Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.50.2.1
      1  1.50.2.1  uebayasi /*	$NetBSD: clock.c,v 1.50.2.1 2010/04/30 14:39:10 uebayasi Exp $	*/
      2       1.1       leo 
      3       1.1       leo /*
      4       1.1       leo  * Copyright (c) 1982, 1990 The Regents of the University of California.
      5       1.1       leo  * All rights reserved.
      6       1.1       leo  *
      7       1.1       leo  * This code is derived from software contributed to Berkeley by
      8       1.1       leo  * the Systems Programming Group of the University of Utah Computer
      9       1.1       leo  * Science Department.
     10       1.1       leo  *
     11       1.1       leo  * Redistribution and use in source and binary forms, with or without
     12       1.1       leo  * modification, are permitted provided that the following conditions
     13       1.1       leo  * are met:
     14       1.1       leo  * 1. Redistributions of source code must retain the above copyright
     15       1.1       leo  *    notice, this list of conditions and the following disclaimer.
     16       1.1       leo  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.1       leo  *    notice, this list of conditions and the following disclaimer in the
     18       1.1       leo  *    documentation and/or other materials provided with the distribution.
     19      1.34       agc  * 3. Neither the name of the University nor the names of its contributors
     20      1.34       agc  *    may be used to endorse or promote products derived from this software
     21      1.34       agc  *    without specific prior written permission.
     22      1.34       agc  *
     23      1.34       agc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24      1.34       agc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25      1.34       agc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26      1.34       agc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27      1.34       agc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28      1.34       agc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29      1.34       agc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30      1.34       agc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31      1.34       agc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32      1.34       agc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33      1.34       agc  * SUCH DAMAGE.
     34      1.34       agc  *
     35      1.34       agc  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     36      1.34       agc  *
     37      1.34       agc  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     38      1.34       agc  */
     39      1.34       agc /*
     40      1.34       agc  * Copyright (c) 1988 University of Utah.
     41      1.34       agc  *
     42      1.34       agc  * This code is derived from software contributed to Berkeley by
     43      1.34       agc  * the Systems Programming Group of the University of Utah Computer
     44      1.34       agc  * Science Department.
     45      1.34       agc  *
     46      1.34       agc  * Redistribution and use in source and binary forms, with or without
     47      1.34       agc  * modification, are permitted provided that the following conditions
     48      1.34       agc  * are met:
     49      1.34       agc  * 1. Redistributions of source code must retain the above copyright
     50      1.34       agc  *    notice, this list of conditions and the following disclaimer.
     51      1.34       agc  * 2. Redistributions in binary form must reproduce the above copyright
     52      1.34       agc  *    notice, this list of conditions and the following disclaimer in the
     53      1.34       agc  *    documentation and/or other materials provided with the distribution.
     54       1.1       leo  * 3. All advertising materials mentioning features or use of this software
     55       1.1       leo  *    must display the following acknowledgement:
     56       1.1       leo  *	This product includes software developed by the University of
     57       1.1       leo  *	California, Berkeley and its contributors.
     58       1.1       leo  * 4. Neither the name of the University nor the names of its contributors
     59       1.1       leo  *    may be used to endorse or promote products derived from this software
     60       1.1       leo  *    without specific prior written permission.
     61       1.1       leo  *
     62       1.1       leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63       1.1       leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64       1.1       leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65       1.1       leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66       1.1       leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67       1.1       leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68       1.1       leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69       1.1       leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70       1.1       leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71       1.1       leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72       1.1       leo  * SUCH DAMAGE.
