Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.42
      1  1.42       abs /*	$NetBSD: clock.c,v 1.42 2008/11/04 16:43:47 abs Exp $	*/
      2   1.1       leo 
      3   1.1       leo /*
      4   1.1       leo  * Copyright (c) 1982, 1990 The Regents of the University of California.
      5   1.1       leo  * All rights reserved.
      6   1.1       leo  *
      7   1.1       leo  * This code is derived from software contributed to Berkeley by
      8   1.1       leo  * the Systems Programming Group of the University of Utah Computer
      9   1.1       leo  * Science Department.
     10   1.1       leo  *
     11   1.1       leo  * Redistribution and use in source and binary forms, with or without
     12   1.1       leo  * modification, are permitted provided that the following conditions
     13   1.1       leo  * are met:
     14   1.1       leo  * 1. Redistributions of source code must retain the above copyright
     15   1.1       leo  *    notice, this list of conditions and the following disclaimer.
     16   1.1       leo  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1       leo  *    notice, this list of conditions and the following disclaimer in the
     18   1.1       leo  *    documentation and/or other materials provided with the distribution.
     19  1.34       agc  * 3. Neither the name of the University nor the names of its contributors
     20  1.34       agc  *    may be used to endorse or promote products derived from this software
     21  1.34       agc  *    without specific prior written permission.
     22  1.34       agc  *
     23  1.34       agc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  1.34       agc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  1.34       agc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  1.34       agc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  1.34       agc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  1.34       agc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  1.34       agc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  1.34       agc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  1.34       agc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  1.34       agc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  1.34       agc  * SUCH DAMAGE.
     34  1.34       agc  *
     35  1.34       agc  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     36  1.34       agc  *
     37  1.34       agc  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     38  1.34       agc  */
     39  1.34       agc /*
     40  1.34       agc  * Copyright (c) 1988 University of Utah.
     41  1.34       agc  *
     42  1.34       agc  * This code is derived from software contributed to Berkeley by
     43  1.34       agc  * the Systems Programming Group of the University of Utah Computer
     44  1.34       agc  * Science Department.
     45  1.34       agc  *
     46  1.34       agc  * Redistribution and use in source and binary forms, with or without
     47  1.34       agc  * modification, are permitted provided that the following conditions
     48  1.34       agc  * are met:
     49  1.34       agc  * 1. Redistributions of source code must retain the above copyright
     50  1.34       agc  *    notice, this list of conditions and the following disclaimer.
     51  1.34       agc  * 2. Redistributions in binary form must reproduce the above copyright
     52  1.34       agc  *    notice, this list of conditions and the following disclaimer in the
     53  1.34       agc  *    documentation and/or other materials provided with the distribution.
     54   1.1       leo  * 3. All advertising materials mentioning features or use of this software
     55   1.1       leo  *    must display the following acknowledgement:
     56   1.1       leo  *	This product includes software developed by the University of
     57   1.1       leo  *	California, Berkeley and its contributors.
     58   1.1       leo  * 4. Neither the name of the University nor the names of its contributors
     59   1.1       leo  *    may be used to endorse or promote products derived from this software
     60   1.1       leo  *    without specific prior written permission.
     61   1.1       leo  *
     62   1.1       leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63   1.1       leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64   1.1       leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65   1.1       leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66   1.1       leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67   1.1       leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68   1.1       leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69   1.1       leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70   1.1       leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71   1.1       leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72   1.1       leo  * SUCH DAMAGE.
