Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.41.6.1.4.1
      1  1.41.6.1.4.1      matt /*	$NetBSD: clock.c,v 1.41.6.1.4.1 2010/04/21 00:33:52 matt Exp $	*/
      2           1.1       leo 
      3           1.1       leo /*
      4           1.1       leo  * Copyright (c) 1982, 1990 The Regents of the University of California.
      5           1.1       leo  * All rights reserved.
      6           1.1       leo  *
      7           1.1       leo  * This code is derived from software contributed to Berkeley by
      8           1.1       leo  * the Systems Programming Group of the University of Utah Computer
      9           1.1       leo  * Science Department.
     10           1.1       leo  *
     11           1.1       leo  * Redistribution and use in source and binary forms, with or without
     12           1.1       leo  * modification, are permitted provided that the following conditions
     13           1.1       leo  * are met:
     14           1.1       leo  * 1. Redistributions of source code must retain the above copyright
     15           1.1       leo  *    notice, this list of conditions and the following disclaimer.
     16           1.1       leo  * 2. Redistributions in binary form must reproduce the above copyright
     17           1.1       leo  *    notice, this list of conditions and the following disclaimer in the
     18           1.1       leo  *    documentation and/or other materials provided with the distribution.
     19          1.34       agc  * 3. Neither the name of the University nor the names of its contributors
     20          1.34       agc  *    may be used to endorse or promote products derived from this software
     21          1.34       agc  *    without specific prior written permission.
     22          1.34       agc  *
     23          1.34       agc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24          1.34       agc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25          1.34       agc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26          1.34       agc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27          1.34       agc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28          1.34       agc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29          1.34       agc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30          1.34       agc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31          1.34       agc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32          1.34       agc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33          1.34       agc  * SUCH DAMAGE.
     34          1.34       agc  *
     35          1.34       agc  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     36          1.34       agc  *
     37          1.34       agc  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     38          1.34       agc  */
     39          1.34       agc /*
     40          1.34       agc  * Copyright (c) 1988 University of Utah.
     41          1.34       agc  *
     42          1.34       agc  * This code is derived from software contributed to Berkeley by
     43          1.34       agc  * the Systems Programming Group of the University of Utah Computer
     44          1.34       agc  * Science Department.
     45          1.34       agc  *
     46          1.34       agc  * Redistribution and use in source and binary forms, with or without
     47          1.34       agc  * modification, are permitted provided that the following conditions
     48          1.34       agc  * are met:
     49          1.34       agc  * 1. Redistributions of source code must retain the above copyright
     50          1.34       agc  *    notice, this list of conditions and the following disclaimer.
     51          1.34       agc  * 2. Redistributions in binary form must reproduce the above copyright
     52          1.34       agc  *    notice, this list of conditions and the following disclaimer in the
     53          1.34       agc  *    documentation and/or other materials provided with the distribution.
     54           1.1       leo  * 3. All advertising materials mentioning features or use of this software
     55           1.1       leo  *    must display the following acknowledgement:
     56           1.1       leo  *	This product includes software developed by the University of
     57           1.1       leo  *	California, Berkeley and its contributors.
     58           1.1       leo  * 4. Neither the name of the University nor the names of its contributors
     59           1.1       leo  *    may be used to endorse or promote products derived from this software
     60           1.1       leo  *    without specific prior written permission.
     61           1.1       leo  *
     62           1.1       leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63           1.1       leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64           1.1       leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65           1.1       leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66           1.1       leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67           1.1       leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68           1.1       leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69           1.1       leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70           1.1       leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71           1.1       leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72           1.1       leo  * SUCH DAMAGE.