     73       1.1       leo  *
     74       1.1       leo  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     75       1.1       leo  *
     76       1.1       leo  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     77       1.1       leo  */
     78      1.33     lukem 
     79      1.33     lukem #include <sys/cdefs.h>
     80  1.50.2.1  uebayasi __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.50.2.1 2010/04/30 14:39:10 uebayasi Exp $");
     81       1.1       leo 
     82       1.1       leo #include <sys/param.h>
     83       1.1       leo #include <sys/kernel.h>
     84       1.9       leo #include <sys/systm.h>
     85       1.1       leo #include <sys/device.h>
     86      1.14       leo #include <sys/uio.h>
     87      1.14       leo #include <sys/conf.h>
     88      1.32   thorpej #include <sys/proc.h>
     89      1.31  jdolecek #include <sys/event.h>
     90      1.40     joerg #include <sys/timetc.h>
     91      1.18       leo 
     92      1.18       leo #include <dev/clock_subr.h>
     93      1.18       leo 
     94       1.1       leo #include <machine/psl.h>
     95       1.1       leo #include <machine/cpu.h>
     96       1.1       leo #include <machine/iomap.h>
     97       1.1       leo #include <machine/mfp.h>
     98       1.1       leo #include <atari/dev/clockreg.h>
     99      1.48   tsutsui #include <atari/dev/clockvar.h>
    100      1.14       leo #include <atari/atari/device.h>
    101       1.1       leo 
    102       1.4       leo #if defined(GPROF) && defined(PROFTIMER)
    103       1.4       leo #include <machine/profile.h>
    104       1.1       leo #endif
    105       1.1       leo 
    106  1.50.2.1  uebayasi #include "ioconf.h"
    107  1.50.2.1  uebayasi 
    108      1.40     joerg static int	atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
    109      1.40     joerg static int	atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
    110      1.40     joerg 
    111       1.1       leo /*
    112       1.5       leo  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
    113       1.5       leo  * of 200. Therefore the timer runs at an effective rate of:
    114       1.5       leo  * 2457600/200 = 12288Hz.
    115       1.5       leo  */
    116       1.5       leo #define CLOCK_HZ	12288
    117       1.5       leo 
    118      1.40     joerg static u_int clk_getcounter(struct timecounter *);
    119      1.40     joerg 
    120      1.40     joerg static struct timecounter clk_timecounter = {
    121      1.40     joerg 	clk_getcounter,	/* get_timecount */
    122      1.40     joerg 	0,		/* no poll_pps */
    123      1.40     joerg 	~0u,		/* counter_mask */
    124      1.40     joerg 	CLOCK_HZ,	/* frequency */
    125      1.40     joerg 	"clock",	/* name, overriden later */
    126      1.40     joerg 	100,		/* quality */
    127      1.40     joerg 	NULL,		/* prev */
    128      1.40     joerg 	NULL,		/* next */
    129      1.40     joerg };
    130      1.40     joerg 
    131       1.5       leo /*
    132       1.1       leo  * Machine-dependent clock routines.
    133       1.1       leo  *
    134       1.1       leo  * Inittodr initializes the time of day hardware which provides
    135       1.1       leo  * date functions.
    136       1.1       leo  *
    137       1.1       leo  * Resettodr restores the time of day hardware after a time change.
    138       1.1       leo  */
    139       1.1       leo 
    140      1.14       leo struct clock_softc {
    141      1.14       leo 	struct device	sc_dev;
    142      1.14       leo 	int		sc_flags;
    143      1.14       leo };
    144      1.14       leo 
    145      1.14       leo /*
    146      1.14       leo  *  'sc_flags' state info. Only used by the rtc-device functions.
    147      1.14       leo  */
    148      1.14       leo #define	RTC_OPEN	1
    149      1.14       leo 
    150      1.14       leo dev_type_open(rtcopen);
    151      1.14       leo dev_type_close(rtcclose);
    152      1.14       leo dev_type_read(rtcread);
    153      1.14       leo dev_type_write(rtcwrite);
    154      1.14       leo 
    155      1.43       dsl static void	clockattach(struct device *, struct device *, void *);
    156      1.43       dsl static int	clockmatch(struct device *, struct cfdata *, void *);
    157       1.1       leo 
    158      1.30   thorpej CFATTACH_DECL(clock, sizeof(struct clock_softc),
    159      1.30   thorpej     clockmatch, clockattach, NULL, NULL);
    160      1.10   thorpej 
    161      1.28   gehenna const struct cdevsw rtc_cdevsw = {
    162      1.28   gehenna 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    163      1.31  jdolecek 	nostop, notty, nopoll, nommap, nokqfilter,
    164      1.28   gehenna };
    165       1.1       leo 
    166      1.43       dsl void statintr(struct clockframe);
    167       1.9       leo 
    168      1.43       dsl static int	twodigits(char *, int);
    169       1.1       leo 
    170       1.5       leo static int	divisor;	/* Systemclock divisor	*/
    171       1.5       leo 
    172       1.5       leo /*
    173       1.5       leo  * Statistics and profile clock intervals and variances. Variance must
    174       1.5       leo  * be a power of 2. Since this gives us an even number, not an odd number,
    175       1.5       leo  * we discard one case and compensate. That is, a variance of 64 would
    176       1.5       leo  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    177      1.26       wiz  * This is symmetric around the point 32, or statvar/2, and thus averages
    178       1.5       leo  * to that value (assuming uniform random numbers).
