Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.51
      1  1.51   tsutsui /*	$NetBSD: clock.c,v 1.51 2010/04/13 09:51:07 tsutsui Exp $	*/
      2   1.1       leo 
      3   1.1       leo /*
      4   1.1       leo  * Copyright (c) 1982, 1990 The Regents of the University of California.
      5   1.1       leo  * All rights reserved.
      6   1.1       leo  *
      7   1.1       leo  * This code is derived from software contributed to Berkeley by
      8   1.1       leo  * the Systems Programming Group of the University of Utah Computer
      9   1.1       leo  * Science Department.
     10   1.1       leo  *
     11   1.1       leo  * Redistribution and use in source and binary forms, with or without
     12   1.1       leo  * modification, are permitted provided that the following conditions
     13   1.1       leo  * are met:
     14   1.1       leo  * 1. Redistributions of source code must retain the above copyright
     15   1.1       leo  *    notice, this list of conditions and the following disclaimer.
     16   1.1       leo  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1       leo  *    notice, this list of conditions and the following disclaimer in the
     18   1.1       leo  *    documentation and/or other materials provided with the distribution.
     19  1.34       agc  * 3. Neither the name of the University nor the names of its contributors
     20  1.34       agc  *    may be used to endorse or promote products derived from this software
     21  1.34       agc  *    without specific prior written permission.
     22  1.34       agc  *
     23  1.34       agc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  1.34       agc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  1.34       agc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  1.34       agc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  1.34       agc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  1.34       agc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  1.34       agc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  1.34       agc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  1.34       agc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  1.34       agc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  1.34       agc  * SUCH DAMAGE.
     34  1.34       agc  *
     35  1.34       agc  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     36  1.34       agc  *
     37  1.34       agc  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     38  1.34       agc  */
     39  1.34       agc /*
     40  1.34       agc  * Copyright (c) 1988 University of Utah.
     41  1.34       agc  *
     42  1.34       agc  * This code is derived from software contributed to Berkeley by
     43  1.34       agc  * the Systems Programming Group of the University of Utah Computer
     44  1.34       agc  * Science Department.
     45  1.34       agc  *
     46  1.34       agc  * Redistribution and use in source and binary forms, with or without
     47  1.34       agc  * modification, are permitted provided that the following conditions
     48  1.34       agc  * are met:
     49  1.34       agc  * 1. Redistributions of source code must retain the above copyright
     50  1.34       agc  *    notice, this list of conditions and the following disclaimer.
     51  1.34       agc  * 2. Redistributions in binary form must reproduce the above copyright
     52  1.34       agc  *    notice, this list of conditions and the following disclaimer in the
     53  1.34       agc  *    documentation and/or other materials provided with the distribution.
     54   1.1       leo  * 3. All advertising materials mentioning features or use of this software
     55   1.1       leo  *    must display the following acknowledgement:
     56   1.1       leo  *	This product includes software developed by the University of
     57   1.1       leo  *	California, Berkeley and its contributors.
     58   1.1       leo  * 4. Neither the name of the University nor the names of its contributors
     59   1.1       leo  *    may be used to endorse or promote products derived from this software
     60   1.1       leo  *    without specific prior written permission.
     61   1.1       leo  *
     62   1.1       leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63   1.1       leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64   1.1       leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65   1.1       leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66   1.1       leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67   1.1       leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68   1.1       leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69   1.1       leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70   1.1       leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71   1.1       leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72   1.1       leo  * SUCH DAMAGE.
