clock.c revision 1.35 1 1.35 he /* $NetBSD: clock.c,v 1.35 2005/06/04 14:42:36 he Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.1 leo * Copyright (c) 1982, 1990 The Regents of the University of California.
5 1.1 leo * All rights reserved.
6 1.1 leo *
7 1.1 leo * This code is derived from software contributed to Berkeley by
8 1.1 leo * the Systems Programming Group of the University of Utah Computer
9 1.1 leo * Science Department.
10 1.1 leo *
11 1.1 leo * Redistribution and use in source and binary forms, with or without
12 1.1 leo * modification, are permitted provided that the following conditions
13 1.1 leo * are met:
14 1.1 leo * 1. Redistributions of source code must retain the above copyright
15 1.1 leo * notice, this list of conditions and the following disclaimer.
16 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 leo * notice, this list of conditions and the following disclaimer in the
18 1.1 leo * documentation and/or other materials provided with the distribution.
19 1.34 agc * 3. Neither the name of the University nor the names of its contributors
20 1.34 agc * may be used to endorse or promote products derived from this software
21 1.34 agc * without specific prior written permission.
22 1.34 agc *
23 1.34 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.34 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.34 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.34 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.34 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.34 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.34 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.34 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.34 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.34 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.34 agc * SUCH DAMAGE.
34 1.34 agc *
35 1.34 agc * from: Utah $Hdr: clock.c 1.18 91/01/21$
36 1.34 agc *
37 1.34 agc * @(#)clock.c 7.6 (Berkeley) 5/7/91
38 1.34 agc */
39 1.34 agc /*
40 1.34 agc * Copyright (c) 1988 University of Utah.
41 1.34 agc *
42 1.34 agc * This code is derived from software contributed to Berkeley by
43 1.34 agc * the Systems Programming Group of the University of Utah Computer
44 1.34 agc * Science Department.
45 1.34 agc *
46 1.34 agc * Redistribution and use in source and binary forms, with or without
47 1.34 agc * modification, are permitted provided that the following conditions
48 1.34 agc * are met:
49 1.34 agc * 1. Redistributions of source code must retain the above copyright
50 1.34 agc * notice, this list of conditions and the following disclaimer.
51 1.34 agc * 2. Redistributions in binary form must reproduce the above copyright
52 1.34 agc * notice, this list of conditions and the following disclaimer in the
53 1.34 agc * documentation and/or other materials provided with the distribution.
54 1.1 leo * 3. All advertising materials mentioning features or use of this software
55 1.1 leo * must display the following acknowledgement:
56 1.1 leo * This product includes software developed by the University of
57 1.1 leo * California, Berkeley and its contributors.
58 1.1 leo * 4. Neither the name of the University nor the names of its contributors
59 1.1 leo * may be used to endorse or promote products derived from this software
60 1.1 leo * without specific prior written permission.
61 1.1 leo *
62 1.1 leo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.1 leo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.1 leo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.1 leo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.1 leo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.1 leo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.1 leo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.1 leo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.1 leo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.1 leo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.1 leo * SUCH DAMAGE.
73 1.1 leo *
74 1.1 leo * from: Utah $Hdr: clock.c 1.18 91/01/21$
75 1.1 leo *
76 1.1 leo * @(#)clock.c 7.6 (Berkeley) 5/7/91
77 1.1 leo */
78 1.33 lukem
79 1.33 lukem #include <sys/cdefs.h>
80 1.35 he __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.35 2005/06/04 14:42:36 he Exp $");
81 1.1 leo
82 1.1 leo #include <sys/param.h>
83 1.1 leo #include <sys/kernel.h>
84 1.9 leo #include <sys/systm.h>
85 1.1 leo #include <sys/device.h>
86 1.14 leo #include <sys/uio.h>
87 1.14 leo #include <sys/conf.h>
88 1.32 thorpej #include <sys/proc.h>
89 1.31 jdolecek #include <sys/event.h>
90 1.18 leo
91 1.18 leo #include <dev/clock_subr.h>
92 1.18 leo
93 1.1 leo #include <machine/psl.h>
94 1.1 leo #include <machine/cpu.h>
95 1.1 leo #include <machine/iomap.h>
96 1.1 leo #include <machine/mfp.h>
97 1.1 leo #include <atari/dev/clockreg.h>
98 1.14 leo #include <atari/atari/device.h>
99 1.1 leo
100 1.4 leo #if defined(GPROF) && defined(PROFTIMER)
101 1.4 leo #include <machine/profile.h>
102 1.1 leo #endif
103 1.1 leo
104 1.1 leo /*
105 1.5 leo * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
106 1.5 leo * of 200. Therefore the timer runs at an effective rate of:
107 1.5 leo * 2457600/200 = 12288Hz.
