clock.c revision 1.47 1 1.47 tsutsui /* $NetBSD: clock.c,v 1.47 2009/07/07 15:15:08 tsutsui Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.1 leo * Copyright (c) 1982, 1990 The Regents of the University of California.
5 1.1 leo * All rights reserved.
6 1.1 leo *
7 1.1 leo * This code is derived from software contributed to Berkeley by
8 1.1 leo * the Systems Programming Group of the University of Utah Computer
9 1.1 leo * Science Department.
10 1.1 leo *
11 1.1 leo * Redistribution and use in source and binary forms, with or without
12 1.1 leo * modification, are permitted provided that the following conditions
13 1.1 leo * are met:
14 1.1 leo * 1. Redistributions of source code must retain the above copyright
15 1.1 leo * notice, this list of conditions and the following disclaimer.
16 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 leo * notice, this list of conditions and the following disclaimer in the
18 1.1 leo * documentation and/or other materials provided with the distribution.
19 1.34 agc * 3. Neither the name of the University nor the names of its contributors
20 1.34 agc * may be used to endorse or promote products derived from this software
21 1.34 agc * without specific prior written permission.
22 1.34 agc *
23 1.34 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.34 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.34 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.34 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.34 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.34 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.34 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.34 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.34 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.34 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.34 agc * SUCH DAMAGE.
34 1.34 agc *
35 1.34 agc * from: Utah $Hdr: clock.c 1.18 91/01/21$
36 1.34 agc *
37 1.34 agc * @(#)clock.c 7.6 (Berkeley) 5/7/91
38 1.34 agc */
39 1.34 agc /*
40 1.34 agc * Copyright (c) 1988 University of Utah.
41 1.34 agc *
42 1.34 agc * This code is derived from software contributed to Berkeley by
43 1.34 agc * the Systems Programming Group of the University of Utah Computer
44 1.34 agc * Science Department.
45 1.34 agc *
46 1.34 agc * Redistribution and use in source and binary forms, with or without
47 1.34 agc * modification, are permitted provided that the following conditions
48 1.34 agc * are met:
49 1.34 agc * 1. Redistributions of source code must retain the above copyright
50 1.34 agc * notice, this list of conditions and the following disclaimer.
51 1.34 agc * 2. Redistributions in binary form must reproduce the above copyright
52 1.34 agc * notice, this list of conditions and the following disclaimer in the
53 1.34 agc * documentation and/or other materials provided with the distribution.
54 1.1 leo * 3. All advertising materials mentioning features or use of this software
55 1.1 leo * must display the following acknowledgement:
56 1.1 leo * This product includes software developed by the University of
57 1.1 leo * California, Berkeley and its contributors.
58 1.1 leo * 4. Neither the name of the University nor the names of its contributors
59 1.1 leo * may be used to endorse or promote products derived from this software
60 1.1 leo * without specific prior written permission.
61 1.1 leo *
62 1.1 leo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.1 leo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.1 leo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.1 leo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.1 leo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.1 leo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.1 leo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.1 leo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.1 leo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.1 leo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.1 leo * SUCH DAMAGE.
73 1.1 leo *
74 1.1 leo * from: Utah $Hdr: clock.c 1.18 91/01/21$
75 1.1 leo *
76 1.1 leo * @(#)clock.c 7.6 (Berkeley) 5/7/91
77 1.1 leo */
78 1.33 lukem
79 1.33 lukem #include <sys/cdefs.h>
80 1.47 tsutsui __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.47 2009/07/07 15:15:08 tsutsui Exp $");
81 1.1 leo
82 1.1 leo #include <sys/param.h>
83 1.1 leo #include <sys/kernel.h>
84 1.9 leo #include <sys/systm.h>
85 1.1 leo #include <sys/device.h>
86 1.14 leo #include <sys/uio.h>
87 1.14 leo #include <sys/conf.h>
88 1.32 thorpej #include <sys/proc.h>
89 1.31 jdolecek #include <sys/event.h>
90 1.40 joerg #include <sys/timetc.h>
91 1.18 leo
92 1.18 leo #include <dev/clock_subr.h>
93 1.18 leo
94 1.1 leo #include <machine/psl.h>
95 1.1 leo #include <machine/cpu.h>
96 1.1 leo #include <machine/iomap.h>
97 1.1 leo #include <machine/mfp.h>
98 1.1 leo #include <atari/dev/clockreg.h>
99 1.14 leo #include <atari/atari/device.h>
100 1.1 leo
101 1.4 leo #if defined(GPROF) && defined(PROFTIMER)
102 1.4 leo #include <machine/profile.h>
103 1.1 leo #endif
104 1.1 leo
105 1.40 joerg static int atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
106 1.40 joerg static int atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
107 1.40 joerg
108 1.1 leo /*
109 1.5 leo * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
110 1.5 leo * of 200. Therefore the timer runs at an effective rate of:
111 1.5 leo * 2457600/200 = 12288Hz.