     73   1.1       leo  *
     74   1.1       leo  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     75   1.1       leo  *
     76   1.1       leo  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     77   1.1       leo  */
     78  1.33     lukem 
     79  1.33     lukem #include <sys/cdefs.h>
     80  1.51   tsutsui __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.51 2010/04/13 09:51:07 tsutsui Exp $");
     81   1.1       leo 
     82   1.1       leo #include <sys/param.h>
     83   1.1       leo #include <sys/kernel.h>
     84   1.9       leo #include <sys/systm.h>
     85   1.1       leo #include <sys/device.h>
     86  1.14       leo #include <sys/uio.h>
     87  1.14       leo #include <sys/conf.h>
     88  1.32   thorpej #include <sys/proc.h>
     89  1.31  jdolecek #include <sys/event.h>
     90  1.40     joerg #include <sys/timetc.h>
     91  1.18       leo 
     92  1.18       leo #include <dev/clock_subr.h>
     93  1.18       leo 
     94   1.1       leo #include <machine/psl.h>
     95   1.1       leo #include <machine/cpu.h>
     96   1.1       leo #include <machine/iomap.h>
     97   1.1       leo #include <machine/mfp.h>
     98   1.1       leo #include <atari/dev/clockreg.h>
     99  1.48   tsutsui #include <atari/dev/clockvar.h>
    100  1.14       leo #include <atari/atari/device.h>
    101   1.1       leo 
    102   1.4       leo #if defined(GPROF) && defined(PROFTIMER)
    103   1.4       leo #include <machine/profile.h>
    104   1.1       leo #endif
    105   1.1       leo 
    106  1.51   tsutsui #include "ioconf.h"
    107  1.51   tsutsui 
    108  1.40     joerg static int	atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
    109  1.40     joerg static int	atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
    110  1.40     joerg 
    111   1.1       leo /*
    112   1.5       leo  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
    113   1.5       leo  * of 200. Therefore the timer runs at an effective rate of:
    114   1.5       leo  * 2457600/200 = 12288Hz.
    115   1.5       leo  */
    116   1.5       leo #define CLOCK_HZ	12288
    117   1.5       leo 
    118  1.40     joerg static u_int clk_getcounter(struct timecounter *);
    119  1.40     joerg 
    120  1.40     joerg static struct timecounter clk_timecounter = {
    121  1.40     joerg 	clk_getcounter,	/* get_timecount */
    122  1.40     joerg 	0,		/* no poll_pps */
    123  1.40     joerg 	~0u,		/* counter_mask */
    124  1.40     joerg 	CLOCK_HZ,	/* frequency */
    125  1.40     joerg 	"clock",	/* name, overriden later */
    126  1.40     joerg 	100,		/* quality */
    127  1.40     joerg 	NULL,		/* prev */
    128  1.40     joerg 	NULL,		/* next */
    129  1.40     joerg };
    130  1.40     joerg 
    131   1.5       leo /*
    132   1.1       leo  * Machine-dependent clock routines.
    133   1.1       leo  *
    134   1.1       leo  * Inittodr initializes the time of day hardware which provides
    135   1.1       leo  * date functions.
    136   1.1       leo  *
    137   1.1       leo  * Resettodr restores the time of day hardware after a time change.
    138   1.1       leo  */
    139   1.1       leo 
    140  1.14       leo struct clock_softc {
    141  1.14       leo 	struct device	sc_dev;
    142  1.14       leo 	int		sc_flags;
    143  1.14       leo };
    144  1.14       leo 
    145  1.14       leo /*
    146  1.14       leo  *  'sc_flags' state info. Only used by the rtc-device functions.
    147  1.14       leo  */
    148  1.14       leo #define	RTC_OPEN	1
    149  1.14       leo 
    150  1.14       leo dev_type_open(rtcopen);
    151  1.14       leo dev_type_close(rtcclose);
    152  1.14       leo dev_type_read(rtcread);
    153  1.14       leo dev_type_write(rtcwrite);
    154  1.14       leo 
    155  1.43       dsl static void	clockattach(struct device *, struct device *, void *);
    156  1.43       dsl static int	clockmatch(struct device *, struct cfdata *, void *);
    157   1.1       leo 
    158  1.30   thorpej CFATTACH_DECL(clock, sizeof(struct clock_softc),
    159  1.30   thorpej     clockmatch, clockattach, NULL, NULL);
    160  1.10   thorpej 
    161  1.28   gehenna const struct cdevsw rtc_cdevsw = {
    162  1.28   gehenna 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    163  1.31  jdolecek 	nostop, notty, nopoll, nommap, nokqfilter,
    164  1.28   gehenna };
    165   1.1       leo 
    166  1.43       dsl void statintr(struct clockframe);
    167   1.9       leo 
    168  1.43       dsl static int	twodigits(char *, int);
    169   1.1       leo 
    170   1.5       leo static int	divisor;	/* Systemclock divisor	*/
    171   1.5       leo 
    172   1.5       leo /*
    173   1.5       leo  * Statistics and profile clock intervals and variances. Variance must
    174   1.5       leo  * be a power of 2. Since this gives us an even number, not an odd number,
    175   1.5       leo  * we discard one case and compensate. That is, a variance of 64 would
    176   1.5       leo  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    177  1.26       wiz  * This is symmetric around the point 32, or statvar/2, and thus averages
    178   1.5       leo  * to that value (assuming uniform random numbers).
