21       leo 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    619      1.21       leo 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    620      1.14       leo 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    621      1.14       leo 
    622      1.14       leo 	s = splclock();
    623       1.3       leo 	MC146818_PUTTOD(RTC, &clkregs);
    624      1.14       leo 	splx(s);
    625       1.1       leo 
    626      1.14       leo 	return(0);
    627       1.1       leo }
    628