112 1.5 leo */
113 1.5 leo #define CLOCK_HZ 12288
114 1.5 leo
115 1.40 joerg static u_int clk_getcounter(struct timecounter *);
116 1.40 joerg
117 1.40 joerg static struct timecounter clk_timecounter = {
118 1.40 joerg clk_getcounter, /* get_timecount */
119 1.40 joerg 0, /* no poll_pps */
120 1.40 joerg ~0u, /* counter_mask */
121 1.40 joerg CLOCK_HZ, /* frequency */
122 1.40 joerg "clock", /* name, overriden later */
123 1.40 joerg 100, /* quality */
124 1.40 joerg NULL, /* prev */
125 1.40 joerg NULL, /* next */
126 1.40 joerg };
127 1.40 joerg
128 1.5 leo /*
129 1.1 leo * Machine-dependent clock routines.
130 1.1 leo *
131 1.1 leo * Inittodr initializes the time of day hardware which provides
132 1.1 leo * date functions.
133 1.1 leo *
134 1.1 leo * Resettodr restores the time of day hardware after a time change.
135 1.1 leo */
136 1.1 leo
137 1.14 leo struct clock_softc {
138 1.14 leo struct device sc_dev;
139 1.14 leo int sc_flags;
140 1.14 leo };
141 1.14 leo
142 1.14 leo /*
143 1.14 leo * 'sc_flags' state info. Only used by the rtc-device functions.
144 1.14 leo */
145 1.14 leo #define RTC_OPEN 1
146 1.14 leo
147 1.14 leo dev_type_open(rtcopen);
148 1.14 leo dev_type_close(rtcclose);
149 1.14 leo dev_type_read(rtcread);
150 1.14 leo dev_type_write(rtcwrite);
151 1.14 leo
152 1.43 dsl static void clockattach(struct device *, struct device *, void *);
153 1.43 dsl static int clockmatch(struct device *, struct cfdata *, void *);
154 1.1 leo
155 1.30 thorpej CFATTACH_DECL(clock, sizeof(struct clock_softc),
156 1.30 thorpej clockmatch, clockattach, NULL, NULL);
157 1.10 thorpej
158 1.19 thorpej extern struct cfdriver clock_cd;
159 1.28 gehenna
160 1.28 gehenna const struct cdevsw rtc_cdevsw = {
161 1.28 gehenna rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
162 1.31 jdolecek nostop, notty, nopoll, nommap, nokqfilter,
163 1.28 gehenna };
164 1.1 leo
165 1.43 dsl void statintr(struct clockframe);
166 1.9 leo
167 1.43 dsl static int twodigits(char *, int);
168 1.1 leo
169 1.5 leo static int divisor; /* Systemclock divisor */
170 1.5 leo
171 1.5 leo /*
172 1.5 leo * Statistics and profile clock intervals and variances. Variance must
173 1.5 leo * be a power of 2. Since this gives us an even number, not an odd number,
174 1.5 leo * we discard one case and compensate. That is, a variance of 64 would
175 1.5 leo * give us offsets in [0..63]. Instead, we take offsets in [1..63].