    179   1.5       leo  */
    180   1.5       leo #ifdef STATCLOCK
    181   1.5       leo static int	statvar = 32;	/* {stat,prof}clock variance		*/
    182   1.5       leo static int	statmin;	/* statclock divisor - variance/2	*/
    183   1.5       leo static int	profmin;	/* profclock divisor - variance/2	*/
    184  1.27       wiz static int	clk2min;	/* current, from above choices		*/
    185   1.5       leo #endif
    186   1.1       leo 
    187   1.1       leo int
    188  1.44       dsl clockmatch(struct device *pdp, struct cfdata *cfp, void *auxp)
    189   1.1       leo {
    190  1.49   tsutsui 
    191  1.49   tsutsui 	if (!strcmp("clock", auxp))
    192  1.49   tsutsui 		return 1;
    193  1.49   tsutsui 	return 0;
    194   1.1       leo }
    195   1.1       leo 
    196   1.1       leo /*
    197   1.1       leo  * Start the real-time clock.
    198   1.1       leo  */
    199  1.49   tsutsui void clockattach(struct device *pdp, struct device *dp, void *auxp)
    200   1.1       leo {
    201  1.49   tsutsui 
    202  1.14       leo 	struct clock_softc *sc = (void *)dp;
    203  1.40     joerg 	static struct todr_chip_handle	tch;
    204  1.40     joerg 
    205  1.40     joerg 	tch.todr_gettime_ymdhms = atari_rtc_get;
    206  1.40     joerg 	tch.todr_settime_ymdhms = atari_rtc_set;
    207  1.40     joerg 	tch.todr_setwen = NULL;
    208  1.40     joerg 
    209  1.40     joerg 	todr_attach(&tch);
    210  1.14       leo 
    211  1.14       leo 	sc->sc_flags = 0;
    212  1.14       leo 
    213   1.1       leo 	/*
    214   1.3       leo 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    215   1.3       leo 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    216   1.3       leo 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    217   1.3       leo 	 * following expression works for 48, 64 or 96 hz.
    218   1.1       leo 	 */
    219   1.5       leo 	divisor       = CLOCK_HZ/hz;
    220   1.2       leo 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    221   1.2       leo 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    222   1.2       leo 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    223   1.1       leo 
    224  1.40     joerg 	clk_timecounter.tc_frequency = CLOCK_HZ;
    225  1.40     joerg 
    226   1.5       leo 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    227  1.13  christos 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    228   1.5       leo 								hz, 64);
    229   1.5       leo 		hz = 64;
    230   1.5       leo 	}
    231  1.13  christos 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    232  1.42       abs 	tc_init(&clk_timecounter);
    233   1.1       leo 
    234   1.5       leo #ifdef STATCLOCK
    235   1.5       leo 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    236   1.5       leo 		stathz = hz;
    237   1.5       leo 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    238   1.5       leo 		profhz = hz << 1;
    239   1.5       leo 
    240   1.5       leo 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    241   1.5       leo 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    242   1.5       leo 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    243   1.5       leo 
    244   1.5       leo 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    245   1.5       leo 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    246   1.5       leo 	clk2min  = statmin;
    247   1.5       leo #endif /* STATCLOCK */
    248   1.1       leo }
    249   1.1       leo 
    250  1.46    cegger void cpu_initclocks(void)
    251   1.1       leo {
    252  1.49   tsutsui 
    253   1.3       leo 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    254  1.20       leo 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    255   1.2       leo 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    256   1.2       leo 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    257   1.5       leo 
    258   1.5       leo #ifdef STATCLOCK
    259   1.5       leo 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    260  1.20       leo 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    261   1.5       leo 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    262   1.5       leo 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    263   1.5       leo #endif /* STATCLOCK */
    264   1.1       leo }
    265   1.1       leo 
    266   1.9       leo void
    267  1.44       dsl setstatclockrate(int newhz)
    268   1.1       leo {
    269  1.49   tsutsui 
    270   1.5       leo #ifdef STATCLOCK
    271   1.5       leo 	if (newhz == stathz)
    272   1.5       leo 		clk2min = statmin;
    273   1.5       leo 	else clk2min = profmin;
    274   1.5       leo #endif /* STATCLOCK */
    275   1.1       leo }
    276   1.1       leo 
    277   1.5       leo #ifdef STATCLOCK
    278   1.5       leo void
    279  1.44       dsl statintr(struct clockframe frame)
    280   1.5       leo {
    281   1.5       leo 	register int	var, r;
    282   1.5       leo 
    283   1.5       leo 	var = statvar - 1;
    284   1.5       leo 	do {
    285   1.5       leo 		r = random() & var;
    286  1.49   tsutsui 	} while (r == 0);
    287   1.5       leo 
    288   1.5       leo 	/*
    289   1.5       leo 	 * Note that we are always lagging behind as the new divisor
    290   1.5       leo 	 * value will not be loaded until the next interrupt. This
    291   1.5       leo 	 * shouldn't disturb the median frequency (I think ;-) ) as
    292   1.5       leo 	 * only the value used when switching frequencies is used
    293   1.5       leo 	 * twice. This shouldn't happen very often.