     73           1.1       leo  *
     74           1.1       leo  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     75           1.1       leo  *
     76           1.1       leo  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     77           1.1       leo  */
     78          1.33     lukem 
     79          1.33     lukem #include <sys/cdefs.h>
     80  1.41.6.1.4.1      matt __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.41.6.1.4.1 2010/04/21 00:33:52 matt Exp $");
     81           1.1       leo 
     82           1.1       leo #include <sys/param.h>
     83           1.1       leo #include <sys/kernel.h>
     84           1.9       leo #include <sys/systm.h>
     85           1.1       leo #include <sys/device.h>
     86          1.14       leo #include <sys/uio.h>
     87          1.14       leo #include <sys/conf.h>
     88          1.32   thorpej #include <sys/proc.h>
     89          1.31  jdolecek #include <sys/event.h>
     90          1.40     joerg #include <sys/timetc.h>
     91          1.18       leo 
     92          1.18       leo #include <dev/clock_subr.h>
     93          1.18       leo 
     94           1.1       leo #include <machine/psl.h>
     95           1.1       leo #include <machine/cpu.h>
     96           1.1       leo #include <machine/iomap.h>
     97           1.1       leo #include <machine/mfp.h>
     98           1.1       leo #include <atari/dev/clockreg.h>
     99          1.14       leo #include <atari/atari/device.h>
    100           1.1       leo 
    101           1.4       leo #if defined(GPROF) && defined(PROFTIMER)
    102           1.4       leo #include <machine/profile.h>
    103           1.1       leo #endif
    104           1.1       leo 
    105          1.40     joerg static int	atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
    106          1.40     joerg static int	atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
    107          1.40     joerg 
    108           1.1       leo /*
    109           1.5       leo  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
    110           1.5       leo  * of 200. Therefore the timer runs at an effective rate of:
    111           1.5       leo  * 2457600/200 = 12288Hz.
    112           1.5       leo  */
    113           1.5       leo #define CLOCK_HZ	12288
    114           1.5       leo 
    115          1.40     joerg static u_int clk_getcounter(struct timecounter *);
    116          1.40     joerg 
    117          1.40     joerg static struct timecounter clk_timecounter = {
    118          1.40     joerg 	clk_getcounter,	/* get_timecount */
    119          1.40     joerg 	0,		/* no poll_pps */
    120          1.40     joerg 	~0u,		/* counter_mask */
    121          1.40     joerg 	CLOCK_HZ,	/* frequency */
    122          1.40     joerg 	"clock",	/* name, overriden later */
    123          1.40     joerg 	100,		/* quality */
    124          1.40     joerg 	NULL,		/* prev */
    125          1.40     joerg 	NULL,		/* next */
    126          1.40     joerg };
    127          1.40     joerg 
    128           1.5       leo /*
    129           1.1       leo  * Machine-dependent clock routines.
    130           1.1       leo  *
    131           1.1       leo  * Inittodr initializes the time of day hardware which provides
    132           1.1       leo  * date functions.
    133           1.1       leo  *
    134           1.1       leo  * Resettodr restores the time of day hardware after a time change.
    135           1.1       leo  */
    136           1.1       leo 
    137          1.14       leo struct clock_softc {
    138          1.14       leo 	struct device	sc_dev;
    139          1.14       leo 	int		sc_flags;
    140          1.14       leo };
    141          1.14       leo 
    142          1.14       leo /*
    143          1.14       leo  *  'sc_flags' state info. Only used by the rtc-device functions.