     73   1.1       leo  *
     74   1.1       leo  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     75   1.1       leo  *
     76   1.1       leo  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     77   1.1       leo  */
     78  1.33     lukem 
     79  1.33     lukem #include <sys/cdefs.h>
     80  1.42       abs __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.42 2008/11/04 16:43:47 abs Exp $");
     81   1.1       leo 
     82   1.1       leo #include <sys/param.h>
     83   1.1       leo #include <sys/kernel.h>
     84   1.9       leo #include <sys/systm.h>
     85   1.1       leo #include <sys/device.h>
     86  1.14       leo #include <sys/uio.h>
     87  1.14       leo #include <sys/conf.h>
     88  1.32   thorpej #include <sys/proc.h>
     89  1.31  jdolecek #include <sys/event.h>
     90  1.40     joerg #include <sys/timetc.h>
     91  1.18       leo 
     92  1.18       leo #include <dev/clock_subr.h>
     93  1.18       leo 
     94   1.1       leo #include <machine/psl.h>
     95   1.1       leo #include <machine/cpu.h>
     96   1.1       leo #include <machine/iomap.h>
     97   1.1       leo #include <machine/mfp.h>
     98   1.1       leo #include <atari/dev/clockreg.h>
     99  1.14       leo #include <atari/atari/device.h>
    100   1.1       leo 
    101   1.4       leo #if defined(GPROF) && defined(PROFTIMER)
    102   1.4       leo #include <machine/profile.h>
    103   1.1       leo #endif
    104   1.1       leo 
    105  1.40     joerg static int	atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
    106  1.40     joerg static int	atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
    107  1.40     joerg 
    108   1.1       leo /*
    109   1.5       leo  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
    110   1.5       leo  * of 200. Therefore the timer runs at an effective rate of:
    111   1.5       leo  * 2457600/200 = 12288Hz.
    112   1.5       leo  */
    113   1.5       leo #define CLOCK_HZ	12288
    114   1.5       leo 
    115  1.40     joerg static u_int clk_getcounter(struct timecounter *);
    116  1.40     joerg 
    117  1.40     joerg static struct timecounter clk_timecounter = {
    118  1.40     joerg 	clk_getcounter,	/* get_timecount */
    119  1.40     joerg 	0,		/* no poll_pps */
    120  1.40     joerg 	~0u,		/* counter_mask */
    121  1.40     joerg 	CLOCK_HZ,	/* frequency */
    122  1.40     joerg 	"clock",	/* name, overriden later */
    123  1.40     joerg 	100,		/* quality */
    124  1.40     joerg 	NULL,		/* prev */
    125  1.40     joerg 	NULL,		/* next */
    126  1.40     joerg };
    127  1.40     joerg 
    128   1.5       leo /*
    129   1.1       leo  * Machine-dependent clock routines.
    130   1.1       leo  *
    131   1.1       leo  * Inittodr initializes the time of day hardware which provides
    132   1.1       leo  * date functions.
    133   1.1       leo  *
    134   1.1       leo  * Resettodr restores the time of day hardware after a time change.
    135   1.1       leo  */
    136   1.1       leo 
    137  1.14       leo struct clock_softc {
    138  1.14       leo 	struct device	sc_dev;
    139  1.14       leo 	int		sc_flags;
    140  1.14       leo };
    141  1.14       leo 
    142  1.14       leo /*
    143  1.14       leo  *  'sc_flags' state info. Only used by the rtc-device functions.
    144  1.14       leo  */
    145  1.14       leo #define	RTC_OPEN	1
    146  1.14       leo 
    147  1.14       leo dev_type_open(rtcopen);
    148  1.14       leo dev_type_close(rtcclose);
    149  1.14       leo dev_type_read(rtcread);
    150  1.14       leo dev_type_write(rtcwrite);
    151  1.14       leo 
    152  1.14       leo static void	clockattach __P((struct device *, struct device *, void *));
    153  1.17       leo static int	clockmatch __P((struct device *, struct cfdata *, void *));
    154   1.1       leo 
    155  1.30   thorpej CFATTACH_DECL(clock, sizeof(struct clock_softc),
    156  1.30   thorpej     clockmatch, clockattach, NULL, NULL);
    157  1.10   thorpej 
    158  1.19   thorpej extern struct cfdriver clock_cd;
    159  1.28   gehenna 
    160  1.28   gehenna const struct cdevsw rtc_cdevsw = {
    161  1.28   gehenna 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    162  1.31  jdolecek 	nostop, notty, nopoll, nommap, nokqfilter,
    163  1.28   gehenna };
    164   1.1       leo 
    165  1.16       leo void statintr __P((struct clockframe));
    166   1.9       leo 
    167  1.14       leo static int	twodigits __P((char *, int));
    168   1.1       leo 
    169   1.5       leo static int	divisor;	/* Systemclock divisor	*/
    170   1.5       leo 
    171   1.5       leo /*
    172   1.5       leo  * Statistics and profile clock intervals and variances. Variance must
    173   1.5       leo  * be a power of 2. Since this gives us an even number, not an odd number,
    174   1.5       leo  * we discard one case and compensate. That is, a variance of 64 would
    175   1.5       leo  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    176  1.26       wiz  * This is symmetric around the point 32, or statvar/2, and thus averages
    177   1.5       leo  * to that value (assuming uniform random numbers).