    294   1.5       leo 	 */
    295   1.5       leo 	MFP->mf_tcdr = clk2min + r;
    296   1.5       leo 
    297  1.16       leo 	statclock(&frame);
    298   1.5       leo }
    299   1.5       leo #endif /* STATCLOCK */
    300   1.5       leo 
    301  1.40     joerg static u_int
    302  1.40     joerg clk_getcounter(struct timecounter *tc)
    303   1.1       leo {
    304  1.47   tsutsui 	uint32_t delta, count, cur_hardclock;
    305  1.47   tsutsui 	uint8_t ipra, tadr;
    306  1.47   tsutsui 	int s;
    307  1.47   tsutsui 	static uint32_t lastcount;
    308   1.3       leo 
    309  1.40     joerg 	s = splhigh();
    310  1.47   tsutsui 	cur_hardclock = hardclock_ticks;
    311  1.40     joerg 	ipra = MFP->mf_ipra;
    312  1.40     joerg 	tadr = MFP->mf_tadr;
    313  1.40     joerg 	delta = divisor - tadr;
    314  1.40     joerg 
    315  1.40     joerg 	if (ipra & IA_TIMA)
    316  1.40     joerg 		delta += divisor;
    317  1.40     joerg 	splx(s);
    318  1.22       leo 
    319  1.47   tsutsui 	count = (divisor * cur_hardclock) + delta;
    320  1.47   tsutsui 	if ((int32_t)(count - lastcount) < 0) {
    321  1.47   tsutsui 		/* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
    322  1.47   tsutsui 		count = lastcount + 1;
    323  1.47   tsutsui 	}
    324  1.47   tsutsui 	lastcount = count;
    325  1.47   tsutsui 
    326  1.47   tsutsui 	return count;
    327   1.1       leo }
    328   1.1       leo 
    329   1.2       leo #define TIMB_FREQ	614400
    330   1.2       leo #define TIMB_LIMIT	256
    331   1.1       leo 
    332  1.48   tsutsui void
    333  1.48   tsutsui init_delay(void)
    334  1.48   tsutsui {
    335  1.48   tsutsui 
    336  1.48   tsutsui 	/*
    337  1.48   tsutsui 	 * Initialize Timer-B in the ST-MFP. This timer is used by
    338  1.48   tsutsui 	 * the 'delay' function below. This timer is setup to be
    339  1.48   tsutsui 	 * continueously counting from 255 back to zero at a
    340  1.48   tsutsui 	 * frequency of 614400Hz. We do this *early* in the
    341  1.48   tsutsui 	 * initialisation process.
    342  1.48   tsutsui 	 */
    343  1.48   tsutsui 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
    344  1.48   tsutsui 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    345  1.48   tsutsui 	MFP->mf_tbdr  = 0;
    346  1.48   tsutsui 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    347  1.48   tsutsui }
    348  1.48   tsutsui 
    349   1.1       leo /*
    350   1.1       leo  * Wait "n" microseconds.
    351   1.2       leo  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    352   1.1       leo  * Note: timer had better have been programmed before this is first used!