    144          1.14       leo  */
    145          1.14       leo #define	RTC_OPEN	1
    146          1.14       leo 
    147          1.14       leo dev_type_open(rtcopen);
    148          1.14       leo dev_type_close(rtcclose);
    149          1.14       leo dev_type_read(rtcread);
    150          1.14       leo dev_type_write(rtcwrite);
    151          1.14       leo 
    152          1.14       leo static void	clockattach __P((struct device *, struct device *, void *));
    153          1.17       leo static int	clockmatch __P((struct device *, struct cfdata *, void *));
    154           1.1       leo 
    155          1.30   thorpej CFATTACH_DECL(clock, sizeof(struct clock_softc),
    156          1.30   thorpej     clockmatch, clockattach, NULL, NULL);
    157          1.10   thorpej 
    158          1.19   thorpej extern struct cfdriver clock_cd;
    159          1.28   gehenna 
    160          1.28   gehenna const struct cdevsw rtc_cdevsw = {
    161          1.28   gehenna 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    162          1.31  jdolecek 	nostop, notty, nopoll, nommap, nokqfilter,
    163          1.28   gehenna };
    164           1.1       leo 
    165          1.16       leo void statintr __P((struct clockframe));
    166           1.9       leo 
    167          1.14       leo static int	twodigits __P((char *, int));
    168           1.1       leo 
    169           1.5       leo static int	divisor;	/* Systemclock divisor	*/
    170           1.5       leo 
    171           1.5       leo /*
    172           1.5       leo  * Statistics and profile clock intervals and variances. Variance must
    173           1.5       leo  * be a power of 2. Since this gives us an even number, not an odd number,
    174           1.5       leo  * we discard one case and compensate. That is, a variance of 64 would
    175           1.5       leo  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    176          1.26       wiz  * This is symmetric around the point 32, or statvar/2, and thus averages
    177           1.5       leo  * to that value (assuming uniform random numbers).
    178           1.5       leo  */
    179           1.5       leo #ifdef STATCLOCK
    180           1.5       leo static int	statvar = 32;	/* {stat,prof}clock variance		*/
    181           1.5       leo static int	statmin;	/* statclock divisor - variance/2	*/
    182           1.5       leo static int	profmin;	/* profclock divisor - variance/2	*/
    183          1.27       wiz static int	clk2min;	/* current, from above choices		*/
    184           1.5       leo #endif
    185           1.1       leo 
    186           1.1       leo int
    187          1.17       leo clockmatch(pdp, cfp, auxp)
    188          1.14       leo struct device	*pdp;
    189          1.17       leo struct cfdata	*cfp;
    190          1.17       leo void		*auxp;
    191           1.1       leo {
    192          1.15       leo 	if (!atari_realconfig) {
    193          1.15       leo 	    /*
    194          1.15       leo 	     * Initialize Timer-B in the ST-MFP. This timer is used by
    195          1.15       leo 	     * the 'delay' function below. This timer is setup to be
    196          1.15       leo 	     * continueously counting from 255 back to zero at a
    197          1.15       leo 	     * frequency of 614400Hz. We do this *early* in the
    198          1.15       leo 	     * initialisation process.
    199          1.15       leo 	     */
    200          1.15       leo 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
    201          1.15       leo 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    202          1.15       leo 	    MFP->mf_tbdr  = 0;
    203          1.15       leo 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    204          1.15       leo 
    205          1.15       leo 	    return 0;
    206          1.15       leo 	}
    207           1.1       leo 	if(!strcmp("clock", auxp))
    208           1.1       leo 		return(1);
    209           1.1       leo 	return(0);
    210           1.1       leo }
    211           1.1       leo 
    212           1.1       leo /*
    213           1.1       leo  * Start the real-time clock.
    214           1.1       leo  */
    215           1.1       leo void clockattach(pdp, dp, auxp)
    216           1.1       leo struct device	*pdp, *dp;
    217          1.14       leo void		*auxp;
    218           1.1       leo {
    219          1.14       leo 	struct clock_softc *sc = (void *)dp;
    220          1.40     joerg 	static struct todr_chip_handle	tch;
    221          1.40     joerg 
    222          1.40     joerg 	tch.todr_gettime_ymdhms = atari_rtc_get;
    223          1.40     joerg 	tch.todr_settime_ymdhms = atari_rtc_set;
    224          1.40     joerg 	tch.todr_setwen = NULL;
    225          1.40     joerg 
    226          1.40     joerg 	todr_attach(&tch);
    227          1.14       leo 
    228          1.14       leo 	sc->sc_flags = 0;
    229          1.14       leo 
    230           1.1       leo 	/*
    231           1.3       leo 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    232           1.3       leo 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    233           1.3       leo 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    234           1.3       leo 	 * following expression works for 48, 64 or 96 hz.
