Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.4
      1  1.4  leo /*	$NetBSD: clock.c,v 1.4 1995/09/23 20:23:28 leo Exp $	*/
      2  1.1  leo 
      3  1.1  leo /*
      4  1.1  leo  * Copyright (c) 1988 University of Utah.
      5  1.1  leo  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  1.1  leo  * All rights reserved.
      7  1.1  leo  *
      8  1.1  leo  * This code is derived from software contributed to Berkeley by
      9  1.1  leo  * the Systems Programming Group of the University of Utah Computer
     10  1.1  leo  * Science Department.
     11  1.1  leo  *
     12  1.1  leo  * Redistribution and use in source and binary forms, with or without
     13  1.1  leo  * modification, are permitted provided that the following conditions
     14  1.1  leo  * are met:
     15  1.1  leo  * 1. Redistributions of source code must retain the above copyright
     16  1.1  leo  *    notice, this list of conditions and the following disclaimer.
     17  1.1  leo  * 2. Redistributions in binary form must reproduce the above copyright
     18  1.1  leo  *    notice, this list of conditions and the following disclaimer in the
     19  1.1  leo  *    documentation and/or other materials provided with the distribution.
     20  1.1  leo  * 3. All advertising materials mentioning features or use of this software
     21  1.1  leo  *    must display the following acknowledgement:
     22  1.1  leo  *	This product includes software developed by the University of
     23  1.1  leo  *	California, Berkeley and its contributors.
     24  1.1  leo  * 4. Neither the name of the University nor the names of its contributors
     25  1.1  leo  *    may be used to endorse or promote products derived from this software
     26  1.1  leo  *    without specific prior written permission.
     27  1.1  leo  *
     28  1.1  leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  1.1  leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  1.1  leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  1.1  leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  1.1  leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  1.1  leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  1.1  leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  1.1  leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  1.1  leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  1.1  leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  1.1  leo  * SUCH DAMAGE.
     39  1.1  leo  *
     40  1.1  leo  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  1.1  leo  *
     42  1.1  leo  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  1.1  leo  */
     44  1.1  leo 
     45  1.1  leo #include <sys/param.h>
     46  1.1  leo #include <sys/kernel.h>
     47  1.1  leo #include <sys/device.h>
     48  1.1  leo #include <machine/psl.h>
     49  1.1  leo #include <machine/cpu.h>
     50  1.1  leo #include <machine/iomap.h>
     51  1.1  leo #include <machine/mfp.h>
     52  1.1  leo #include <atari/dev/clockreg.h>
     53  1.1  leo 
     54  1.4  leo #if defined(GPROF) && defined(PROFTIMER)
     55  1.4  leo #include <machine/profile.h>
     56  1.1  leo #endif
     57  1.1  leo 
     58  1.1  leo /*
     59  1.1  leo  * Machine-dependent clock routines.
     60  1.1  leo  *
     61  1.1  leo  * Startrtclock restarts the real-time clock, which provides
     62  1.1  leo  * hardclock interrupts to kern_clock.c.
     63  1.1  leo  *
     64  1.1  leo  * Inittodr initializes the time of day hardware which provides
     65  1.1  leo  * date functions.
     66  1.1  leo  *
     67  1.1  leo  * Resettodr restores the time of day hardware after a time change.
     68  1.1  leo  *
     69  1.1  leo  * A note on the real-time clock:
     70  1.1  leo  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
     71  1.1  leo  * This is because the counter decrements to zero after N+1 enabled clock
     72  1.1  leo  * periods where N is the value loaded into the counter.