    353   1.1       leo  */
    354  1.14       leo void
    355  1.39     joerg delay(unsigned int n)
    356   1.1       leo {
    357  1.39     joerg 	int	ticks, otick, remaining;
    358   1.1       leo 
    359   1.1       leo 	/*
    360   1.1       leo 	 * Read the counter first, so that the rest of the setup overhead is
    361   1.1       leo 	 * counted.
    362   1.1       leo 	 */
    363   1.2       leo 	otick = MFP->mf_tbdr;
    364   1.1       leo 
    365  1.39     joerg 	if (n <= UINT_MAX / TIMB_FREQ) {
    366  1.39     joerg 		/*
    367  1.39     joerg 		 * For unsigned arithmetic, division can be replaced with
    368  1.39     joerg 		 * multiplication with the inverse and a shift.
    369  1.39     joerg 		 */
    370  1.39     joerg 		remaining = n * TIMB_FREQ / 1000000;
    371  1.39     joerg 	} else {
    372  1.39     joerg 		/* This is a very long delay.
    373  1.39     joerg 		 * Being slow here doesn't matter.
    374  1.39     joerg 		 */
    375  1.39     joerg 		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
    376   1.1       leo 	}
    377   1.1       leo 
    378  1.49   tsutsui 	while (remaining > 0) {
    379  1.35        he 		ticks = MFP->mf_tbdr;
    380  1.49   tsutsui 		if (ticks > otick)
    381  1.39     joerg 			remaining -= TIMB_LIMIT - (ticks - otick);
    382  1.39     joerg 		else
    383  1.39     joerg 			remaining -= otick - ticks;
    384  1.35        he 		otick = ticks;
    385   1.1       leo 	}
    386   1.1       leo }
    387   1.1       leo 
    388   1.4       leo #ifdef GPROF
    389   1.1       leo /*
    390   1.1       leo  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    391   1.1       leo  * Assumes it is called with clock interrupts blocked.
    392   1.1       leo  */
    393  1.44       dsl profclock(void *pc, int ps)
    394   1.1       leo {
    395  1.49   tsutsui 
    396   1.1       leo 	/*
    397   1.1       leo 	 * Came from user mode.
    398   1.1       leo 	 * If this process is being profiled record the tick.
    399   1.1       leo 	 */
    400   1.1       leo 	if (USERMODE(ps)) {
    401   1.1       leo 		if (p->p_stats.p_prof.pr_scale)
    402   1.1       leo 			addupc(pc, &curproc->p_stats.p_prof, 1);
    403   1.1       leo 	}
    404   1.1       leo 	/*
    405   1.1       leo 	 * Came from kernel (supervisor) mode.
    406   1.1       leo 	 * If we are profiling the kernel, record the tick.
    407   1.1       leo 	 */
    408   1.1       leo 	else if (profiling < 2) {
    409   1.1       leo 		register int s = pc - s_lowpc;
    410   1.1       leo 
    411   1.1       leo 		if (s < s_textsize)
    412  1.49   tsutsui 			kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
    413   1.1       leo 	}
    414   1.1       leo 	/*
    415   1.1       leo 	 * Kernel profiling was on but has been disabled.
    416   1.1       leo 	 * Mark as no longer profiling kernel and if all profiling done,
    417   1.1       leo 	 * disable the clock.