    179       1.5       leo  */
    180       1.5       leo #ifdef STATCLOCK
    181       1.5       leo static int	statvar = 32;	/* {stat,prof}clock variance		*/
    182       1.5       leo static int	statmin;	/* statclock divisor - variance/2	*/
    183       1.5       leo static int	profmin;	/* profclock divisor - variance/2	*/
    184      1.27       wiz static int	clk2min;	/* current, from above choices		*/
    185       1.5       leo #endif
    186       1.1       leo 
    187       1.1       leo int
    188      1.44       dsl clockmatch(struct device *pdp, struct cfdata *cfp, void *auxp)
    189       1.1       leo {
    190      1.49   tsutsui 
    191      1.49   tsutsui 	if (!strcmp("clock", auxp))
    192      1.49   tsutsui 		return 1;
    193      1.49   tsutsui 	return 0;
    194       1.1       leo }
    195       1.1       leo 
    196       1.1       leo /*
    197       1.1       leo  * Start the real-time clock.
    198       1.1       leo  */
    199      1.49   tsutsui void clockattach(struct device *pdp, struct device *dp, void *auxp)
    200       1.1       leo {
    201      1.49   tsutsui 
    202      1.14       leo 	struct clock_softc *sc = (void *)dp;
    203      1.40     joerg 	static struct todr_chip_handle	tch;
    204      1.40     joerg 
    205      1.40     joerg 	tch.todr_gettime_ymdhms = atari_rtc_get;
    206      1.40     joerg 	tch.todr_settime_ymdhms = atari_rtc_set;
    207      1.40     joerg 	tch.todr_setwen = NULL;
    208      1.40     joerg 
    209      1.40     joerg 	todr_attach(&tch);
    210      1.14       leo 
    211      1.14       leo 	sc->sc_flags = 0;
    212      1.14       leo 
    213       1.1       leo 	/*
    214       1.3       leo 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    215       1.3       leo 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    216       1.3       leo 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    217       1.3       leo 	 * following expression works for 48, 64 or 96 hz.
    218       1.1       leo 	 */
    219       1.5       leo 	divisor       = CLOCK_HZ/hz;
    220       1.2       leo 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    221       1.2       leo 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    222       1.2       leo 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    223       1.1       leo 
    224      1.40     joerg 	clk_timecounter.tc_frequency = CLOCK_HZ;
    225      1.40     joerg 
    226       1.5       leo 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    227      1.13  christos 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    228       1.5       leo 								hz, 64);
    229       1.5       leo 		hz = 64;
    230       1.5       leo 	}
    231      1.13  christos 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    232      1.42       abs 	tc_init(&clk_timecounter);
    233       1.1       leo 
    234       1.5       leo #ifdef STATCLOCK
    235       1.5       leo 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    236       1.5       leo 		stathz = hz;
    237       1.5       leo 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    238       1.5       leo 		profhz = hz << 1;
    239       1.5       leo 
    240       1.5       leo 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    241       1.5       leo 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    242       1.5       leo 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    243       1.5       leo 
    244       1.5       leo 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    245       1.5       leo 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    246       1.5       leo 	clk2min  = statmin;
    247       1.5       leo #endif /* STATCLOCK */
    248       1.1       leo }
    249       1.1       leo 
    250      1.46    cegger void cpu_initclocks(void)
    251       1.1       leo {
    252      1.49   tsutsui 
    253       1.3       leo 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    254      1.20       leo 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    255       1.2       leo 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    256       1.2       leo 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    257       1.5       leo 
    258       1.5       leo #ifdef STATCLOCK
    259       1.5       leo 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    260      1.20       leo 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    261       1.5       leo 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    262       1.5       leo 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    263       1.5       leo #endif /* STATCLOCK */
    264       1.1       leo }
    265       1.1       leo 
    266       1.9       leo void
    267      1.44       dsl setstatclockrate(int newhz)
    268       1.1       leo {
    269      1.49   tsutsui 
    270       1.5       leo #ifdef STATCLOCK
    271       1.5       leo 	if (newhz == stathz)
    272       1.5       leo 		clk2min = statmin;
    273       1.5       leo 	else clk2min = profmin;
    274       1.5       leo #endif /* STATCLOCK */
    275       1.1       leo }
    276       1.1       leo 
    277       1.5       leo #ifdef STATCLOCK
    278       1.5       leo void
    279      1.44       dsl statintr(struct clockframe frame)
    280       1.5       leo {
    281       1.5       leo 	register int	var, r;
    282       1.5       leo 
    283       1.5       leo 	var = statvar - 1;
    284       1.5       leo 	do {
    285       1.5       leo 		r = random() & var;
    286      1.49   tsutsui 	} while (r == 0);
    287       1.5       leo 
    288       1.5       leo 	/*
    289       1.5       leo 	 * Note that we are always lagging behind as the new divisor
    290       1.5       leo 	 * value will not be loaded until the next interrupt. This
    291       1.5       leo 	 * shouldn't disturb the median frequency (I think ;-) ) as
    292       1.5       leo 	 * only the value used when switching frequencies is used
    293       1.5       leo 	 * twice. This shouldn't happen very often.