176 1.26 wiz * This is symmetric around the point 32, or statvar/2, and thus averages
177 1.5 leo * to that value (assuming uniform random numbers).
178 1.5 leo */
179 1.5 leo #ifdef STATCLOCK
180 1.5 leo static int statvar = 32; /* {stat,prof}clock variance */
181 1.5 leo static int statmin; /* statclock divisor - variance/2 */
182 1.5 leo static int profmin; /* profclock divisor - variance/2 */
183 1.27 wiz static int clk2min; /* current, from above choices */
184 1.5 leo #endif
185 1.1 leo
186 1.1 leo int
187 1.44 dsl clockmatch(struct device *pdp, struct cfdata *cfp, void *auxp)
188 1.1 leo {
189 1.15 leo if (!atari_realconfig) {
190 1.15 leo /*
191 1.15 leo * Initialize Timer-B in the ST-MFP. This timer is used by
192 1.15 leo * the 'delay' function below. This timer is setup to be
193 1.15 leo * continueously counting from 255 back to zero at a
194 1.15 leo * frequency of 614400Hz. We do this *early* in the
195 1.15 leo * initialisation process.
196 1.15 leo */
197 1.15 leo MFP->mf_tbcr = 0; /* Stop timer */
198 1.15 leo MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
199 1.15 leo MFP->mf_tbdr = 0;
200 1.15 leo MFP->mf_tbcr = T_Q004; /* Start timer */
201 1.15 leo
202 1.15 leo return 0;
203 1.15 leo }
204 1.1 leo if(!strcmp("clock", auxp))
205 1.1 leo return(1);
206 1.1 leo return(0);
207 1.1 leo }
208 1.1 leo
209 1.1 leo /*
210 1.1 leo * Start the real-time clock.
211 1.1 leo */
212 1.1 leo void clockattach(pdp, dp, auxp)
213 1.1 leo struct device *pdp, *dp;
214 1.14 leo void *auxp;
215 1.1 leo {
216 1.14 leo struct clock_softc *sc = (void *)dp;
217 1.40 joerg static struct todr_chip_handle tch;
218 1.40 joerg
219 1.40 joerg tch.todr_gettime_ymdhms = atari_rtc_get;
220 1.40 joerg tch.todr_settime_ymdhms = atari_rtc_set;
221 1.40 joerg tch.todr_setwen = NULL;
222 1.40 joerg
223 1.40 joerg todr_attach(&tch);
224 1.14 leo
225 1.14 leo sc->sc_flags = 0;
226 1.14 leo
227 1.1 leo /*
228 1.3 leo * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
229 1.3 leo * The MFP clock runs at 2457600Hz. Therefore the timer runs
230 1.3 leo * at an effective rate of: 2457600/200 = 12288Hz. The
231 1.3 leo * following expression works for 48, 64 or 96 hz.
232 1.1 leo */
233 1.5 leo divisor = CLOCK_HZ/hz;
234 1.2 leo MFP->mf_tacr = 0; /* Stop timer */
235 1.2 leo MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
236 1.2 leo MFP->mf_tadr = divisor; /* Set divisor */
237 1.1 leo
238 1.40 joerg clk_timecounter.tc_frequency = CLOCK_HZ;
239 1.40 joerg
240 1.5 leo if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
241 1.13 christos printf (": illegal value %d for systemclock, reset to %d\n\t",
242 1.5 leo hz, 64);
243 1.5 leo hz = 64;
244 1.5 leo }
245 1.13 christos printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
246 1.42 abs tc_init(&clk_timecounter);
247 1.1 leo
248 1.5 leo #ifdef STATCLOCK
249 1.5 leo if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
250 1.5 leo stathz = hz;
251 1.5 leo if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
252 1.5 leo profhz = hz << 1;
253 1.5 leo
254 1.5 leo MFP->mf_tcdcr &= 0x7; /* Stop timer */
255 1.5 leo MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
256 1.5 leo MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