    235           1.1       leo 	 */
    236           1.5       leo 	divisor       = CLOCK_HZ/hz;
    237           1.2       leo 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    238           1.2       leo 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    239           1.2       leo 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    240           1.1       leo 
    241          1.40     joerg 	clk_timecounter.tc_frequency = CLOCK_HZ;
    242          1.40     joerg 
    243           1.5       leo 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    244          1.13  christos 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    245           1.5       leo 								hz, 64);
    246           1.5       leo 		hz = 64;
    247           1.5       leo 	}
    248          1.13  christos 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    249      1.41.6.1       snj 	tc_init(&clk_timecounter);
    250           1.1       leo 
    251           1.5       leo #ifdef STATCLOCK
    252           1.5       leo 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    253           1.5       leo 		stathz = hz;
    254           1.5       leo 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    255           1.5       leo 		profhz = hz << 1;
    256           1.5       leo 
    257           1.5       leo 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    258           1.5       leo 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    259           1.5       leo 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    260           1.5       leo 
    261           1.5       leo 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    262           1.5       leo 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    263           1.5       leo 	clk2min  = statmin;
    264           1.5       leo #endif /* STATCLOCK */
    265          1.14       leo 
    266           1.1       leo }
    267           1.1       leo 
    268           1.1       leo void cpu_initclocks()
    269           1.1       leo {
    270           1.3       leo 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    271          1.20       leo 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    272           1.2       leo 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    273           1.2       leo 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    274           1.5       leo 
    275           1.5       leo #ifdef STATCLOCK
    276           1.5       leo 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    277          1.20       leo 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    278           1.5       leo 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    279           1.5       leo 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    280           1.5       leo #endif /* STATCLOCK */
    281           1.1       leo }
    282           1.1       leo 
    283           1.9       leo void
    284           1.5       leo setstatclockrate(newhz)
    285           1.5       leo 	int newhz;
    286           1.1       leo {
    287           1.5       leo #ifdef STATCLOCK
    288           1.5       leo 	if (newhz == stathz)
    289           1.5       leo 		clk2min = statmin;
    290           1.5       leo 	else clk2min = profmin;
    291           1.5       leo #endif /* STATCLOCK */
    292           1.1       leo }
    293           1.1       leo 
    294           1.5       leo #ifdef STATCLOCK
    295           1.5       leo void
    296           1.5       leo statintr(frame)
    297          1.16       leo 	struct clockframe frame;
    298           1.5       leo {
    299           1.5       leo 	register int	var, r;
    300           1.5       leo 
    301           1.5       leo 	var = statvar - 1;
    302           1.5       leo 	do {
    303           1.5       leo 		r = random() & var;
    304           1.5       leo 	} while(r == 0);
    305           1.5       leo 
    306           1.5       leo 	/*
    307           1.5       leo 	 * Note that we are always lagging behind as the new divisor
    308           1.5       leo 	 * value will not be loaded until the next interrupt. This
    309           1.5       leo 	 * shouldn't disturb the median frequency (I think ;-) ) as
    310           1.5       leo 	 * only the value used when switching frequencies is used
    311           1.5       leo 	 * twice. This shouldn't happen very often.