    178   1.5       leo  */
    179   1.5       leo #ifdef STATCLOCK
    180   1.5       leo static int	statvar = 32;	/* {stat,prof}clock variance		*/
    181   1.5       leo static int	statmin;	/* statclock divisor - variance/2	*/
    182   1.5       leo static int	profmin;	/* profclock divisor - variance/2	*/
    183  1.27       wiz static int	clk2min;	/* current, from above choices		*/
    184   1.5       leo #endif
    185   1.1       leo 
    186   1.1       leo int
    187  1.17       leo clockmatch(pdp, cfp, auxp)
    188  1.14       leo struct device	*pdp;
    189  1.17       leo struct cfdata	*cfp;
    190  1.17       leo void		*auxp;
    191   1.1       leo {
    192  1.15       leo 	if (!atari_realconfig) {
    193  1.15       leo 	    /*
    194  1.15       leo 	     * Initialize Timer-B in the ST-MFP. This timer is used by
    195  1.15       leo 	     * the 'delay' function below. This timer is setup to be
    196  1.15       leo 	     * continueously counting from 255 back to zero at a
    197  1.15       leo 	     * frequency of 614400Hz. We do this *early* in the
    198  1.15       leo 	     * initialisation process.
    199  1.15       leo 	     */
    200  1.15       leo 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
    201  1.15       leo 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    202  1.15       leo 	    MFP->mf_tbdr  = 0;
    203  1.15       leo 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    204  1.15       leo 
    205  1.15       leo 	    return 0;
    206  1.15       leo 	}
    207   1.1       leo 	if(!strcmp("clock", auxp))
    208   1.1       leo 		return(1);
    209   1.1       leo 	return(0);
    210   1.1       leo }
    211   1.1       leo 
    212   1.1       leo /*
    213   1.1       leo  * Start the real-time clock.
    214   1.1       leo  */
    215   1.1       leo void clockattach(pdp, dp, auxp)
    216   1.1       leo struct device	*pdp, *dp;
    217  1.14       leo void		*auxp;
    218   1.1       leo {
    219  1.14       leo 	struct clock_softc *sc = (void *)dp;
    220  1.40     joerg 	static struct todr_chip_handle	tch;
    221  1.40     joerg 
    222  1.40     joerg 	tch.todr_gettime_ymdhms = atari_rtc_get;
    223  1.40     joerg 	tch.todr_settime_ymdhms = atari_rtc_set;
    224  1.40     joerg 	tch.todr_setwen = NULL;
    225  1.40     joerg 
    226  1.40     joerg 	todr_attach(&tch);
    227  1.14       leo 
    228  1.14       leo 	sc->sc_flags = 0;
    229  1.14       leo 
    230   1.1       leo 	/*
    231   1.3       leo 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    232   1.3       leo 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    233   1.3       leo 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    234   1.3       leo 	 * following expression works for 48, 64 or 96 hz.