108 1.5 leo */
109 1.5 leo #define CLOCK_HZ 12288
110 1.5 leo
111 1.5 leo /*
112 1.1 leo * Machine-dependent clock routines.
113 1.1 leo *
114 1.1 leo * Inittodr initializes the time of day hardware which provides
115 1.1 leo * date functions.
116 1.1 leo *
117 1.1 leo * Resettodr restores the time of day hardware after a time change.
118 1.1 leo */
119 1.1 leo
120 1.14 leo struct clock_softc {
121 1.14 leo struct device sc_dev;
122 1.14 leo int sc_flags;
123 1.14 leo };
124 1.14 leo
125 1.14 leo /*
126 1.14 leo * 'sc_flags' state info. Only used by the rtc-device functions.
127 1.14 leo */
128 1.14 leo #define RTC_OPEN 1
129 1.14 leo
130 1.14 leo dev_type_open(rtcopen);
131 1.14 leo dev_type_close(rtcclose);
132 1.14 leo dev_type_read(rtcread);
133 1.14 leo dev_type_write(rtcwrite);
134 1.14 leo
135 1.14 leo static void clockattach __P((struct device *, struct device *, void *));
136 1.17 leo static int clockmatch __P((struct device *, struct cfdata *, void *));
137 1.1 leo
138 1.30 thorpej CFATTACH_DECL(clock, sizeof(struct clock_softc),
139 1.30 thorpej clockmatch, clockattach, NULL, NULL);
140 1.10 thorpej
141 1.19 thorpej extern struct cfdriver clock_cd;
142 1.28 gehenna
143 1.28 gehenna const struct cdevsw rtc_cdevsw = {
144 1.28 gehenna rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
145 1.31 jdolecek nostop, notty, nopoll, nommap, nokqfilter,
146 1.28 gehenna };
147 1.1 leo
148 1.16 leo void statintr __P((struct clockframe));
149 1.9 leo
150 1.1 leo static u_long gettod __P((void));
151 1.14 leo static int twodigits __P((char *, int));
152 1.1 leo
153 1.5 leo static int divisor; /* Systemclock divisor */
154 1.5 leo
155 1.5 leo /*
156 1.5 leo * Statistics and profile clock intervals and variances. Variance must
157 1.5 leo * be a power of 2. Since this gives us an even number, not an odd number,
158 1.5 leo * we discard one case and compensate. That is, a variance of 64 would
159 1.5 leo * give us offsets in [0..63]. Instead, we take offsets in [1..63].
160 1.26 wiz * This is symmetric around the point 32, or statvar/2, and thus averages
161 1.5 leo * to that value (assuming uniform random numbers).
162 1.5 leo */
163 1.5 leo #ifdef STATCLOCK
164 1.5 leo static int statvar = 32; /* {stat,prof}clock variance */
165 1.5 leo static int statmin; /* statclock divisor - variance/2 */
166 1.5 leo static int profmin; /* profclock divisor - variance/2 */
167 1.27 wiz static int clk2min; /* current, from above choices */
168 1.5 leo #endif
169 1.1 leo
170 1.1 leo int
171 1.17 leo clockmatch(pdp, cfp, auxp)
172 1.14 leo struct device *pdp;
173 1.17 leo struct cfdata *cfp;
174 1.17 leo void *auxp;
175 1.1 leo {
176 1.15 leo if (!atari_realconfig) {
177 1.15 leo /*
178 1.15 leo * Initialize Timer-B in the ST-MFP. This timer is used by
179 1.15 leo * the 'delay' function below. This timer is setup to be
180 1.15 leo * continueously counting from 255 back to zero at a
181 1.15 leo * frequency of 614400Hz. We do this *early* in the
182 1.15 leo * initialisation process.