    312           1.5       leo 	 */
    313           1.5       leo 	MFP->mf_tcdr = clk2min + r;
    314           1.5       leo 
    315          1.16       leo 	statclock(&frame);
    316           1.5       leo }
    317           1.5       leo #endif /* STATCLOCK */
    318           1.5       leo 
    319          1.40     joerg static u_int
    320          1.40     joerg clk_getcounter(struct timecounter *tc)
    321           1.1       leo {
    322  1.41.6.1.4.1      matt 	uint32_t delta, count, cur_hardclock;
    323  1.41.6.1.4.1      matt 	uint8_t ipra, tadr;
    324  1.41.6.1.4.1      matt 	int s;
    325  1.41.6.1.4.1      matt 	static uint32_t lastcount;
    326           1.3       leo 
    327          1.40     joerg 	s = splhigh();
    328  1.41.6.1.4.1      matt 	cur_hardclock = hardclock_ticks;
    329          1.40     joerg 	ipra = MFP->mf_ipra;
    330          1.40     joerg 	tadr = MFP->mf_tadr;
    331          1.40     joerg 	delta = divisor - tadr;
    332          1.40     joerg 
    333          1.40     joerg 	if (ipra & IA_TIMA)
    334          1.40     joerg 		delta += divisor;
    335          1.40     joerg 	splx(s);
    336          1.22       leo 
    337  1.41.6.1.4.1      matt 	count = (divisor * cur_hardclock) + delta;
    338  1.41.6.1.4.1      matt 	if ((int32_t)(count - lastcount) < 0) {
    339  1.41.6.1.4.1      matt 		/* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
    340  1.41.6.1.4.1      matt 		count = lastcount + 1;
    341  1.41.6.1.4.1      matt 	}
    342  1.41.6.1.4.1      matt 	lastcount = count;
    343  1.41.6.1.4.1      matt 
    344  1.41.6.1.4.1      matt 	return count;
    345           1.1       leo }
    346           1.1       leo 
    347           1.2       leo #define TIMB_FREQ	614400
    348           1.2       leo #define TIMB_LIMIT	256
    349           1.1       leo 
    350           1.1       leo /*
    351           1.1       leo  * Wait "n" microseconds.
    352           1.2       leo  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    353           1.1       leo  * Note: timer had better have been programmed before this is first used!
    354           1.1       leo  */
    355          1.14       leo void
    356          1.39     joerg delay(unsigned int n)
    357           1.1       leo {
    358          1.39     joerg 	int	ticks, otick, remaining;
    359           1.1       leo 
    360           1.1       leo 	/*
    361           1.1       leo 	 * Read the counter first, so that the rest of the setup overhead is
    362           1.1       leo 	 * counted.
    363           1.1       leo 	 */
    364           1.2       leo 	otick = MFP->mf_tbdr;
    365           1.1       leo 
    366          1.39     joerg 	if (n <= UINT_MAX / TIMB_FREQ) {
    367          1.39     joerg 		/*
    368          1.39     joerg 		 * For unsigned arithmetic, division can be replaced with
    369          1.39     joerg 		 * multiplication with the inverse and a shift.
    370          1.39     joerg 		 */
    371          1.39     joerg 		remaining = n * TIMB_FREQ / 1000000;
    372          1.39     joerg 	} else {
    373          1.39     joerg 		/* This is a very long delay.
    374          1.39     joerg 		 * Being slow here doesn't matter.
    375          1.39     joerg 		 */
    376          1.39     joerg 		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
    377           1.1       leo 	}
    378           1.1       leo 
    379          1.39     joerg 	while(remaining > 0) {
    380          1.35        he 		ticks = MFP->mf_tbdr;
    381          1.35        he 		if(ticks > otick)
    382          1.39     joerg 			remaining -= TIMB_LIMIT - (ticks - otick);
    383          1.39     joerg 		else
    384          1.39     joerg 			remaining -= otick - ticks;
    385          1.35        he 		otick = ticks;
    386           1.1       leo 	}
    387           1.1       leo }
    388           1.1       leo 
    389           1.4       leo #ifdef GPROF
    390           1.1       leo /*
    391           1.1       leo  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    392           1.1       leo  * Assumes it is called with clock interrupts blocked.