    235   1.1       leo 	 */
    236   1.5       leo 	divisor       = CLOCK_HZ/hz;
    237   1.2       leo 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    238   1.2       leo 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    239   1.2       leo 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    240   1.1       leo 
    241  1.40     joerg 	clk_timecounter.tc_frequency = CLOCK_HZ;
    242  1.40     joerg 
    243   1.5       leo 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    244  1.13  christos 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    245   1.5       leo 								hz, 64);
    246   1.5       leo 		hz = 64;
    247   1.5       leo 	}
    248  1.13  christos 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    249  1.42       abs 	tc_init(&clk_timecounter);
    250   1.1       leo 
    251   1.5       leo #ifdef STATCLOCK
    252   1.5       leo 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    253   1.5       leo 		stathz = hz;
    254   1.5       leo 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    255   1.5       leo 		profhz = hz << 1;
    256   1.5       leo 
    257   1.5       leo 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    258   1.5       leo 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    259   1.5       leo 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    260   1.5       leo 
    261   1.5       leo 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    262   1.5       leo 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    263   1.5       leo 	clk2min  = statmin;
    264   1.5       leo #endif /* STATCLOCK */
    265  1.14       leo 
    266   1.1       leo }
    267   1.1       leo 
    268   1.1       leo void cpu_initclocks()
    269   1.1       leo {
    270   1.3       leo 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    271  1.20       leo 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    272   1.2       leo 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    273   1.2       leo 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    274   1.5       leo 
    275   1.5       leo #ifdef STATCLOCK
    276   1.5       leo 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    277  1.20       leo 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    278   1.5       leo 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    279   1.5       leo 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    280   1.5       leo #endif /* STATCLOCK */
    281   1.1       leo }
    282   1.1       leo 
    283   1.9       leo void
    284   1.5       leo setstatclockrate(newhz)
    285   1.5       leo 	int newhz;
    286   1.1       leo {
    287   1.5       leo #ifdef STATCLOCK
    288   1.5       leo 	if (newhz == stathz)
    289   1.5       leo 		clk2min = statmin;
    290   1.5       leo 	else clk2min = profmin;
    291   1.5       leo #endif /* STATCLOCK */
    292   1.1       leo }
    293   1.1       leo 
    294   1.5       leo #ifdef STATCLOCK
    295   1.5       leo void
    296   1.5       leo statintr(frame)
    297  1.16       leo 	struct clockframe frame;
    298   1.5       leo {
    299   1.5       leo 	register int	var, r;
    300   1.5       leo 
    301   1.5       leo 	var = statvar - 1;
    302   1.5       leo 	do {
    303   1.5       leo 		r = random() & var;
    304   1.5       leo 	} while(r == 0);
    305   1.5       leo 
    306   1.5       leo 	/*
    307   1.5       leo 	 * Note that we are always lagging behind as the new divisor
    308   1.5       leo 	 * value will not be loaded until the next interrupt. This
    309   1.5       leo 	 * shouldn't disturb the median frequency (I think ;-) ) as
    310   1.5       leo 	 * only the value used when switching frequencies is used
    311   1.5       leo 	 * twice. This shouldn't happen very often.
    312   1.5       leo 	 */
    313   1.5       leo 	MFP->mf_tcdr = clk2min + r;
    314   1.5       leo 
    315  1.16       leo 	statclock(&frame);
    316   1.5       leo }
    317   1.5       leo #endif /* STATCLOCK */
    318   1.5       leo 
    319  1.40     joerg static u_int
    320  1.40     joerg clk_getcounter(struct timecounter *tc)
    321   1.1       leo {
    322  1.40     joerg 	u_int delta;
    323  1.40     joerg 	u_char ipra, tadr;
    324  1.40     joerg 	int s, cur_hardclock;
    325   1.3       leo 
    326  1.40     joerg 	s = splhigh();
    327  1.40     joerg 	ipra = MFP->mf_ipra;
    328  1.40     joerg 	tadr = MFP->mf_tadr;
    329  1.40     joerg 	delta = divisor - tadr;
    330  1.40     joerg 
    331  1.40     joerg 	if (ipra & IA_TIMA)
    332  1.40     joerg 		delta += divisor;
    333  1.40     joerg 	cur_hardclock = hardclock_ticks;
    334  1.40     joerg 	splx(s);
    335  1.22       leo 
    336  1.40     joerg 	return (divisor - tadr) + divisor * cur_hardclock;
    337   1.1       leo }
    338   1.1       leo 
    339   1.2       leo #define TIMB_FREQ	614400
    340   1.2       leo #define TIMB_LIMIT	256
    341   1.1       leo 
    342   1.1       leo /*
    343   1.1       leo  * Wait "n" microseconds.
    344   1.2       leo  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    345   1.1       leo  * Note: timer had better have been programmed before this is first used!
    346   1.1       leo  */
    347  1.14       leo void
    348  1.39     joerg delay(unsigned int n)
    349   1.1       leo {
    350  1.39     joerg 	int	ticks, otick, remaining;
    351   1.1       leo 
    352   1.1       leo 	/*
    353   1.1       leo 	 * Read the counter first, so that the rest of the setup overhead is
    354   1.1       leo 	 * counted.
    355   1.1       leo 	 */
    356   1.2       leo 	otick = MFP->mf_tbdr;
    357   1.1       leo 
    358  1.39     joerg 	if (n <= UINT_MAX / TIMB_FREQ) {
    359  1.39     joerg 		/*
    360  1.39     joerg 		 * For unsigned arithmetic, division can be replaced with
    361  1.39     joerg 		 * multiplication with the inverse and a shift.