257 1.5 leo
258 1.5 leo statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
259 1.5 leo profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
260 1.5 leo clk2min = statmin;
261 1.5 leo #endif /* STATCLOCK */
262 1.14 leo
263 1.1 leo }
264 1.1 leo
265 1.46 cegger void cpu_initclocks(void)
266 1.1 leo {
267 1.3 leo MFP->mf_tacr = T_Q200; /* Start timer */
268 1.20 leo MFP->mf_ipra = (u_int8_t)~IA_TIMA;/* Clear pending interrupts */
269 1.2 leo MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
270 1.2 leo MFP->mf_imra |= IA_TIMA; /* ..... */
271 1.5 leo
272 1.5 leo #ifdef STATCLOCK
273 1.5 leo MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
274 1.20 leo MFP->mf_iprb = (u_int8_t)~IB_TIMC;/* Clear pending interrupts */
275 1.5 leo MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
276 1.5 leo MFP->mf_imrb |= IB_TIMC; /* ..... */
277 1.5 leo #endif /* STATCLOCK */
278 1.1 leo }
279 1.1 leo
280 1.9 leo void
281 1.44 dsl setstatclockrate(int newhz)
282 1.1 leo {
283 1.5 leo #ifdef STATCLOCK
284 1.5 leo if (newhz == stathz)
285 1.5 leo clk2min = statmin;
286 1.5 leo else clk2min = profmin;
287 1.5 leo #endif /* STATCLOCK */
288 1.1 leo }
289 1.1 leo
290 1.5 leo #ifdef STATCLOCK
291 1.5 leo void
292 1.44 dsl statintr(struct clockframe frame)
293 1.5 leo {
294 1.5 leo register int var, r;
295 1.5 leo
296 1.5 leo var = statvar - 1;
297 1.5 leo do {
298 1.5 leo r = random() & var;
299 1.5 leo } while(r == 0);
300 1.5 leo
301 1.5 leo /*
302 1.5 leo * Note that we are always lagging behind as the new divisor
303 1.5 leo * value will not be loaded until the next interrupt. This
304 1.5 leo * shouldn't disturb the median frequency (I think ;-) ) as
305 1.5 leo * only the value used when switching frequencies is used
306 1.5 leo * twice. This shouldn't happen very often.
307 1.5 leo */
308 1.5 leo MFP->mf_tcdr = clk2min + r;
309 1.5 leo
310 1.16 leo statclock(&frame);
311 1.5 leo }
312 1.5 leo #endif /* STATCLOCK */
313 1.5 leo
314 1.40 joerg static u_int
315 1.40 joerg clk_getcounter(struct timecounter *tc)
316 1.1 leo {
317 1.47 tsutsui uint32_t delta, count, cur_hardclock;
318 1.47 tsutsui uint8_t ipra, tadr;
319 1.47 tsutsui int s;
320 1.47 tsutsui static uint32_t lastcount;
321 1.3 leo
322 1.40 joerg s = splhigh();
323 1.47 tsutsui cur_hardclock = hardclock_ticks;
324 1.40 joerg ipra = MFP->mf_ipra;
325 1.40 joerg tadr = MFP->mf_tadr;
326 1.40 joerg delta = divisor - tadr;
327 1.40 joerg
328 1.40 joerg if (ipra & IA_TIMA)
329 1.40 joerg delta += divisor;
330 1.40 joerg splx(s);
331 1.22 leo
332 1.47 tsutsui count = (divisor * cur_hardclock) + delta;
333 1.47 tsutsui if ((int32_t)(count - lastcount) < 0) {
334 1.47 tsutsui /* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
335 1.47 tsutsui count = lastcount + 1;
336 1.47 tsutsui }
337 1.47 tsutsui lastcount = count;
338 1.47 tsutsui
339 1.47 tsutsui return count;
340 1.1 leo }
341 1.1 leo
342 1.2 leo #define TIMB_FREQ 614400
343 1.2 leo #define TIMB_LIMIT 256
344 1.1 leo
345 1.1 leo /*
346 1.1 leo * Wait "n" microseconds.
347 1.2 leo * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
348 1.1 leo * Note: timer had better have been programmed before this is first used!