    393           1.1       leo  */
    394           1.1       leo profclock(pc, ps)
    395          1.38  christos 	void *pc;
    396           1.1       leo 	int ps;
    397           1.1       leo {
    398           1.1       leo 	/*
    399           1.1       leo 	 * Came from user mode.
    400           1.1       leo 	 * If this process is being profiled record the tick.
    401           1.1       leo 	 */
    402           1.1       leo 	if (USERMODE(ps)) {
    403           1.1       leo 		if (p->p_stats.p_prof.pr_scale)
    404           1.1       leo 			addupc(pc, &curproc->p_stats.p_prof, 1);
    405           1.1       leo 	}
    406           1.1       leo 	/*
    407           1.1       leo 	 * Came from kernel (supervisor) mode.
    408           1.1       leo 	 * If we are profiling the kernel, record the tick.
    409           1.1       leo 	 */
    410           1.1       leo 	else if (profiling < 2) {
    411           1.1       leo 		register int s = pc - s_lowpc;
    412           1.1       leo 
    413           1.1       leo 		if (s < s_textsize)
    414           1.1       leo 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    415           1.1       leo 	}
    416           1.1       leo 	/*
    417           1.1       leo 	 * Kernel profiling was on but has been disabled.
    418           1.1       leo 	 * Mark as no longer profiling kernel and if all profiling done,
    419           1.1       leo 	 * disable the clock.
    420           1.1       leo 	 */
    421           1.1       leo 	if (profiling && (profon & PRF_KERNEL)) {
    422           1.1       leo 		profon &= ~PRF_KERNEL;
    423           1.1       leo 		if (profon == PRF_NONE)
    424           1.1       leo 			stopprofclock();
    425           1.1       leo 	}
    426           1.1       leo }
    427           1.1       leo #endif
    428           1.7       leo 
    429           1.7       leo /***********************************************************************
    430           1.7       leo  *                   Real Time Clock support                           *
    431           1.7       leo  ***********************************************************************/
    432           1.7       leo 
    433           1.7       leo u_int mc146818_read(rtc, regno)
    434           1.7       leo void	*rtc;
    435           1.7       leo u_int	regno;
    436           1.7       leo {
    437           1.7       leo 	((struct rtc *)rtc)->rtc_regno = regno;
    438           1.7       leo 	return(((struct rtc *)rtc)->rtc_data & 0377);
    439           1.7       leo }
    440           1.7       leo 
    441           1.7       leo void mc146818_write(rtc, regno, value)
    442           1.7       leo void	*rtc;
    443           1.7       leo u_int	regno, value;
    444           1.7       leo {
    445           1.7       leo 	((struct rtc *)rtc)->rtc_regno = regno;
    446           1.7       leo 	((struct rtc *)rtc)->rtc_data  = value;
    447           1.7       leo }
    448           1.1       leo 
    449          1.40     joerg static int
    450          1.40     joerg atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    451           1.1       leo {
    452          1.18       leo 	int			sps;
    453          1.18       leo 	mc_todregs		clkregs;
    454          1.25       leo 	u_int			regb;
    455           1.3       leo 
    456           1.3       leo 	sps = splhigh();
    457          1.25       leo 	regb = mc146818_read(RTC, MC_REGB);
    458           1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    459           1.3       leo 	splx(sps);
    460           1.1       leo 
    461          1.25       leo 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    462          1.25       leo 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    463          1.25       leo 		printf("Error: Nonstandard RealTimeClock Configuration -"
    464          1.25       leo 			" value ignored\n"
    465          1.25       leo 			"       A write to /dev/rtc will correct this.\n");
    466          1.25       leo 			return(0);
    467          1.25       leo 	}
    468           1.9       leo 	if(clkregs[MC_SEC] > 59)
    469          1.40     joerg 		return -1;
    470           1.9       leo 	if(clkregs[MC_MIN] > 59)
    471          1.40     joerg 		return -1;
    472           1.9       leo 	if(clkregs[MC_HOUR] > 23)