     73  1.1  leo  */
     74  1.1  leo 
     75  1.1  leo int	clockmatch __P((struct device *, struct cfdata *, void *));
     76  1.1  leo void	clockattach __P((struct device *, struct device *, void *));
     77  1.1  leo 
     78  1.1  leo struct cfdriver clockcd = {
     79  1.1  leo 	NULL, "clock", (cfmatch_t)clockmatch, clockattach,
     80  1.1  leo 	DV_DULL, sizeof(struct device), NULL, 0
     81  1.1  leo };
     82  1.1  leo 
     83  1.1  leo static u_long	gettod __P((void));
     84  1.1  leo static int	settod __P((u_long));
     85  1.1  leo 
     86  1.1  leo static int	divisor;
     87  1.1  leo 
     88  1.1  leo int
     89  1.1  leo clockmatch(pdp, cfp, auxp)
     90  1.1  leo struct device *pdp;
     91  1.1  leo struct cfdata *cfp;
     92  1.1  leo void *auxp;
     93  1.1  leo {
     94  1.1  leo 	if(!strcmp("clock", auxp))
     95  1.1  leo 		return(1);
     96  1.1  leo 	return(0);
     97  1.1  leo }
     98  1.1  leo 
     99  1.1  leo /*
    100  1.1  leo  * Start the real-time clock.
    101  1.1  leo  */
    102  1.1  leo void clockattach(pdp, dp, auxp)
    103  1.1  leo struct device	*pdp, *dp;
    104  1.1  leo void			*auxp;
    105  1.1  leo {
    106  1.1  leo 	/*
    107  1.3  leo 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    108  1.3  leo 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    109  1.3  leo 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    110  1.3  leo 	 * following expression works for 48, 64 or 96 hz.
    111  1.1  leo 	 */
    112  1.3  leo 	divisor       = 12288/hz;
    113  1.2  leo 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    114  1.2  leo 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    115  1.2  leo 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    116  1.1  leo 
    117  1.3  leo 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    118  1.1  leo 
    119  1.1  leo 	/*
    120  1.2  leo 	 * Initialize Timer-B in the ST-MFP. This timer is used by the 'delay'
    121  1.1  leo 	 * function below. This time is setup to be continueously counting from
    122  1.1  leo 	 * 255 back to zero at a frequency of 614400Hz.
    123  1.1  leo 	 */
    124  1.2  leo 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
    125  1.2  leo 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    126  1.2  leo 	MFP->mf_tbdr  = 0;
    127  1.2  leo 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    128  1.1  leo 
    129  1.1  leo }
    130  1.1  leo 
    131  1.1  leo void cpu_initclocks()
    132  1.1  leo {
    133  1.3  leo 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    134  1.2  leo 	MFP->mf_ipra &= ~IA_TIMA;	/* Clear pending interrupts	*/
    135  1.2  leo 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    136  1.2  leo 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    137  1.1  leo }
    138  1.1  leo 
    139  1.1  leo setstatclockrate(hz)
    140  1.1  leo 	int hz;
    141  1.1  leo {
    142  1.1  leo }
    143  1.1  leo 
    144  1.1  leo /*
    145  1.1  leo  * Returns number of usec since last recorded clock "tick"
    146  1.1  leo  * (i.e. clock interrupt).
    147  1.1  leo  */
    148  1.1  leo clkread()
    149  1.1  leo {
    150  1.3  leo 	u_int	delta;
    151  1.3  leo 
    152  1.3  leo 	delta = ((divisor - MFP->mf_tadr) * tick) / divisor;
    153  1.1  leo 	/*
    154  1.1  leo 	 * Account for pending clock interrupts
    155  1.1  leo 	 */
    156  1.2  leo 	if(MFP->mf_iera & IA_TIMA)
    157  1.1  leo 		return(delta + tick);
    158  1.1  leo 	return(delta);
    159  1.1  leo }
    160  1.1  leo 
    161  1.2  leo #define TIMB_FREQ	614400
    162  1.2  leo #define TIMB_LIMIT	256
    163  1.1  leo 
    164  1.1  leo /*
    165  1.1  leo  * Wait "n" microseconds.
    166  1.2  leo  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    167  1.1  leo  * Note: timer had better have been programmed before this is first used!