349 1.1 leo */
350 1.14 leo void
351 1.39 joerg delay(unsigned int n)
352 1.1 leo {
353 1.39 joerg int ticks, otick, remaining;
354 1.1 leo
355 1.1 leo /*
356 1.1 leo * Read the counter first, so that the rest of the setup overhead is
357 1.1 leo * counted.
358 1.1 leo */
359 1.2 leo otick = MFP->mf_tbdr;
360 1.1 leo
361 1.39 joerg if (n <= UINT_MAX / TIMB_FREQ) {
362 1.39 joerg /*
363 1.39 joerg * For unsigned arithmetic, division can be replaced with
364 1.39 joerg * multiplication with the inverse and a shift.
365 1.39 joerg */
366 1.39 joerg remaining = n * TIMB_FREQ / 1000000;
367 1.39 joerg } else {
368 1.39 joerg /* This is a very long delay.
369 1.39 joerg * Being slow here doesn't matter.
370 1.39 joerg */
371 1.39 joerg remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
372 1.1 leo }
373 1.1 leo
374 1.39 joerg while(remaining > 0) {
375 1.35 he ticks = MFP->mf_tbdr;
376 1.35 he if(ticks > otick)
377 1.39 joerg remaining -= TIMB_LIMIT - (ticks - otick);
378 1.39 joerg else
379 1.39 joerg remaining -= otick - ticks;
380 1.35 he otick = ticks;
381 1.1 leo }
382 1.1 leo }
383 1.1 leo
384 1.4 leo #ifdef GPROF
385 1.1 leo /*
386 1.1 leo * profclock() is expanded in line in lev6intr() unless profiling kernel.
387 1.1 leo * Assumes it is called with clock interrupts blocked.
388 1.1 leo */
389 1.44 dsl profclock(void *pc, int ps)
390 1.1 leo {
391 1.1 leo /*
392 1.1 leo * Came from user mode.
393 1.1 leo * If this process is being profiled record the tick.
394 1.1 leo */
395 1.1 leo if (USERMODE(ps)) {
396 1.1 leo if (p->p_stats.p_prof.pr_scale)
397 1.1 leo addupc(pc, &curproc->p_stats.p_prof, 1);
398 1.1 leo }
399 1.1 leo /*
400 1.1 leo * Came from kernel (supervisor) mode.
401 1.1 leo * If we are profiling the kernel, record the tick.
402 1.1 leo */
403 1.1 leo else if (profiling < 2) {
404 1.1 leo register int s = pc - s_lowpc;
405 1.1 leo
406 1.1 leo if (s < s_textsize)
407 1.1 leo kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
408 1.1 leo }
409 1.1 leo /*
410 1.1 leo * Kernel profiling was on but has been disabled.
411 1.1 leo * Mark as no longer profiling kernel and if all profiling done,
412 1.1 leo * disable the clock.