    294       1.5       leo 	 */
    295       1.5       leo 	MFP->mf_tcdr = clk2min + r;
    296       1.5       leo 
    297      1.16       leo 	statclock(&frame);
    298       1.5       leo }
    299       1.5       leo #endif /* STATCLOCK */
    300       1.5       leo 
    301      1.40     joerg static u_int
    302      1.40     joerg clk_getcounter(struct timecounter *tc)
    303       1.1       leo {
    304      1.47   tsutsui 	uint32_t delta, count, cur_hardclock;
    305      1.47   tsutsui 	uint8_t ipra, tadr;
    306      1.47   tsutsui 	int s;
    307      1.47   tsutsui 	static uint32_t lastcount;
    308       1.3       leo 
    309      1.40     joerg 	s = splhigh();
    310      1.47   tsutsui 	cur_hardclock = hardclock_ticks;
    311      1.40     joerg 	ipra = MFP->mf_ipra;
    312      1.40     joerg 	tadr = MFP->mf_tadr;
    313      1.40     joerg 	delta = divisor - tadr;
    314      1.40     joerg 
    315      1.40     joerg 	if (ipra & IA_TIMA)
    316      1.40     joerg 		delta += divisor;
    317      1.40     joerg 	splx(s);
    318      1.22       leo 
    319      1.47   tsutsui 	count = (divisor * cur_hardclock) + delta;
    320      1.47   tsutsui 	if ((int32_t)(count - lastcount) < 0) {
    321      1.47   tsutsui 		/* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
    322      1.47   tsutsui 		count = lastcount + 1;
    323      1.47   tsutsui 	}
    324      1.47   tsutsui 	lastcount = count;
    325      1.47   tsutsui 
    326      1.47   tsutsui 	return count;
    327       1.1       leo }
    328       1.1       leo 
    329       1.2       leo #define TIMB_FREQ	614400
    330       1.2       leo #define TIMB_LIMIT	256
    331       1.1       leo 
    332      1.48   tsutsui void
    333      1.48   tsutsui init_delay(void)
    334      1.48   tsutsui {
    335      1.48   tsutsui 
    336      1.48   tsutsui 	/*
    337      1.48   tsutsui 	 * Initialize Timer-B in the ST-MFP. This timer is used by
    338      1.48   tsutsui 	 * the 'delay' function below. This timer is setup to be
    339      1.48   tsutsui 	 * continueously counting from 255 back to zero at a
    340      1.48   tsutsui 	 * frequency of 614400Hz. We do this *early* in the
    341      1.48   tsutsui 	 * initialisation process.
    342      1.48   tsutsui 	 */
    343      1.48   tsutsui 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
    344      1.48   tsutsui 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    345      1.48   tsutsui 	MFP->mf_tbdr  = 0;
    346      1.48   tsutsui 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    347      1.48   tsutsui }
    348      1.48   tsutsui 
    349       1.1       leo /*
    350       1.1       leo  * Wait "n" microseconds.
    351       1.2       leo  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    352       1.1       leo  * Note: timer had better have been programmed before this is first used!