    168  1.1  leo  */
    169  1.1  leo void delay(n)
    170  1.1  leo int	n;
    171  1.1  leo {
    172  1.1  leo 	int	tick, otick;
    173  1.1  leo 
    174  1.1  leo 	/*
    175  1.1  leo 	 * Read the counter first, so that the rest of the setup overhead is
    176  1.1  leo 	 * counted.
    177  1.1  leo 	 */
    178  1.2  leo 	otick = MFP->mf_tbdr;
    179  1.1  leo 
    180  1.1  leo 	/*
    181  1.1  leo 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    182  1.1  leo 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    183  1.1  leo 	 * loss of significance.
    184  1.1  leo 	 */
    185  1.1  leo 	n -= 5;
    186  1.1  leo 	if(n < 0)
    187  1.1  leo 		return;
    188  1.1  leo 	{
    189  1.1  leo 	    u_int	temp;
    190  1.1  leo 
    191  1.1  leo 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    192  1.2  leo 					       : "d" (TIMB_FREQ));
    193  1.1  leo 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    194  1.1  leo 					       : "d"(1000000),"d"(temp),"0"(n));
    195  1.1  leo 	}
    196  1.1  leo 
    197  1.1  leo 	while(n > 0) {
    198  1.2  leo 		tick = MFP->mf_tbdr;
    199  1.1  leo 		if(tick > otick)
    200  1.2  leo 			n -= TIMB_LIMIT - (tick - otick);
    201  1.1  leo 		else n -= otick - tick;
    202  1.1  leo 		otick = tick;
    203  1.1  leo 	}
    204  1.1  leo }
    205  1.1  leo 
    206  1.1  leo #ifdef PROFTIMER
    207  1.1  leo /*
    208  1.1  leo  * This code allows the amiga kernel to use one of the extra timers on
    209  1.1  leo  * the clock chip for profiling, instead of the regular system timer.
    210  1.1  leo  * The advantage of this is that the profiling timer can be turned up to
    211  1.1  leo  * a higher interrupt rate, giving finer resolution timing. The profclock
    212  1.1  leo  * routine is called from the lev6intr in locore, and is a specialized
    213  1.1  leo  * routine that calls addupc. The overhead then is far less than if
    214  1.1  leo  * hardclock/softclock was called. Further, the context switch code in
    215  1.1  leo  * locore has been changed to turn the profile clock on/off when switching
    216  1.1  leo  * into/out of a process that is profiling (startprofclock/stopprofclock).
    217  1.1  leo  * This reduces the impact of the profiling clock on other users, and might
    218  1.1  leo  * possibly increase the accuracy of the profiling.
    219  1.1  leo  */
    220  1.1  leo int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
    221  1.1  leo int  profscale = 0;		/* Scale factor from sys clock to prof clock */
    222  1.1  leo char profon    = 0;		/* Is profiling clock on? */
    223  1.1  leo 
    224  1.1  leo /* profon values - do not change, locore.s assumes these values */
    225  1.1  leo #define PRF_NONE	0x00
    226  1.1  leo #define	PRF_USER	0x01
    227  1.1  leo #define	PRF_KERNEL	0x80
    228  1.1  leo 
    229  1.1  leo initprofclock()
    230  1.1  leo {
    231  1.1  leo #if NCLOCK > 0
    232  1.1  leo 	struct proc *p = curproc;		/* XXX */
    233  1.1  leo 
    234  1.1  leo 	/*
    235  1.1  leo 	 * If the high-res timer is running, force profiling off.
    236  1.1  leo 	 * Unfortunately, this gets reflected back to the user not as
    237  1.1  leo 	 * an error but as a lack of results.
    238  1.1  leo 	 */
    239  1.1  leo 	if (clockon) {
    240  1.1  leo 		p->p_stats->p_prof.pr_scale = 0;
    241  1.1  leo 		return;
    242  1.1  leo 	}
    243  1.1  leo 	/*
    244  1.1  leo 	 * Keep track of the number of user processes that are profiling
    245  1.1  leo 	 * by checking the scale value.