    473          1.40     joerg 		return -1;
    474           1.3       leo 	if(range_test(clkregs[MC_DOM], 1, 31))
    475          1.40     joerg 		return -1;
    476           1.3       leo 	if (range_test(clkregs[MC_MONTH], 1, 12))
    477          1.40     joerg 		return -1;
    478          1.24       leo 	if(clkregs[MC_YEAR] > 99)
    479          1.40     joerg 		return -1;
    480          1.40     joerg 
    481          1.40     joerg 	dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    482          1.40     joerg 	dtp->dt_mon  = clkregs[MC_MONTH];
    483          1.40     joerg 	dtp->dt_day  = clkregs[MC_DOM];
    484          1.40     joerg 	dtp->dt_hour = clkregs[MC_HOUR];
    485          1.40     joerg 	dtp->dt_min  = clkregs[MC_MIN];
    486          1.40     joerg 	dtp->dt_sec  = clkregs[MC_SEC];
    487          1.40     joerg 
    488          1.40     joerg 	return 0;
    489          1.40     joerg }
    490          1.40     joerg 
    491          1.40     joerg static int
    492          1.40     joerg atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    493          1.40     joerg {
    494          1.40     joerg 	int s;
    495          1.40     joerg 	mc_todregs clkregs;
    496           1.1       leo 
    497          1.40     joerg 	clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
    498          1.40     joerg 	clkregs[MC_MONTH] = dtp->dt_mon;
    499          1.40     joerg 	clkregs[MC_DOM] = dtp->dt_day;
    500          1.40     joerg 	clkregs[MC_HOUR] = dtp->dt_hour;
    501          1.40     joerg 	clkregs[MC_MIN] = dtp->dt_min;
    502          1.40     joerg 	clkregs[MC_SEC] = dtp->dt_sec;
    503           1.1       leo 
    504          1.40     joerg 	s = splclock();
    505          1.40     joerg 	MC146818_PUTTOD(RTC, &clkregs);
    506          1.40     joerg 	splx(s);
    507          1.40     joerg 
    508          1.40     joerg 	return 0;
    509           1.1       leo }
    510          1.40     joerg 
    511          1.14       leo /***********************************************************************
    512          1.14       leo  *                   RTC-device support				       *
    513          1.14       leo  ***********************************************************************/
    514          1.14       leo int
    515          1.36  christos rtcopen(dev, flag, mode, l)
    516          1.14       leo 	dev_t		dev;
    517          1.14       leo 	int		flag, mode;
    518          1.36  christos 	struct lwp	*l;
    519          1.14       leo {
    520          1.14       leo 	int			unit = minor(dev);
    521          1.14       leo 	struct clock_softc	*sc;
    522          1.14       leo 
    523          1.41   tsutsui 	sc = device_lookup_private(&clock_cd, unit);
    524          1.41   tsutsui 	if (sc == NULL)
    525          1.14       leo 		return ENXIO;
    526          1.14       leo 	if (sc->sc_flags & RTC_OPEN)
    527          1.14       leo 		return EBUSY;
    528          1.14       leo 
    529          1.14       leo 	sc->sc_flags = RTC_OPEN;
    530          1.14       leo 	return 0;
    531          1.14       leo }
    532           1.1       leo 
    533          1.14       leo int
    534          1.36  christos rtcclose(dev, flag, mode, l)
    535          1.14       leo 	dev_t		dev;
    536          1.14       leo 	int		flag;
    537          1.14       leo 	int		mode;
    538          1.36  christos 	struct lwp	*l;
    539           1.1       leo {
    540          1.14       leo 	int			unit = minor(dev);
    541          1.41   tsutsui 	struct clock_softc	*sc = device_lookup_private(&clock_cd, unit);
    542          1.14       leo 
    543          1.14       leo 	sc->sc_flags = 0;
    544          1.14       leo 	return 0;
    545          1.14       leo }
    546          1.14       leo 
    547          1.14       leo int
    548          1.14       leo rtcread(dev, uio, flags)
    549          1.14       leo 	dev_t		dev;
    550          1.14       leo 	struct uio	*uio;
    551          1.14       leo 	int		flags;
    552          1.14       leo {
    553          1.14       leo 	struct clock_softc	*sc;
    554          1.14       leo 	mc_todregs		clkregs;
    555          1.14       leo 	int			s, length;
    556          1.14       leo 	char			buffer[16];
    557          1.14       leo 