    353       1.1       leo  */
    354      1.14       leo void
    355      1.39     joerg delay(unsigned int n)
    356       1.1       leo {
    357      1.39     joerg 	int	ticks, otick, remaining;
    358       1.1       leo 
    359       1.1       leo 	/*
    360       1.1       leo 	 * Read the counter first, so that the rest of the setup overhead is
    361       1.1       leo 	 * counted.
    362       1.1       leo 	 */
    363       1.2       leo 	otick = MFP->mf_tbdr;
    364       1.1       leo 
    365      1.39     joerg 	if (n <= UINT_MAX / TIMB_FREQ) {
    366      1.39     joerg 		/*
    367      1.39     joerg 		 * For unsigned arithmetic, division can be replaced with
    368      1.39     joerg 		 * multiplication with the inverse and a shift.
    369      1.39     joerg 		 */
    370      1.39     joerg 		remaining = n * TIMB_FREQ / 1000000;
    371      1.39     joerg 	} else {
    372      1.39     joerg 		/* This is a very long delay.
    373      1.39     joerg 		 * Being slow here doesn't matter.
    374      1.39     joerg 		 */
    375      1.39     joerg 		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
    376       1.1       leo 	}
    377       1.1       leo 
    378      1.49   tsutsui 	while (remaining > 0) {
    379      1.35        he 		ticks = MFP->mf_tbdr;
    380      1.49   tsutsui 		if (ticks > otick)
    381      1.39     joerg 			remaining -= TIMB_LIMIT - (ticks - otick);
    382      1.39     joerg 		else
    383      1.39     joerg 			remaining -= otick - ticks;
    384      1.35        he 		otick = ticks;
    385       1.1       leo 	}
    386       1.1       leo }
    387       1.1       leo 
    388       1.4       leo #ifdef GPROF
    389       1.1       leo /*
    390       1.1       leo  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    391       1.1       leo  * Assumes it is called with clock interrupts blocked.
    392       1.1       leo  */
    393      1.44       dsl profclock(void *pc, int ps)
    394       1.1       leo {
    395      1.49   tsutsui 
    396       1.1       leo 	/*
    397       1.1       leo 	 * Came from user mode.
    398       1.1       leo 	 * If this process is being profiled record the tick.
    399       1.1       leo 	 */
    400       1.1       leo 	if (USERMODE(ps)) {
    401       1.1       leo 		if (p->p_stats.p_prof.pr_scale)
    402       1.1       leo 			addupc(pc, &curproc->p_stats.p_prof, 1);
    403       1.1       leo 	}
    404       1.1       leo 	/*
    405       1.1       leo 	 * Came from kernel (supervisor) mode.
    406       1.1       leo 	 * If we are profiling the kernel, record the tick.
    407       1.1       leo 	 */
    408       1.1       leo 	else if (profiling < 2) {
    409       1.1       leo 		register int s = pc - s_lowpc;
    410       1.1       leo 
    411       1.1       leo 		if (s < s_textsize)
    412      1.49   tsutsui 			kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
    413       1.1       leo 	}
    414       1.1       leo 	/*
    415       1.1       leo 	 * Kernel profiling was on but has been disabled.
    416       1.1       leo 	 * Mark as no longer profiling kernel and if all profiling done,
    417       1.1       leo 	 * disable the clock.