    246  1.1  leo 	 *
    247  1.1  leo 	 * XXX: this all assumes that the profiling code is well behaved;
    248  1.1  leo 	 * i.e. profil() is called once per process with pcscale non-zero
    249  1.1  leo 	 * to turn it on, and once with pcscale zero to turn it off.
    250  1.1  leo 	 * Also assumes you don't do any forks or execs.  Oh well, there
    251  1.1  leo 	 * is always adb...
    252  1.1  leo 	 */
    253  1.1  leo 	if (p->p_stats->p_prof.pr_scale)
    254  1.1  leo 		profprocs++;
    255  1.1  leo 	else
    256  1.1  leo 		profprocs--;
    257  1.1  leo #endif
    258  1.1  leo 	/*
    259  1.1  leo 	 * The profile interrupt interval must be an even divisor
    260  1.1  leo 	 * of the CLK_INTERVAL so that scaling from a system clock
    261  1.1  leo 	 * tick to a profile clock tick is possible using integer math.
    262  1.1  leo 	 */
    263  1.1  leo 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
    264  1.1  leo 		profint = CLK_INTERVAL;
    265  1.1  leo 	profscale = CLK_INTERVAL / profint;
    266  1.1  leo }
    267  1.1  leo 
    268  1.1  leo startprofclock()
    269  1.1  leo {
    270  1.1  leo   unsigned short interval;
    271  1.1  leo 
    272  1.1  leo   /* stop timer B */
    273  1.1  leo   ciab.crb = ciab.crb & 0xc0;
    274  1.1  leo 
    275  1.1  leo   /* load interval into registers.
    276  1.1  leo      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
    277  1.1  leo 
    278  1.1  leo   interval = profint - 1;
    279  1.1  leo 
    280  1.1  leo   /* order of setting is important ! */
    281  1.1  leo   ciab.tblo = interval & 0xff;
    282  1.1  leo   ciab.tbhi = interval >> 8;
    283  1.1  leo 
    284  1.1  leo   /* enable interrupts for timer B */
    285  1.1  leo   ciab.icr = (1<<7) | (1<<1);
    286  1.1  leo 
    287  1.1  leo   /* start timer B in continuous shot mode */
    288  1.1  leo   ciab.crb = (ciab.crb & 0xc0) | 1;
    289  1.1  leo }
    290  1.1  leo 
    291  1.1  leo stopprofclock()
    292  1.1  leo {
    293  1.1  leo   /* stop timer B */
    294  1.1  leo   ciab.crb = ciab.crb & 0xc0;
    295  1.1  leo }
    296  1.1  leo 
    297  1.4  leo #ifdef GPROF
    298  1.1  leo /*
    299  1.1  leo  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    300  1.1  leo  * Assumes it is called with clock interrupts blocked.
    301  1.1  leo  */
    302  1.1  leo profclock(pc, ps)
    303  1.1  leo 	caddr_t pc;
    304  1.1  leo 	int ps;
    305  1.1  leo {
    306  1.1  leo 	/*
    307  1.1  leo 	 * Came from user mode.
    308  1.1  leo 	 * If this process is being profiled record the tick.
    309  1.1  leo 	 */
    310  1.1  leo 	if (USERMODE(ps)) {
    311  1.1  leo 		if (p->p_stats.p_prof.pr_scale)
    312  1.1  leo 			addupc(pc, &curproc->p_stats.p_prof, 1);
    313  1.1  leo 	}
    314  1.1  leo 	/*
    315  1.1  leo 	 * Came from kernel (supervisor) mode.
    316  1.1  leo 	 * If we are profiling the kernel, record the tick.