413 1.1 leo */
414 1.1 leo if (profiling && (profon & PRF_KERNEL)) {
415 1.1 leo profon &= ~PRF_KERNEL;
416 1.1 leo if (profon == PRF_NONE)
417 1.1 leo stopprofclock();
418 1.1 leo }
419 1.1 leo }
420 1.1 leo #endif
421 1.7 leo
422 1.7 leo /***********************************************************************
423 1.7 leo * Real Time Clock support *
424 1.7 leo ***********************************************************************/
425 1.7 leo
426 1.7 leo u_int mc146818_read(rtc, regno)
427 1.7 leo void *rtc;
428 1.7 leo u_int regno;
429 1.7 leo {
430 1.7 leo ((struct rtc *)rtc)->rtc_regno = regno;
431 1.7 leo return(((struct rtc *)rtc)->rtc_data & 0377);
432 1.7 leo }
433 1.7 leo
434 1.7 leo void mc146818_write(rtc, regno, value)
435 1.7 leo void *rtc;
436 1.7 leo u_int regno, value;
437 1.7 leo {
438 1.7 leo ((struct rtc *)rtc)->rtc_regno = regno;
439 1.7 leo ((struct rtc *)rtc)->rtc_data = value;
440 1.7 leo }
441 1.1 leo
442 1.40 joerg static int
443 1.40 joerg atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
444 1.1 leo {
445 1.18 leo int sps;
446 1.18 leo mc_todregs clkregs;
447 1.25 leo u_int regb;
448 1.3 leo
449 1.3 leo sps = splhigh();
450 1.25 leo regb = mc146818_read(RTC, MC_REGB);
451 1.3 leo MC146818_GETTOD(RTC, &clkregs);
452 1.3 leo splx(sps);
453 1.1 leo
454 1.25 leo regb &= MC_REGB_24HR|MC_REGB_BINARY;
455 1.25 leo if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
456 1.25 leo printf("Error: Nonstandard RealTimeClock Configuration -"
457 1.25 leo " value ignored\n"
458 1.25 leo " A write to /dev/rtc will correct this.\n");
459 1.25 leo return(0);
460 1.25 leo }
461 1.9 leo if(clkregs[MC_SEC] > 59)
462 1.40 joerg return -1;
463 1.9 leo if(clkregs[MC_MIN] > 59)
464 1.40 joerg return -1;
465 1.9 leo if(clkregs[MC_HOUR] > 23)
466 1.40 joerg return -1;
467 1.3 leo if(range_test(clkregs[MC_DOM], 1, 31))
468 1.40 joerg return -1;
469 1.3 leo if (range_test(clkregs[MC_MONTH], 1, 12))
470 1.40 joerg return -1;
471 1.24 leo if(clkregs[MC_YEAR] > 99)
472 1.40 joerg return -1;
473 1.40 joerg
474 1.40 joerg dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
475 1.40 joerg dtp->dt_mon = clkregs[MC_MONTH];
476 1.40 joerg dtp->dt_day = clkregs[MC_DOM];
477 1.40 joerg dtp->dt_hour = clkregs[MC_HOUR];
478 1.40 joerg dtp->dt_min = clkregs[MC_MIN];
479 1.40 joerg dtp->dt_sec = clkregs[MC_SEC];
480 1.40 joerg
481 1.40 joerg return 0;
482 1.40 joerg }
483 1.40 joerg
484 1.40 joerg static int
485 1.40 joerg atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
486 1.40 joerg {
487 1.40 joerg int s;
488 1.40 joerg mc_todregs clkregs;
489 1.1 leo
490 1.40 joerg clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
491 1.40 joerg clkregs[MC_MONTH] = dtp->dt_mon;
492 1.40 joerg clkregs[MC_DOM] = dtp->dt_day;
493 1.40 joerg clkregs[MC_HOUR] = dtp->dt_hour;
494 1.40 joerg clkregs[MC_MIN] = dtp->dt_min;
495 1.40 joerg clkregs[MC_SEC] = dtp->dt_sec;
496 1.1 leo
497 1.40 joerg s = splclock();
498 1.40 joerg MC146818_PUTTOD(RTC, &clkregs);
499 1.40 joerg splx(s);
500 1.40 joerg
501 1.40 joerg return 0;
502 1.1 leo }
503 1.40 joerg
504 1.14 leo /***********************************************************************
505 1.14 leo * RTC-device support *
506 1.14 leo ***********************************************************************/
507 1.14 leo int
508 1.45 dsl rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
509 1.14 leo {
510 1.14 leo int unit = minor(dev);
511 1.14 leo struct clock_softc *sc;