183 1.15 leo */
184 1.15 leo MFP->mf_tbcr = 0; /* Stop timer */
185 1.15 leo MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
186 1.15 leo MFP->mf_tbdr = 0;
187 1.15 leo MFP->mf_tbcr = T_Q004; /* Start timer */
188 1.15 leo
189 1.15 leo /*
190 1.15 leo * Initialize the time structure
191 1.15 leo */
192 1.15 leo time.tv_sec = 0;
193 1.15 leo time.tv_usec = 0;
194 1.15 leo
195 1.15 leo return 0;
196 1.15 leo }
197 1.1 leo if(!strcmp("clock", auxp))
198 1.1 leo return(1);
199 1.1 leo return(0);
200 1.1 leo }
201 1.1 leo
202 1.1 leo /*
203 1.1 leo * Start the real-time clock.
204 1.1 leo */
205 1.1 leo void clockattach(pdp, dp, auxp)
206 1.1 leo struct device *pdp, *dp;
207 1.14 leo void *auxp;
208 1.1 leo {
209 1.14 leo struct clock_softc *sc = (void *)dp;
210 1.14 leo
211 1.14 leo sc->sc_flags = 0;
212 1.14 leo
213 1.1 leo /*
214 1.3 leo * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
215 1.3 leo * The MFP clock runs at 2457600Hz. Therefore the timer runs
216 1.3 leo * at an effective rate of: 2457600/200 = 12288Hz. The
217 1.3 leo * following expression works for 48, 64 or 96 hz.
218 1.1 leo */
219 1.5 leo divisor = CLOCK_HZ/hz;
220 1.2 leo MFP->mf_tacr = 0; /* Stop timer */
221 1.2 leo MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
222 1.2 leo MFP->mf_tadr = divisor; /* Set divisor */
223 1.1 leo
224 1.5 leo if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
225 1.13 christos printf (": illegal value %d for systemclock, reset to %d\n\t",
226 1.5 leo hz, 64);
227 1.5 leo hz = 64;
228 1.5 leo }
229 1.13 christos printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
230 1.1 leo
231 1.5 leo #ifdef STATCLOCK
232 1.5 leo if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
233 1.5 leo stathz = hz;
234 1.5 leo if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
235 1.5 leo profhz = hz << 1;
236 1.5 leo
237 1.5 leo MFP->mf_tcdcr &= 0x7; /* Stop timer */
238 1.5 leo MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
239 1.5 leo MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
240 1.5 leo
241 1.5 leo statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
242 1.5 leo profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
243 1.5 leo clk2min = statmin;
244 1.5 leo #endif /* STATCLOCK */
245 1.14 leo
246 1.1 leo }
247 1.1 leo
248 1.1 leo void cpu_initclocks()
249 1.1 leo {
250 1.3 leo MFP->mf_tacr = T_Q200; /* Start timer */
251 1.20 leo MFP->mf_ipra = (u_int8_t)~IA_TIMA;/* Clear pending interrupts */
252 1.2 leo MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
253 1.2 leo MFP->mf_imra |= IA_TIMA; /* ..... */
254 1.5 leo
255 1.5 leo #ifdef STATCLOCK
256 1.5 leo MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
257 1.20 leo MFP->mf_iprb = (u_int8_t)~IB_TIMC;/* Clear pending interrupts */
258 1.5 leo MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
259 1.5 leo MFP->mf_imrb |= IB_TIMC; /* ..... */