    317  1.1  leo 	 */
    318  1.1  leo 	else if (profiling < 2) {
    319  1.1  leo 		register int s = pc - s_lowpc;
    320  1.1  leo 
    321  1.1  leo 		if (s < s_textsize)
    322  1.1  leo 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    323  1.1  leo 	}
    324  1.1  leo 	/*
    325  1.1  leo 	 * Kernel profiling was on but has been disabled.
    326  1.1  leo 	 * Mark as no longer profiling kernel and if all profiling done,
    327  1.1  leo 	 * disable the clock.
    328  1.1  leo 	 */
    329  1.1  leo 	if (profiling && (profon & PRF_KERNEL)) {
    330  1.1  leo 		profon &= ~PRF_KERNEL;
    331  1.1  leo 		if (profon == PRF_NONE)
    332  1.1  leo 			stopprofclock();
    333  1.1  leo 	}
    334  1.1  leo }
    335  1.1  leo #endif
    336  1.1  leo #endif
    337  1.1  leo 
    338  1.1  leo /*
    339  1.1  leo  * Initialize the time of day register, based on the time base which is, e.g.
    340  1.1  leo  * from a filesystem.
    341  1.1  leo  */
    342  1.1  leo inittodr(base)
    343  1.1  leo time_t base;
    344  1.1  leo {
    345  1.1  leo 	u_long timbuf = base;	/* assume no battery clock exists */
    346  1.1  leo 
    347  1.1  leo 	timbuf = gettod();
    348  1.1  leo 
    349  1.1  leo 	if(timbuf < base) {
    350  1.1  leo 		printf("WARNING: bad date in battery clock\n");
    351  1.1  leo 		timbuf = base;
    352  1.1  leo 	}
    353  1.1  leo 
    354  1.1  leo 	/* Battery clock does not store usec's, so forget about it. */
    355  1.1  leo 	time.tv_sec = timbuf;
    356  1.1  leo }
    357  1.1  leo 
    358  1.1  leo resettodr()
    359  1.1  leo {
    360  1.1  leo 	if(settod(time.tv_sec) == 1)
    361  1.1  leo 		return;
    362  1.1  leo 	printf("Cannot set battery backed clock\n");
    363  1.1  leo }
    364  1.1  leo 
    365  1.1  leo static	char	dmsize[12] =
    366  1.1  leo {
    367  1.1  leo 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    368  1.1  leo };
    369  1.1  leo 
    370  1.1  leo static	char	ldmsize[12] =
    371  1.1  leo {
    372  1.1  leo 	31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    373  1.1  leo };
    374  1.1  leo 
    375  1.1  leo static u_long
    376  1.1  leo gettod()
    377  1.1  leo {
    378  1.3  leo 	int		i, sps;
    379  1.3  leo 	u_long		new_time = 0;
    380  1.3  leo 	char		*msize;
    381  1.3  leo 	mc_todregs	clkregs;
    382  1.3  leo 
    383  1.3  leo 	sps = splhigh();
    384  1.3  leo 	MC146818_GETTOD(RTC, &clkregs);
    385  1.3  leo 	splx(sps);
    386  1.1  leo 
    387  1.3  leo 	if(range_test(clkregs[MC_HOUR], 0, 23))
    388  1.1  leo 		return(0);
    389  1.3  leo 	if(range_test(clkregs[MC_DOM], 1, 31))
    390  1.1  leo 		return(0);
    391  1.3  leo 	if (range_test(clkregs[MC_MONTH], 1, 12))
    392  1.1  leo 		return(0);
    393  1.3  leo 	if(range_test(clkregs[MC_YEAR], 0, 2000 - GEMSTARTOFTIME))
    394  1.1  leo 		return(0);