    418   1.1       leo 	 */
    419   1.1       leo 	if (profiling && (profon & PRF_KERNEL)) {
    420   1.1       leo 		profon &= ~PRF_KERNEL;
    421   1.1       leo 		if (profon == PRF_NONE)
    422   1.1       leo 			stopprofclock();
    423   1.1       leo 	}
    424   1.1       leo }
    425   1.1       leo #endif
    426   1.7       leo 
    427   1.7       leo /***********************************************************************
    428   1.7       leo  *                   Real Time Clock support                           *
    429   1.7       leo  ***********************************************************************/
    430   1.7       leo 
    431  1.50   tsutsui u_int mc146818_read(void *cookie, u_int regno)
    432   1.7       leo {
    433  1.50   tsutsui 	struct rtc *rtc = cookie;
    434  1.49   tsutsui 
    435  1.50   tsutsui 	rtc->rtc_regno = regno;
    436  1.50   tsutsui 	return rtc->rtc_data & 0xff;
    437   1.7       leo }
    438   1.7       leo 
    439  1.50   tsutsui void mc146818_write(void *cookie, u_int regno, u_int value)
    440   1.7       leo {
    441  1.50   tsutsui 	struct rtc *rtc = cookie;
    442  1.49   tsutsui 
    443  1.50   tsutsui 	rtc->rtc_regno = regno;
    444  1.50   tsutsui 	rtc->rtc_data  = value;
    445   1.7       leo }
    446   1.1       leo 
    447  1.40     joerg static int
    448  1.40     joerg atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    449   1.1       leo {
    450  1.18       leo 	int			sps;
    451  1.18       leo 	mc_todregs		clkregs;
    452  1.25       leo 	u_int			regb;
    453   1.3       leo 
    454   1.3       leo 	sps = splhigh();
    455  1.25       leo 	regb = mc146818_read(RTC, MC_REGB);
    456   1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    457   1.3       leo 	splx(sps);
    458   1.1       leo 
    459  1.25       leo 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    460  1.25       leo 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    461  1.25       leo 		printf("Error: Nonstandard RealTimeClock Configuration -"
    462  1.25       leo 			" value ignored\n"
    463  1.25       leo 			"       A write to /dev/rtc will correct this.\n");
    464  1.49   tsutsui 			return 0;
    465  1.25       leo 	}
    466  1.49   tsutsui 	if (clkregs[MC_SEC] > 59)
    467  1.40     joerg 		return -1;
    468  1.49   tsutsui 	if (clkregs[MC_MIN] > 59)
    469  1.40     joerg 		return -1;
    470  1.49   tsutsui 	if (clkregs[MC_HOUR] > 23)
    471  1.40     joerg 		return -1;
    472  1.49   tsutsui 	if (range_test(clkregs[MC_DOM], 1, 31))
    473  1.40     joerg 		return -1;
    474   1.3       leo 	if (range_test(clkregs[MC_MONTH], 1, 12))
    475  1.40     joerg 		return -1;
    476  1.49   tsutsui 	if (clkregs[MC_YEAR] > 99)
    477  1.40     joerg 		return -1;
    478  1.40     joerg 
    479  1.40     joerg 	dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    480  1.40     joerg 	dtp->dt_mon  = clkregs[MC_MONTH];
    481  1.40     joerg 	dtp->dt_day  = clkregs[MC_DOM];
    482  1.40     joerg 	dtp->dt_hour = clkregs[MC_HOUR];
    483  1.40     joerg 	dtp->dt_min  = clkregs[MC_MIN];
    484  1.40     joerg 	dtp->dt_sec  = clkregs[MC_SEC];
    485  1.40     joerg 
    486  1.40     joerg 	return 0;
    487  1.40     joerg }
    488  1.40     joerg 
    489  1.40     joerg static int
    490  1.40     joerg atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    491  1.40     joerg {
    492  1.40     joerg 	int s;
    493  1.40     joerg 	mc_todregs clkregs;
    494   1.1       leo 
    495  1.40     joerg 	clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
    496  1.40     joerg 	clkregs[MC_MONTH] = dtp->dt_mon;
    497  1.40     joerg 	clkregs[MC_DOM] = dtp->dt_day;
    498  1.40     joerg 	clkregs[MC_HOUR] = dtp->dt_hour;
    499  1.40     joerg 	clkregs[MC_MIN] = dtp->dt_min;
    500  1.40     joerg 	clkregs[MC_SEC] = dtp->dt_sec;
    501   1.1       leo 
    502  1.40     joerg 	s = splclock();
    503  1.40     joerg 	MC146818_PUTTOD(RTC, &clkregs);
    504  1.40     joerg 	splx(s);
    505  1.40     joerg 
    506  1.40     joerg 	return 0;
    507   1.1       leo }
    508  1.40     joerg 
    509  1.14       leo /***********************************************************************
    510  1.14       leo  *                   RTC-device support				       *
    511  1.14       leo  ***********************************************************************/
    512  1.14       leo int
    513  1.45       dsl rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
    514  1.14       leo {
    515  1.14       leo 	int			unit = minor(dev);
    516  1.14       leo 	struct clock_softc	*sc;
    517  1.14       leo 