    362  1.39     joerg 		 */
    363  1.39     joerg 		remaining = n * TIMB_FREQ / 1000000;
    364  1.39     joerg 	} else {
    365  1.39     joerg 		/* This is a very long delay.
    366  1.39     joerg 		 * Being slow here doesn't matter.
    367  1.39     joerg 		 */
    368  1.39     joerg 		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
    369   1.1       leo 	}
    370   1.1       leo 
    371  1.39     joerg 	while(remaining > 0) {
    372  1.35        he 		ticks = MFP->mf_tbdr;
    373  1.35        he 		if(ticks > otick)
    374  1.39     joerg 			remaining -= TIMB_LIMIT - (ticks - otick);
    375  1.39     joerg 		else
    376  1.39     joerg 			remaining -= otick - ticks;
    377  1.35        he 		otick = ticks;
    378   1.1       leo 	}
    379   1.1       leo }
    380   1.1       leo 
    381   1.4       leo #ifdef GPROF
    382   1.1       leo /*
    383   1.1       leo  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    384   1.1       leo  * Assumes it is called with clock interrupts blocked.
    385   1.1       leo  */
    386   1.1       leo profclock(pc, ps)
    387  1.38  christos 	void *pc;
    388   1.1       leo 	int ps;
    389   1.1       leo {
    390   1.1       leo 	/*
    391   1.1       leo 	 * Came from user mode.
    392   1.1       leo 	 * If this process is being profiled record the tick.
    393   1.1       leo 	 */
    394   1.1       leo 	if (USERMODE(ps)) {
    395   1.1       leo 		if (p->p_stats.p_prof.pr_scale)
    396   1.1       leo 			addupc(pc, &curproc->p_stats.p_prof, 1);
    397   1.1       leo 	}
    398   1.1       leo 	/*
    399   1.1       leo 	 * Came from kernel (supervisor) mode.
    400   1.1       leo 	 * If we are profiling the kernel, record the tick.
    401   1.1       leo 	 */
    402   1.1       leo 	else if (profiling < 2) {
    403   1.1       leo 		register int s = pc - s_lowpc;
    404   1.1       leo 
    405   1.1       leo 		if (s < s_textsize)
    406   1.1       leo 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    407   1.1       leo 	}
    408   1.1       leo 	/*
    409   1.1       leo 	 * Kernel profiling was on but has been disabled.
    410   1.1       leo 	 * Mark as no longer profiling kernel and if all profiling done,
    411   1.1       leo 	 * disable the clock.
    412   1.1       leo 	 */
    413   1.1       leo 	if (profiling && (profon & PRF_KERNEL)) {
    414   1.1       leo 		profon &= ~PRF_KERNEL;
    415   1.1       leo 		if (profon == PRF_NONE)
    416   1.1       leo 			stopprofclock();
    417   1.1       leo 	}
    418   1.1       leo }
    419   1.1       leo #endif
    420   1.7       leo 
    421   1.7       leo /***********************************************************************
    422   1.7       leo  *                   Real Time Clock support                           *
    423   1.7       leo  ***********************************************************************/
    424   1.7       leo 
    425   1.7       leo u_int mc146818_read(rtc, regno)
    426   1.7       leo void	*rtc;
    427   1.7       leo u_int	regno;
    428   1.7       leo {
    429   1.7       leo 	((struct rtc *)rtc)->rtc_regno = regno;
    430   1.7       leo 	return(((struct rtc *)rtc)->rtc_data & 0377);
    431   1.7       leo }
    432   1.7       leo 
    433   1.7       leo void mc146818_write(rtc, regno, value)
    434   1.7       leo void	*rtc;
    435   1.7       leo u_int	regno, value;
    436   1.7       leo {
    437   1.7       leo 	((struct rtc *)rtc)->rtc_regno = regno;
    438   1.7       leo 	((struct rtc *)rtc)->rtc_data  = value;
    439   1.7       leo }
    440   1.1       leo 
    441  1.40     joerg static int
    442  1.40     joerg atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    443   1.1       leo {
    444  1.18       leo 	int			sps;
    445  1.18       leo 	mc_todregs		clkregs;
    446  1.25       leo 	u_int			regb;
    447   1.3       leo 
    448   1.3       leo 	sps = splhigh();
    449  1.25       leo 	regb = mc146818_read(RTC, MC_REGB);