    418       1.1       leo 	 */
    419       1.1       leo 	if (profiling && (profon & PRF_KERNEL)) {
    420       1.1       leo 		profon &= ~PRF_KERNEL;
    421       1.1       leo 		if (profon == PRF_NONE)
    422       1.1       leo 			stopprofclock();
    423       1.1       leo 	}
    424       1.1       leo }
    425       1.1       leo #endif
    426       1.7       leo 
    427       1.7       leo /***********************************************************************
    428       1.7       leo  *                   Real Time Clock support                           *
    429       1.7       leo  ***********************************************************************/
    430       1.7       leo 
    431      1.50   tsutsui u_int mc146818_read(void *cookie, u_int regno)
    432       1.7       leo {
    433      1.50   tsutsui 	struct rtc *rtc = cookie;
    434      1.49   tsutsui 
    435      1.50   tsutsui 	rtc->rtc_regno = regno;
    436      1.50   tsutsui 	return rtc->rtc_data & 0xff;
    437       1.7       leo }
    438       1.7       leo 
    439      1.50   tsutsui void mc146818_write(void *cookie, u_int regno, u_int value)
    440       1.7       leo {
    441      1.50   tsutsui 	struct rtc *rtc = cookie;
    442      1.49   tsutsui 
    443      1.50   tsutsui 	rtc->rtc_regno = regno;
    444      1.50   tsutsui 	rtc->rtc_data  = value;
    445       1.7       leo }
    446       1.1       leo 
    447      1.40     joerg static int
    448      1.40     joerg atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    449       1.1       leo {
    450      1.18       leo 	int			sps;
    451      1.18       leo 	mc_todregs		clkregs;
    452      1.25       leo 	u_int			regb;
    453       1.3       leo 
    454       1.3       leo 	sps = splhigh();
    455      1.25       leo 	regb = mc146818_read(RTC, MC_REGB);
    456       1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    457       1.3       leo 	splx(sps);
    458       1.1       leo 
    459      1.25       leo 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    460      1.25       leo 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    461      1.25       leo 		printf("Error: Nonstandard RealTimeClock Configuration -"
    462      1.25       leo 			" value ignored\n"
    463      1.25       leo 			"       A write to /dev/rtc will correct this.\n");
    464      1.49   tsutsui 			return 0;
    465      1.25       leo 	}
    466      1.49   tsutsui 	if (clkregs[MC_SEC] > 59)
    467      1.40     joerg 		return -1;
    468      1.49   tsutsui 	if (clkregs[MC_MIN] > 59)
    469      1.40     joerg 		return -1;
    470      1.49   tsutsui 	if (clkregs[MC_HOUR] > 23)
    471      1.40     joerg 		return -1;
    472      1.49   tsutsui 	if (range_test(clkregs[MC_DOM], 1, 31))
    473      1.40     joerg 		return -1;
    474       1.3       leo 	if (range_test(clkregs[MC_MONTH], 1, 12))
    475      1.40     joerg 		return -1;
    476      1.49   tsutsui 	if (clkregs[MC_YEAR] > 99)
    477      1.40     joerg 		return -1;
    478      1.40     joerg 
    479      1.40     joerg 	dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    480      1.40     joerg 	dtp->dt_mon  = clkregs[MC_MONTH];
    481      1.40     joerg 	dtp->dt_day  = clkregs[MC_DOM];
    482      1.40     joerg 	dtp->dt_hour = clkregs[MC_HOUR];
    483      1.40     joerg 	dtp->dt_min  = clkregs[MC_MIN];
    484      1.40     joerg 	dtp->dt_sec  = clkregs[MC_SEC];
    485      1.40     joerg 
    486      1.40     joerg 	return 0;
    487      1.40     joerg }
    488      1.40     joerg 
    489      1.40     joerg static int
    490      1.40     joerg atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    491      1.40     joerg {
    492      1.40     joerg 	int s;
    493      1.40     joerg 	mc_todregs clkregs;
    494       1.1       leo 
    495      1.40     joerg 	clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
    496      1.40     joerg 	clkregs[MC_MONTH] = dtp->dt_mon;
    497      1.40     joerg 	clkregs[MC_DOM] = dtp->dt_day;
    498      1.40     joerg 	clkregs[MC_HOUR] = dtp->dt_hour;
    499      1.40     joerg 	clkregs[MC_MIN] = dtp->dt_min;
    500      1.40     joerg 	clkregs[MC_SEC] = dtp->dt_sec;
    501       1.1       leo 
    502      1.40     joerg 	s = splclock();
    503      1.40     joerg 	MC146818_PUTTOD(RTC, &clkregs);
    504      1.40     joerg 	splx(s);
    505      1.40     joerg 
    506      1.40     joerg 	return 0;
    507       1.1       leo }
    508      1.40     joerg 
    509      1.14       leo /***********************************************************************
    510      1.14       leo  *                   RTC-device support				       *
    511      1.14       leo  ***********************************************************************/
    512      1.14       leo int
    513      1.45       dsl rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
    514      1.14       leo {
    515      1.14       leo 	int			unit = minor(dev);
    516      1.14       leo 	struct clock_softc	*sc;
    517      1.14       leo 