    558          1.41   tsutsui 	sc = device_lookup_private(&clock_cd, minor(dev));
    559          1.14       leo 
    560          1.14       leo 	s = splhigh();
    561          1.14       leo 	MC146818_GETTOD(RTC, &clkregs);
    562          1.14       leo 	splx(s);
    563          1.14       leo 
    564          1.21       leo 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    565          1.21       leo 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    566          1.14       leo 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    567          1.14       leo 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    568          1.14       leo 
    569          1.14       leo 	if (uio->uio_offset > strlen(buffer))
    570          1.14       leo 		return 0;
    571           1.1       leo 
    572          1.14       leo 	length = strlen(buffer) - uio->uio_offset;
    573          1.14       leo 	if (length > uio->uio_resid)
    574          1.14       leo 		length = uio->uio_resid;
    575           1.1       leo 
    576          1.38  christos 	return(uiomove((void *)buffer, length, uio));
    577          1.14       leo }
    578          1.14       leo 
    579          1.14       leo static int
    580          1.14       leo twodigits(buffer, pos)
    581          1.14       leo 	char *buffer;
    582          1.14       leo 	int pos;
    583          1.14       leo {
    584          1.14       leo 	int result = 0;
    585          1.14       leo 
    586          1.14       leo 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    587          1.14       leo 		result = (buffer[pos] - '0') * 10;
    588          1.14       leo 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    589          1.14       leo 		result += (buffer[pos+1] - '0');
    590          1.14       leo 	return(result);
    591          1.14       leo }
    592           1.1       leo 
    593          1.14       leo int
    594          1.14       leo rtcwrite(dev, uio, flags)
    595          1.14       leo 	dev_t		dev;
    596          1.14       leo 	struct uio	*uio;
    597          1.14       leo 	int		flags;
    598          1.14       leo {
    599          1.14       leo 	mc_todregs		clkregs;
    600          1.14       leo 	int			s, length, error;
    601          1.21       leo 	char			buffer[16];
    602          1.14       leo 
    603          1.14       leo 	/*
    604          1.14       leo 	 * We require atomic updates!
    605          1.14       leo 	 */
    606          1.14       leo 	length = uio->uio_resid;
    607          1.14       leo 	if (uio->uio_offset || (length != sizeof(buffer)
    608          1.14       leo 	  && length != sizeof(buffer - 1)))
    609          1.14       leo 		return(EINVAL);
    610          1.14       leo 
    611          1.38  christos 	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
    612          1.14       leo 		return(error);
    613           1.1       leo 
    614          1.14       leo 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    615          1.14       leo 		return(EINVAL);
    616           1.1       leo 
    617          1.14       leo 	s = splclock();
    618          1.25       leo 	mc146818_write(RTC, MC_REGB,
    619          1.25       leo 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    620           1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    621          1.14       leo 	splx(s);
    622          1.14       leo 
    623          1.21       leo 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    624          1.21       leo 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    625          1.21       leo 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    626          1.21       leo 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    627          1.21       leo 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    628          1.21       leo 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    629          1.14       leo 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    630          1.14       leo 
    631          1.14       leo 	s = splclock();
    632           1.3       leo 	MC146818_PUTTOD(RTC, &clkregs);
    633          1.14       leo 	splx(s);
    634           1.1       leo 
    635          1.14       leo 	return(0);
    636           1.1       leo }
    637