512 1.14 leo
513 1.41 tsutsui sc = device_lookup_private(&clock_cd, unit);
514 1.41 tsutsui if (sc == NULL)
515 1.14 leo return ENXIO;
516 1.14 leo if (sc->sc_flags & RTC_OPEN)
517 1.14 leo return EBUSY;
518 1.14 leo
519 1.14 leo sc->sc_flags = RTC_OPEN;
520 1.14 leo return 0;
521 1.14 leo }
522 1.1 leo
523 1.14 leo int
524 1.44 dsl rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
525 1.1 leo {
526 1.14 leo int unit = minor(dev);
527 1.41 tsutsui struct clock_softc *sc = device_lookup_private(&clock_cd, unit);
528 1.14 leo
529 1.14 leo sc->sc_flags = 0;
530 1.14 leo return 0;
531 1.14 leo }
532 1.14 leo
533 1.14 leo int
534 1.44 dsl rtcread(dev_t dev, struct uio *uio, int flags)
535 1.14 leo {
536 1.14 leo struct clock_softc *sc;
537 1.14 leo mc_todregs clkregs;
538 1.14 leo int s, length;
539 1.14 leo char buffer[16];
540 1.14 leo
541 1.41 tsutsui sc = device_lookup_private(&clock_cd, minor(dev));
542 1.14 leo
543 1.14 leo s = splhigh();
544 1.14 leo MC146818_GETTOD(RTC, &clkregs);
545 1.14 leo splx(s);
546 1.14 leo
547 1.21 leo sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
548 1.21 leo clkregs[MC_YEAR] + GEMSTARTOFTIME,
549 1.14 leo clkregs[MC_MONTH], clkregs[MC_DOM],
550 1.14 leo clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
551 1.14 leo
552 1.14 leo if (uio->uio_offset > strlen(buffer))
553 1.14 leo return 0;
554 1.1 leo
555 1.14 leo length = strlen(buffer) - uio->uio_offset;
556 1.14 leo if (length > uio->uio_resid)
557 1.14 leo length = uio->uio_resid;
558 1.1 leo
559 1.38 christos return(uiomove((void *)buffer, length, uio));
560 1.14 leo }
561 1.14 leo
562 1.14 leo static int
563 1.44 dsl twodigits(char *buffer, int pos)
564 1.14 leo {
565 1.14 leo int result = 0;
566 1.14 leo
567 1.14 leo if (buffer[pos] >= '0' && buffer[pos] <= '9')
568 1.14 leo result = (buffer[pos] - '0') * 10;
569 1.14 leo if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
570 1.14 leo result += (buffer[pos+1] - '0');
571 1.14 leo return(result);
572 1.14 leo }
573 1.1 leo
574 1.14 leo int
575 1.44 dsl rtcwrite(dev_t dev, struct uio *uio, int flags)
576 1.14 leo {
577 1.14 leo mc_todregs clkregs;
578 1.14 leo int s, length, error;
579 1.21 leo char buffer[16];
580 1.14 leo
581 1.14 leo /*
582 1.14 leo * We require atomic updates!
583 1.14 leo */
584 1.14 leo length = uio->uio_resid;
585 1.14 leo if (uio->uio_offset || (length != sizeof(buffer)
586 1.14 leo && length != sizeof(buffer - 1)))
587 1.14 leo return(EINVAL);
588 1.14 leo
589 1.38 christos if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
590 1.14 leo return(error);
591 1.1 leo
592 1.14 leo if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
593 1.14 leo return(EINVAL);
594 1.1 leo
595 1.14 leo s = splclock();
596 1.25 leo mc146818_write(RTC, MC_REGB,
597 1.25 leo mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
598 1.3 leo MC146818_GETTOD(RTC, &clkregs);
599 1.14 leo splx(s);
600 1.14 leo
601 1.21 leo clkregs[MC_SEC] = twodigits(buffer, 13);
602 1.21 leo clkregs[MC_MIN] = twodigits(buffer, 10);
603 1.21 leo clkregs[MC_HOUR] = twodigits(buffer, 8);
604 1.21 leo clkregs[MC_DOM] = twodigits(buffer, 6);
605 1.21 leo clkregs[MC_MONTH] = twodigits(buffer, 4);
606 1.21 leo s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
607 1.14 leo clkregs[MC_YEAR] = s - GEMSTARTOFTIME;
608 1.14 leo
609 1.14 leo s = splclock();
610 1.3 leo MC146818_PUTTOD(RTC, &clkregs);
611 1.14 leo splx(s);
612 1.1 leo
613 1.14 leo return(0);
614 1.1 leo }
615