260 1.5 leo #endif /* STATCLOCK */
261 1.1 leo }
262 1.1 leo
263 1.9 leo void
264 1.5 leo setstatclockrate(newhz)
265 1.5 leo int newhz;
266 1.1 leo {
267 1.5 leo #ifdef STATCLOCK
268 1.5 leo if (newhz == stathz)
269 1.5 leo clk2min = statmin;
270 1.5 leo else clk2min = profmin;
271 1.5 leo #endif /* STATCLOCK */
272 1.1 leo }
273 1.1 leo
274 1.5 leo #ifdef STATCLOCK
275 1.5 leo void
276 1.5 leo statintr(frame)
277 1.16 leo struct clockframe frame;
278 1.5 leo {
279 1.5 leo register int var, r;
280 1.5 leo
281 1.5 leo var = statvar - 1;
282 1.5 leo do {
283 1.5 leo r = random() & var;
284 1.5 leo } while(r == 0);
285 1.5 leo
286 1.5 leo /*
287 1.5 leo * Note that we are always lagging behind as the new divisor
288 1.5 leo * value will not be loaded until the next interrupt. This
289 1.5 leo * shouldn't disturb the median frequency (I think ;-) ) as
290 1.5 leo * only the value used when switching frequencies is used
291 1.5 leo * twice. This shouldn't happen very often.
292 1.5 leo */
293 1.5 leo MFP->mf_tcdr = clk2min + r;
294 1.5 leo
295 1.16 leo statclock(&frame);
296 1.5 leo }
297 1.5 leo #endif /* STATCLOCK */
298 1.5 leo
299 1.1 leo /*
300 1.1 leo * Returns number of usec since last recorded clock "tick"
301 1.1 leo * (i.e. clock interrupt).
302 1.1 leo */
303 1.9 leo long
304 1.1 leo clkread()
305 1.1 leo {
306 1.3 leo u_int delta;
307 1.22 leo u_char ipra, tadr;
308 1.3 leo
309 1.22 leo /*
310 1.22 leo * Note: Order is important!
311 1.22 leo * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
312 1.22 leo * the situation that very low value in 'tadr' is read (== a big delta)
313 1.22 leo * while also acccounting for a full 'tick' because the counter went
314 1.22 leo * through zero during the calculations.
315 1.22 leo */
316 1.22 leo ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
317 1.22 leo
318 1.22 leo delta = ((divisor - tadr) * tick) / divisor;
319 1.1 leo /*
320 1.1 leo * Account for pending clock interrupts
321 1.1 leo */
322 1.22 leo if(ipra & IA_TIMA)
323 1.1 leo return(delta + tick);
324 1.1 leo return(delta);
325 1.1 leo }
326 1.1 leo
327 1.2 leo #define TIMB_FREQ 614400
328 1.2 leo #define TIMB_LIMIT 256
329 1.1 leo
330 1.1 leo /*
331 1.1 leo * Wait "n" microseconds.
332 1.2 leo * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
333 1.1 leo * Note: timer had better have been programmed before this is first used!
334 1.1 leo */
335 1.14 leo void
336 1.14 leo delay(n)
337 1.1 leo int n;
338 1.1 leo {
339 1.35 he int ticks, otick;
340 1.1 leo
341 1.1 leo /*
342 1.1 leo * Read the counter first, so that the rest of the setup overhead is
343 1.1 leo * counted.
344 1.1 leo */
345 1.2 leo otick = MFP->mf_tbdr;
346 1.1 leo
347 1.1 leo /*
348 1.1 leo * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
349 1.1 leo * we can take advantage of the intermediate 64-bit quantity to prevent
350 1.1 leo * loss of significance.