    395  1.3  leo 	clkregs[MC_YEAR] += GEMSTARTOFTIME;
    396  1.1  leo 
    397  1.3  leo 	for(i = BSDSTARTOFTIME; i < clkregs[MC_YEAR]; i++) {
    398  1.1  leo 		if(is_leap(i))
    399  1.1  leo 			new_time += 366;
    400  1.1  leo 		else new_time += 365;
    401  1.1  leo 	}
    402  1.1  leo 
    403  1.3  leo 	msize = is_leap(clkregs[MC_YEAR]) ? ldmsize : dmsize;
    404  1.3  leo 	for(i = 0; i < (clkregs[MC_MONTH] - 1); i++)
    405  1.1  leo 		new_time += msize[i];
    406  1.3  leo 	new_time += clkregs[MC_DOM] - 1;
    407  1.3  leo 	new_time *= SECS_DAY;
    408  1.3  leo 	new_time += (clkregs[MC_HOUR] * 3600) + (clkregs[MC_MIN] * 60);
    409  1.3  leo 	return(new_time + clkregs[MC_SEC]);
    410  1.1  leo }
    411  1.1  leo 
    412  1.1  leo static int
    413  1.1  leo settod(newtime)
    414  1.1  leo u_long	newtime;
    415  1.1  leo {
    416  1.1  leo 	register long	days, rem, year;
    417  1.1  leo 	register char	*ml;
    418  1.3  leo 		 int	sps, sec, min, hour, month;
    419  1.3  leo 	mc_todregs	clkregs;
    420  1.1  leo 
    421  1.3  leo 	/* Number of days since Jan. 1 'BSDSTARTOFTIME'	*/
    422  1.1  leo 	days = newtime / SECS_DAY;
    423  1.1  leo 	rem  = newtime % SECS_DAY;
    424  1.1  leo 
    425  1.1  leo 	/*
    426  1.1  leo 	 * Calculate sec, min, hour
    427  1.1  leo 	 */
    428  1.1  leo 	hour = rem / SECS_HOUR;
    429  1.1  leo 	rem %= SECS_HOUR;
    430  1.1  leo 	min  = rem / 60;
    431  1.1  leo 	sec  = rem % 60;
    432  1.1  leo 
    433  1.1  leo 	/*
    434  1.1  leo 	 * Figure out the year. Day in year is left in 'days'.
    435  1.1  leo 	 */
    436  1.3  leo 	year = BSDSTARTOFTIME;
    437  1.1  leo 	while(days >= (rem = is_leap(year) ? 366 : 365)) {
    438  1.3  leo 		++year;
    439  1.3  leo 		days -= rem;
    440  1.1  leo 	}
    441  1.1  leo 
    442  1.1  leo 	/*
    443  1.1  leo 	 * Determine the month
    444  1.1  leo 	 */
    445  1.1  leo 	ml = is_leap(year) ? ldmsize : dmsize;
    446  1.1  leo 	for(month = 0; days >= ml[month]; ++month)
    447  1.1  leo 		days -= ml[month];
    448  1.1  leo 
    449  1.1  leo 	/*
    450  1.1  leo 	 * Now that everything is calculated, program the RTC
    451  1.1  leo 	 */
    452  1.3  leo 	mc146818_write(RTC, MC_REGA, MC_BASE_32_KHz);
    453  1.3  leo 	mc146818_write(RTC, MC_REGB, MC_REGB_24HR | MC_REGB_BINARY);
    454  1.3  leo 	sps = splhigh();
    455  1.3  leo 	MC146818_GETTOD(RTC, &clkregs);
    456  1.3  leo 	clkregs[MC_SEC]   = sec;
    457  1.3  leo 	clkregs[MC_MIN]   = min;
    458  1.3  leo 	clkregs[MC_HOUR]  = hour;
    459  1.3  leo 	clkregs[MC_DOM]   = days+1;
    460  1.3  leo 	clkregs[MC_MONTH] = month+1;
    461  1.3  leo 	clkregs[MC_YEAR]  = year - GEMSTARTOFTIME;
    462  1.3  leo 	MC146818_PUTTOD(RTC, &clkregs);
    463  1.3  leo 	splx(sps);
    464  1.1  leo 
    465  1.1  leo 	return(1);
    466  1.1  leo }
    467