    450   1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    451   1.3       leo 	splx(sps);
    452   1.1       leo 
    453  1.25       leo 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    454  1.25       leo 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    455  1.25       leo 		printf("Error: Nonstandard RealTimeClock Configuration -"
    456  1.25       leo 			" value ignored\n"
    457  1.25       leo 			"       A write to /dev/rtc will correct this.\n");
    458  1.25       leo 			return(0);
    459  1.25       leo 	}
    460   1.9       leo 	if(clkregs[MC_SEC] > 59)
    461  1.40     joerg 		return -1;
    462   1.9       leo 	if(clkregs[MC_MIN] > 59)
    463  1.40     joerg 		return -1;
    464   1.9       leo 	if(clkregs[MC_HOUR] > 23)
    465  1.40     joerg 		return -1;
    466   1.3       leo 	if(range_test(clkregs[MC_DOM], 1, 31))
    467  1.40     joerg 		return -1;
    468   1.3       leo 	if (range_test(clkregs[MC_MONTH], 1, 12))
    469  1.40     joerg 		return -1;
    470  1.24       leo 	if(clkregs[MC_YEAR] > 99)
    471  1.40     joerg 		return -1;
    472  1.40     joerg 
    473  1.40     joerg 	dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    474  1.40     joerg 	dtp->dt_mon  = clkregs[MC_MONTH];
    475  1.40     joerg 	dtp->dt_day  = clkregs[MC_DOM];
    476  1.40     joerg 	dtp->dt_hour = clkregs[MC_HOUR];
    477  1.40     joerg 	dtp->dt_min  = clkregs[MC_MIN];
    478  1.40     joerg 	dtp->dt_sec  = clkregs[MC_SEC];
    479  1.40     joerg 
    480  1.40     joerg 	return 0;
    481  1.40     joerg }
    482  1.40     joerg 
    483  1.40     joerg static int
    484  1.40     joerg atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    485  1.40     joerg {
    486  1.40     joerg 	int s;
    487  1.40     joerg 	mc_todregs clkregs;
    488   1.1       leo 
    489  1.40     joerg 	clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
    490  1.40     joerg 	clkregs[MC_MONTH] = dtp->dt_mon;
    491  1.40     joerg 	clkregs[MC_DOM] = dtp->dt_day;
    492  1.40     joerg 	clkregs[MC_HOUR] = dtp->dt_hour;
    493  1.40     joerg 	clkregs[MC_MIN] = dtp->dt_min;
    494  1.40     joerg 	clkregs[MC_SEC] = dtp->dt_sec;
    495   1.1       leo 
    496  1.40     joerg 	s = splclock();
    497  1.40     joerg 	MC146818_PUTTOD(RTC, &clkregs);
    498  1.40     joerg 	splx(s);
    499  1.40     joerg 
    500  1.40     joerg 	return 0;
    501   1.1       leo }
    502  1.40     joerg 
    503  1.14       leo /***********************************************************************
    504  1.14       leo  *                   RTC-device support				       *
    505  1.14       leo  ***********************************************************************/
    506  1.14       leo int
    507  1.36  christos rtcopen(dev, flag, mode, l)
    508  1.14       leo 	dev_t		dev;
    509  1.14       leo 	int		flag, mode;
    510  1.36  christos 	struct lwp	*l;
    511  1.14       leo {
    512  1.14       leo 	int			unit = minor(dev);
    513  1.14       leo 	struct clock_softc	*sc;
    514  1.14       leo 
    515  1.41   tsutsui 	sc = device_lookup_private(&clock_cd, unit);
    516  1.41   tsutsui 	if (sc == NULL)
    517  1.14       leo 		return ENXIO;
    518  1.14       leo 	if (sc->sc_flags & RTC_OPEN)
    519  1.14       leo 		return EBUSY;
    520  1.14       leo 
    521  1.14       leo 	sc->sc_flags = RTC_OPEN;
    522  1.14       leo 	return 0;
    523  1.14       leo }
    524   1.1       leo 
    525  1.14       leo int
    526  1.36  christos rtcclose(dev, flag, mode, l)
    527  1.14       leo 	dev_t		dev;
    528  1.14       leo 	int		flag;
    529  1.14       leo 	int		mode;
    530  1.36  christos 	struct lwp	*l;
    531   1.1       leo {
    532  1.14       leo 	int			unit = minor(dev);
    533  1.41   tsutsui 	struct clock_softc	*sc = device_lookup_private(&clock_cd, unit);
    534  1.14       leo 
    535  1.14       leo 	sc->sc_flags = 0;
    536  1.14       leo 	return 0;
    537  1.14       leo }
    538  1.14       leo 
    539  1.14       leo int
    540  1.14       leo rtcread(dev, uio, flags)