351 1.1 leo */
352 1.1 leo n -= 5;
353 1.1 leo if(n < 0)
354 1.1 leo return;
355 1.1 leo {
356 1.1 leo u_int temp;
357 1.1 leo
358 1.1 leo __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
359 1.23 leo : "d" (TIMB_FREQ), "d" (n));
360 1.1 leo __asm __volatile ("divul %1,%2:%0" : "=d" (n)
361 1.1 leo : "d"(1000000),"d"(temp),"0"(n));
362 1.1 leo }
363 1.1 leo
364 1.1 leo while(n > 0) {
365 1.35 he ticks = MFP->mf_tbdr;
366 1.35 he if(ticks > otick)
367 1.35 he n -= TIMB_LIMIT - (ticks - otick);
368 1.35 he else n -= otick - ticks;
369 1.35 he otick = ticks;
370 1.1 leo }
371 1.1 leo }
372 1.1 leo
373 1.4 leo #ifdef GPROF
374 1.1 leo /*
375 1.1 leo * profclock() is expanded in line in lev6intr() unless profiling kernel.
376 1.1 leo * Assumes it is called with clock interrupts blocked.
377 1.1 leo */
378 1.1 leo profclock(pc, ps)
379 1.1 leo caddr_t pc;
380 1.1 leo int ps;
381 1.1 leo {
382 1.1 leo /*
383 1.1 leo * Came from user mode.
384 1.1 leo * If this process is being profiled record the tick.
385 1.1 leo */
386 1.1 leo if (USERMODE(ps)) {
387 1.1 leo if (p->p_stats.p_prof.pr_scale)
388 1.1 leo addupc(pc, &curproc->p_stats.p_prof, 1);
389 1.1 leo }
390 1.1 leo /*
391 1.1 leo * Came from kernel (supervisor) mode.
392 1.1 leo * If we are profiling the kernel, record the tick.
393 1.1 leo */
394 1.1 leo else if (profiling < 2) {
395 1.1 leo register int s = pc - s_lowpc;
396 1.1 leo
397 1.1 leo if (s < s_textsize)
398 1.1 leo kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
399 1.1 leo }
400 1.1 leo /*
401 1.1 leo * Kernel profiling was on but has been disabled.
402 1.1 leo * Mark as no longer profiling kernel and if all profiling done,
403 1.1 leo * disable the clock.
404 1.1 leo */
405 1.1 leo if (profiling && (profon & PRF_KERNEL)) {
406 1.1 leo profon &= ~PRF_KERNEL;
407 1.1 leo if (profon == PRF_NONE)
408 1.1 leo stopprofclock();
409 1.1 leo }
410 1.1 leo }
411 1.1 leo #endif
412 1.7 leo
413 1.7 leo /***********************************************************************
414 1.7 leo * Real Time Clock support *
415 1.7 leo ***********************************************************************/
416 1.7 leo
417 1.7 leo u_int mc146818_read(rtc, regno)
418 1.7 leo void *rtc;
419 1.7 leo u_int regno;
420 1.7 leo {
421 1.7 leo ((struct rtc *)rtc)->rtc_regno = regno;
422 1.7 leo return(((struct rtc *)rtc)->rtc_data & 0377);
423 1.7 leo }
424 1.7 leo
425 1.7 leo void mc146818_write(rtc, regno, value)
426 1.7 leo void *rtc;
427 1.7 leo u_int regno, value;
428 1.7 leo {
429 1.7 leo ((struct rtc *)rtc)->rtc_regno = regno;
430 1.7 leo ((struct rtc *)rtc)->rtc_data = value;
431 1.7 leo }
432 1.1 leo
433 1.1 leo /*
434 1.14 leo * Initialize the time of day register, assuming the RTC runs in UTC.
435 1.14 leo * Since we've got the 'rtc' device, this functionality should be removed
436 1.14 leo * from the kernel. The only problem to be solved before that can happen
437 1.14 leo * is the possibility of init(1) providing a way (rc.boot?) to set
438 1.14 leo * the RTC before single-user mode is entered.
439 1.1 leo */
440 1.9 leo void
441 1.1 leo inittodr(base)
442 1.1 leo time_t base;
443 1.1 leo {
444 1.1 leo /* Battery clock does not store usec's, so forget about it. */
445 1.14 leo time.tv_sec = gettod();
446 1.11 leo time.tv_usec = 0;
447 1.1 leo }
448 1.1 leo
449 1.14 leo /*
450 1.14 leo * Function turned into a No-op. Use /dev/rtc to update the RTC.