    518  1.41   tsutsui 	sc = device_lookup_private(&clock_cd, unit);
    519  1.41   tsutsui 	if (sc == NULL)
    520  1.14       leo 		return ENXIO;
    521  1.14       leo 	if (sc->sc_flags & RTC_OPEN)
    522  1.14       leo 		return EBUSY;
    523  1.14       leo 
    524  1.14       leo 	sc->sc_flags = RTC_OPEN;
    525  1.14       leo 	return 0;
    526  1.14       leo }
    527   1.1       leo 
    528  1.14       leo int
    529  1.44       dsl rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
    530   1.1       leo {
    531  1.14       leo 	int			unit = minor(dev);
    532  1.41   tsutsui 	struct clock_softc	*sc = device_lookup_private(&clock_cd, unit);
    533  1.14       leo 
    534  1.14       leo 	sc->sc_flags = 0;
    535  1.14       leo 	return 0;
    536  1.14       leo }
    537  1.14       leo 
    538  1.14       leo int
    539  1.44       dsl rtcread(dev_t dev, struct uio *uio, int flags)
    540  1.14       leo {
    541  1.14       leo 	struct clock_softc	*sc;
    542  1.14       leo 	mc_todregs		clkregs;
    543  1.14       leo 	int			s, length;
    544  1.14       leo 	char			buffer[16];
    545  1.14       leo 
    546  1.41   tsutsui 	sc = device_lookup_private(&clock_cd, minor(dev));
    547  1.14       leo 
    548  1.14       leo 	s = splhigh();
    549  1.14       leo 	MC146818_GETTOD(RTC, &clkregs);
    550  1.14       leo 	splx(s);
    551  1.14       leo 
    552  1.21       leo 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    553  1.21       leo 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    554  1.14       leo 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    555  1.14       leo 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    556  1.14       leo 
    557  1.14       leo 	if (uio->uio_offset > strlen(buffer))
    558  1.14       leo 		return 0;
    559   1.1       leo 
    560  1.14       leo 	length = strlen(buffer) - uio->uio_offset;
    561  1.14       leo 	if (length > uio->uio_resid)
    562  1.14       leo 		length = uio->uio_resid;
    563   1.1       leo 
    564  1.49   tsutsui 	return uiomove((void *)buffer, length, uio);
    565  1.14       leo }
    566  1.14       leo 
    567  1.14       leo static int
    568  1.44       dsl twodigits(char *buffer, int pos)
    569  1.14       leo {
    570  1.14       leo 	int result = 0;
    571  1.14       leo 
    572  1.14       leo 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    573  1.14       leo 		result = (buffer[pos] - '0') * 10;
    574  1.14       leo 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    575  1.14       leo 		result += (buffer[pos+1] - '0');
    576  1.49   tsutsui 	return result;
    577  1.14       leo }
    578   1.1       leo 
    579  1.14       leo int
    580  1.44       dsl rtcwrite(dev_t dev, struct uio *uio, int flags)
    581  1.14       leo {
    582  1.14       leo 	mc_todregs		clkregs;
    583  1.14       leo 	int			s, length, error;
    584  1.21       leo 	char			buffer[16];
    585  1.14       leo 
    586  1.14       leo 	/*
    587  1.14       leo 	 * We require atomic updates!
    588  1.14       leo 	 */
    589  1.14       leo 	length = uio->uio_resid;
    590  1.14       leo 	if (uio->uio_offset || (length != sizeof(buffer)
    591  1.14       leo 	  && length != sizeof(buffer - 1)))
    592  1.49   tsutsui 		return EINVAL;
    593  1.14       leo 
    594  1.38  christos 	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
    595  1.49   tsutsui 		return error;
    596   1.1       leo 
    597  1.14       leo 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    598  1.49   tsutsui 		return EINVAL;
    599   1.1       leo 
    600  1.14       leo 	s = splclock();
    601  1.25       leo 	mc146818_write(RTC, MC_REGB,
    602  1.49   tsutsui 	    mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    603   1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    604  1.14       leo 	splx(s);
    605  1.14       leo 
    606  1.21       leo 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    607  1.21       leo 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    608  1.21       leo 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    609  1.21       leo 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    610  1.21       leo 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    611  1.21       leo 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    612  1.14       leo 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    613  1.14       leo 
    614  1.14       leo 	s = splclock();
    615   1.3       leo 	MC146818_PUTTOD(RTC, &clkregs);
    616  1.14       leo 	splx(s);
    617   1.1       leo 
    618  1.49   tsutsui 	return 0;
    619   1.1       leo }
    620