    541  1.14       leo 	dev_t		dev;
    542  1.14       leo 	struct uio	*uio;
    543  1.14       leo 	int		flags;
    544  1.14       leo {
    545  1.14       leo 	struct clock_softc	*sc;
    546  1.14       leo 	mc_todregs		clkregs;
    547  1.14       leo 	int			s, length;
    548  1.14       leo 	char			buffer[16];
    549  1.14       leo 
    550  1.41   tsutsui 	sc = device_lookup_private(&clock_cd, minor(dev));
    551  1.14       leo 
    552  1.14       leo 	s = splhigh();
    553  1.14       leo 	MC146818_GETTOD(RTC, &clkregs);
    554  1.14       leo 	splx(s);
    555  1.14       leo 
    556  1.21       leo 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    557  1.21       leo 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    558  1.14       leo 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    559  1.14       leo 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    560  1.14       leo 
    561  1.14       leo 	if (uio->uio_offset > strlen(buffer))
    562  1.14       leo 		return 0;
    563   1.1       leo 
    564  1.14       leo 	length = strlen(buffer) - uio->uio_offset;
    565  1.14       leo 	if (length > uio->uio_resid)
    566  1.14       leo 		length = uio->uio_resid;
    567   1.1       leo 
    568  1.38  christos 	return(uiomove((void *)buffer, length, uio));
    569  1.14       leo }
    570  1.14       leo 
    571  1.14       leo static int
    572  1.14       leo twodigits(buffer, pos)
    573  1.14       leo 	char *buffer;
    574  1.14       leo 	int pos;
    575  1.14       leo {
    576  1.14       leo 	int result = 0;
    577  1.14       leo 
    578  1.14       leo 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    579  1.14       leo 		result = (buffer[pos] - '0') * 10;
    580  1.14       leo 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    581  1.14       leo 		result += (buffer[pos+1] - '0');
    582  1.14       leo 	return(result);
    583  1.14       leo }
    584   1.1       leo 
    585  1.14       leo int
    586  1.14       leo rtcwrite(dev, uio, flags)
    587  1.14       leo 	dev_t		dev;
    588  1.14       leo 	struct uio	*uio;
    589  1.14       leo 	int		flags;
    590  1.14       leo {
    591  1.14       leo 	mc_todregs		clkregs;
    592  1.14       leo 	int			s, length, error;
    593  1.21       leo 	char			buffer[16];
    594  1.14       leo 
    595  1.14       leo 	/*
    596  1.14       leo 	 * We require atomic updates!
    597  1.14       leo 	 */
    598  1.14       leo 	length = uio->uio_resid;
    599  1.14       leo 	if (uio->uio_offset || (length != sizeof(buffer)
    600  1.14       leo 	  && length != sizeof(buffer - 1)))
    601  1.14       leo 		return(EINVAL);
    602  1.14       leo 
    603  1.38  christos 	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
    604  1.14       leo 		return(error);
    605   1.1       leo 
    606  1.14       leo 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    607  1.14       leo 		return(EINVAL);
    608   1.1       leo 
    609  1.14       leo 	s = splclock();
    610  1.25       leo 	mc146818_write(RTC, MC_REGB,
    611  1.25       leo 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    612   1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    613  1.14       leo 	splx(s);
    614  1.14       leo 
    615  1.21       leo 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    616  1.21       leo 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    617  1.21       leo 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    618  1.21       leo 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    619  1.21       leo 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    620  1.21       leo 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    621  1.14       leo 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    622  1.14       leo 
    623  1.14       leo 	s = splclock();
    624   1.3       leo 	MC146818_PUTTOD(RTC, &clkregs);
    625  1.14       leo 	splx(s);
    626   1.1       leo 
    627  1.14       leo 	return(0);
    628   1.1       leo }
    629