451 1.14 leo */
452 1.9 leo void
453 1.1 leo resettodr()
454 1.1 leo {
455 1.14 leo return;
456 1.1 leo }
457 1.1 leo
458 1.1 leo static u_long
459 1.1 leo gettod()
460 1.1 leo {
461 1.18 leo int sps;
462 1.18 leo mc_todregs clkregs;
463 1.25 leo u_int regb;
464 1.18 leo struct clock_ymdhms dt;
465 1.3 leo
466 1.3 leo sps = splhigh();
467 1.25 leo regb = mc146818_read(RTC, MC_REGB);
468 1.3 leo MC146818_GETTOD(RTC, &clkregs);
469 1.3 leo splx(sps);
470 1.1 leo
471 1.25 leo regb &= MC_REGB_24HR|MC_REGB_BINARY;
472 1.25 leo if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
473 1.25 leo printf("Error: Nonstandard RealTimeClock Configuration -"
474 1.25 leo " value ignored\n"
475 1.25 leo " A write to /dev/rtc will correct this.\n");
476 1.25 leo return(0);
477 1.25 leo }
478 1.9 leo if(clkregs[MC_SEC] > 59)
479 1.8 leo return(0);
480 1.9 leo if(clkregs[MC_MIN] > 59)
481 1.8 leo return(0);
482 1.9 leo if(clkregs[MC_HOUR] > 23)
483 1.1 leo return(0);
484 1.3 leo if(range_test(clkregs[MC_DOM], 1, 31))
485 1.1 leo return(0);
486 1.3 leo if (range_test(clkregs[MC_MONTH], 1, 12))
487 1.1 leo return(0);
488 1.24 leo if(clkregs[MC_YEAR] > 99)
489 1.1 leo return(0);
490 1.1 leo
491 1.18 leo dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
492 1.18 leo dt.dt_mon = clkregs[MC_MONTH];
493 1.18 leo dt.dt_day = clkregs[MC_DOM];
494 1.18 leo dt.dt_hour = clkregs[MC_HOUR];
495 1.18 leo dt.dt_min = clkregs[MC_MIN];
496 1.18 leo dt.dt_sec = clkregs[MC_SEC];
497 1.1 leo
498 1.18 leo return(clock_ymdhms_to_secs(&dt));
499 1.1 leo }
500 1.14 leo /***********************************************************************
501 1.14 leo * RTC-device support *
502 1.14 leo ***********************************************************************/
503 1.14 leo int
504 1.14 leo rtcopen(dev, flag, mode, p)
505 1.14 leo dev_t dev;
506 1.14 leo int flag, mode;
507 1.14 leo struct proc *p;
508 1.14 leo {
509 1.14 leo int unit = minor(dev);
510 1.14 leo struct clock_softc *sc;
511 1.14 leo
512 1.14 leo if (unit >= clock_cd.cd_ndevs)
513 1.14 leo return ENXIO;
514 1.14 leo sc = clock_cd.cd_devs[unit];
515 1.14 leo if (!sc)
516 1.14 leo return ENXIO;
517 1.14 leo if (sc->sc_flags & RTC_OPEN)
518 1.14 leo return EBUSY;
519 1.14 leo
520 1.14 leo sc->sc_flags = RTC_OPEN;
521 1.14 leo return 0;
522 1.14 leo }
523 1.1 leo
524 1.14 leo int
525 1.14 leo rtcclose(dev, flag, mode, p)
526 1.14 leo dev_t dev;
527 1.14 leo int flag;
528 1.14 leo int mode;
529 1.14 leo struct proc *p;
530 1.1 leo {
531 1.14 leo int unit = minor(dev);
532 1.14 leo struct clock_softc *sc = clock_cd.cd_devs[unit];
533 1.14 leo
534 1.14 leo sc->sc_flags = 0;
535 1.14 leo return 0;
536 1.14 leo }
537 1.14 leo
538 1.14 leo int
539 1.14 leo rtcread(dev, uio, flags)
540 1.14 leo dev_t dev;
541 1.14 leo struct uio *uio;
542 1.14 leo int flags;
543 1.14 leo {