    518      1.41   tsutsui 	sc = device_lookup_private(&clock_cd, unit);
    519      1.41   tsutsui 	if (sc == NULL)
    520      1.14       leo 		return ENXIO;
    521      1.14       leo 	if (sc->sc_flags & RTC_OPEN)
    522      1.14       leo 		return EBUSY;
    523      1.14       leo 
    524      1.14       leo 	sc->sc_flags = RTC_OPEN;
    525      1.14       leo 	return 0;
    526      1.14       leo }
    527       1.1       leo 
    528      1.14       leo int
    529      1.44       dsl rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
    530       1.1       leo {
    531      1.14       leo 	int			unit = minor(dev);
    532      1.41   tsutsui 	struct clock_softc	*sc = device_lookup_private(&clock_cd, unit);
    533      1.14       leo 
    534      1.14       leo 	sc->sc_flags = 0;
    535      1.14       leo 	return 0;
    536      1.14       leo }
    537      1.14       leo 
    538      1.14       leo int
    539      1.44       dsl rtcread(dev_t dev, struct uio *uio, int flags)
    540      1.14       leo {
    541      1.14       leo 	struct clock_softc	*sc;
    542      1.14       leo 	mc_todregs		clkregs;
    543      1.14       leo 	int			s, length;
    544      1.14       leo 	char			buffer[16];
    545      1.14       leo 
    546      1.41   tsutsui 	sc = device_lookup_private(&clock_cd, minor(dev));
    547      1.14       leo 
    548      1.14       leo 	s = splhigh();
    549      1.14       leo 	MC146818_GETTOD(RTC, &clkregs);
    550      1.14       leo 	splx(s);
    551      1.14       leo 
    552      1.21       leo 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    553      1.21       leo 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    554      1.14       leo 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    555      1.14       leo 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    556      1.14       leo 
    557      1.14       leo 	if (uio->uio_offset > strlen(buffer))
    558      1.14       leo 		return 0;
    559       1.1       leo 
    560      1.14       leo 	length = strlen(buffer) - uio->uio_offset;
    561      1.14       leo 	if (length > uio->uio_resid)
    562      1.14       leo 		length = uio->uio_resid;
    563       1.1       leo 
    564      1.49   tsutsui 	return uiomove((void *)buffer, length, uio);
    565      1.14       leo }
    566      1.14       leo 
    567      1.14       leo static int
    568      1.44       dsl twodigits(char *buffer, int pos)
    569      1.14       leo {
    570      1.14       leo 	int result = 0;
    571      1.14       leo 
    572      1.14       leo 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    573      1.14       leo 		result = (buffer[pos] - '0') * 10;
    574      1.14       leo 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    575      1.14       leo 		result += (buffer[pos+1] - '0');
    576      1.49   tsutsui 	return result;
    577      1.14       leo }
    578       1.1       leo 
    579      1.14       leo int
    580      1.44       dsl rtcwrite(dev_t dev, struct uio *uio, int flags)
    581      1.14       leo {
    582      1.14       leo 	mc_todregs		clkregs;
    583      1.14       leo 	int			s, length, error;
    584      1.21       leo 	char			buffer[16];
    585      1.14       leo 
    586      1.14       leo 	/*
    587      1.14       leo 	 * We require atomic updates!
    588      1.14       leo 	 */
    589      1.14       leo 	length = uio->uio_resid;
    590      1.14       leo 	if (uio->uio_offset || (length != sizeof(buffer)
    591      1.14       leo 	  && length != sizeof(buffer - 1)))
    592      1.49   tsutsui 		return EINVAL;
    593      1.14       leo 
    594      1.38  christos 	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
    595      1.49   tsutsui 		return error;
    596       1.1       leo 
    597      1.14       leo 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    598      1.49   tsutsui 		return EINVAL;
    599       1.1       leo 
    600      1.14       leo 	s = splclock();
    601      1.25       leo 	mc146818_write(RTC, MC_REGB,
    602      1.49   tsutsui 	    mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    603       1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    604      1.14       leo 	splx(s);
    605      1.14       leo 
    606      1.21       leo 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    607      1.21       leo 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    608      1.21       leo 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    609      1.21       leo 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    610      1.21       leo 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    611      1.21       leo 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    612      1.14       leo 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    613      1.14       leo 
    614      1.14       leo 	s = splclock();
    615       1.3       leo 	MC146818_PUTTOD(RTC, &clkregs);
    616      1.14       leo 	splx(s);
    617       1.1       leo 
    618      1.49   tsutsui 	return 0;
    619       1.1       leo }
    620