544 1.14 leo struct clock_softc *sc;
545 1.14 leo mc_todregs clkregs;
546 1.14 leo int s, length;
547 1.14 leo char buffer[16];
548 1.14 leo
549 1.14 leo sc = clock_cd.cd_devs[minor(dev)];
550 1.14 leo
551 1.14 leo s = splhigh();
552 1.14 leo MC146818_GETTOD(RTC, &clkregs);
553 1.14 leo splx(s);
554 1.14 leo
555 1.21 leo sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
556 1.21 leo clkregs[MC_YEAR] + GEMSTARTOFTIME,
557 1.14 leo clkregs[MC_MONTH], clkregs[MC_DOM],
558 1.14 leo clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
559 1.14 leo
560 1.14 leo if (uio->uio_offset > strlen(buffer))
561 1.14 leo return 0;
562 1.1 leo
563 1.14 leo length = strlen(buffer) - uio->uio_offset;
564 1.14 leo if (length > uio->uio_resid)
565 1.14 leo length = uio->uio_resid;
566 1.1 leo
567 1.14 leo return(uiomove((caddr_t)buffer, length, uio));
568 1.14 leo }
569 1.14 leo
570 1.14 leo static int
571 1.14 leo twodigits(buffer, pos)
572 1.14 leo char *buffer;
573 1.14 leo int pos;
574 1.14 leo {
575 1.14 leo int result = 0;
576 1.14 leo
577 1.14 leo if (buffer[pos] >= '0' && buffer[pos] <= '9')
578 1.14 leo result = (buffer[pos] - '0') * 10;
579 1.14 leo if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
580 1.14 leo result += (buffer[pos+1] - '0');
581 1.14 leo return(result);
582 1.14 leo }
583 1.1 leo
584 1.14 leo int
585 1.14 leo rtcwrite(dev, uio, flags)
586 1.14 leo dev_t dev;
587 1.14 leo struct uio *uio;
588 1.14 leo int flags;
589 1.14 leo {
590 1.14 leo mc_todregs clkregs;
591 1.14 leo int s, length, error;
592 1.21 leo char buffer[16];
593 1.14 leo
594 1.14 leo /*
595 1.14 leo * We require atomic updates!
596 1.14 leo */
597 1.14 leo length = uio->uio_resid;
598 1.14 leo if (uio->uio_offset || (length != sizeof(buffer)
599 1.14 leo && length != sizeof(buffer - 1)))
600 1.14 leo return(EINVAL);
601 1.14 leo
602 1.14 leo if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
603 1.14 leo return(error);
604 1.1 leo
605 1.14 leo if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
606 1.14 leo return(EINVAL);
607 1.1 leo
608 1.14 leo s = splclock();
609 1.25 leo mc146818_write(RTC, MC_REGB,
610 1.25 leo mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
611 1.3 leo MC146818_GETTOD(RTC, &clkregs);
612 1.14 leo splx(s);
613 1.14 leo
614 1.21 leo clkregs[MC_SEC] = twodigits(buffer, 13);
615 1.21 leo clkregs[MC_MIN] = twodigits(buffer, 10);
616 1.21 leo clkregs[MC_HOUR] = twodigits(buffer, 8);
617 1.21 leo clkregs[MC_DOM] = twodigits(buffer, 6);
618 1.21 leo clkregs[MC_MONTH] = twodigits(buffer, 4);
619 1.21 leo s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
620 1.14 leo clkregs[MC_YEAR] = s - GEMSTARTOFTIME;
621 1.14 leo
622 1.14 leo s = splclock();
623 1.3 leo MC146818_PUTTOD(RTC, &clkregs);
624 1.14 leo splx(s);
625 1.1 leo
626 1.14 leo return(0);
627 1.1 leo }
628