clock.c revision 1.51 1 1.51 tsutsui /* $NetBSD: clock.c,v 1.51 2010/04/13 09:51:07 tsutsui Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.1 leo * Copyright (c) 1982, 1990 The Regents of the University of California.
5 1.1 leo * All rights reserved.
6 1.1 leo *
7 1.1 leo * This code is derived from software contributed to Berkeley by
8 1.1 leo * the Systems Programming Group of the University of Utah Computer
9 1.1 leo * Science Department.
10 1.1 leo *
11 1.1 leo * Redistribution and use in source and binary forms, with or without
12 1.1 leo * modification, are permitted provided that the following conditions
13 1.1 leo * are met:
14 1.1 leo * 1. Redistributions of source code must retain the above copyright
15 1.1 leo * notice, this list of conditions and the following disclaimer.
16 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 leo * notice, this list of conditions and the following disclaimer in the
18 1.1 leo * documentation and/or other materials provided with the distribution.
19 1.34 agc * 3. Neither the name of the University nor the names of its contributors
20 1.34 agc * may be used to endorse or promote products derived from this software
21 1.34 agc * without specific prior written permission.
22 1.34 agc *
23 1.34 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.34 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.34 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.34 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.34 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.34 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.34 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.34 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.34 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.34 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.34 agc * SUCH DAMAGE.
34 1.34 agc *
35 1.34 agc * from: Utah $Hdr: clock.c 1.18 91/01/21$
36 1.34 agc *
37 1.34 agc * @(#)clock.c 7.6 (Berkeley) 5/7/91
38 1.34 agc */
39 1.34 agc /*
40 1.34 agc * Copyright (c) 1988 University of Utah.
41 1.34 agc *
42 1.34 agc * This code is derived from software contributed to Berkeley by
43 1.34 agc * the Systems Programming Group of the University of Utah Computer
44 1.34 agc * Science Department.
45 1.34 agc *
46 1.34 agc * Redistribution and use in source and binary forms, with or without
47 1.34 agc * modification, are permitted provided that the following conditions
48 1.34 agc * are met:
49 1.34 agc * 1. Redistributions of source code must retain the above copyright
50 1.34 agc * notice, this list of conditions and the following disclaimer.
51 1.34 agc * 2. Redistributions in binary form must reproduce the above copyright
52 1.34 agc * notice, this list of conditions and the following disclaimer in the
53 1.34 agc * documentation and/or other materials provided with the distribution.
54 1.1 leo * 3. All advertising materials mentioning features or use of this software
55 1.1 leo * must display the following acknowledgement:
56 1.1 leo * This product includes software developed by the University of
57 1.1 leo * California, Berkeley and its contributors.
58 1.1 leo * 4. Neither the name of the University nor the names of its contributors
59 1.1 leo * may be used to endorse or promote products derived from this software
60 1.1 leo * without specific prior written permission.
61 1.1 leo *
62 1.1 leo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.1 leo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.1 leo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.1 leo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.1 leo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.1 leo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.1 leo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.1 leo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.1 leo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.1 leo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.1 leo * SUCH DAMAGE.
73 1.1 leo *
74 1.1 leo * from: Utah $Hdr: clock.c 1.18 91/01/21$
75 1.1 leo *
76 1.1 leo * @(#)clock.c 7.6 (Berkeley) 5/7/91
77 1.1 leo */
78 1.33 lukem
79 1.33 lukem #include <sys/cdefs.h>
80 1.51 tsutsui __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.51 2010/04/13 09:51:07 tsutsui Exp $");
81 1.1 leo
82 1.1 leo #include <sys/param.h>
83 1.1 leo #include <sys/kernel.h>
84 1.9 leo #include <sys/systm.h>
85 1.1 leo #include <sys/device.h>
86 1.14 leo #include <sys/uio.h>
87 1.14 leo #include <sys/conf.h>
88 1.32 thorpej #include <sys/proc.h>
89 1.31 jdolecek #include <sys/event.h>
90 1.40 joerg #include <sys/timetc.h>
91 1.18 leo
92 1.18 leo #include <dev/clock_subr.h>
93 1.18 leo
94 1.1 leo #include <machine/psl.h>
95 1.1 leo #include <machine/cpu.h>
96 1.1 leo #include <machine/iomap.h>
97 1.1 leo #include <machine/mfp.h>
98 1.1 leo #include <atari/dev/clockreg.h>
99 1.48 tsutsui #include <atari/dev/clockvar.h>
100 1.14 leo #include <atari/atari/device.h>
101 1.1 leo
102 1.4 leo #if defined(GPROF) && defined(PROFTIMER)
103 1.4 leo #include <machine/profile.h>
104 1.1 leo #endif
105 1.1 leo
106 1.51 tsutsui #include "ioconf.h"
107 1.51 tsutsui
108 1.40 joerg static int atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
109 1.40 joerg static int atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
110 1.40 joerg
111 1.1 leo /*
112 1.5 leo * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
113 1.5 leo * of 200. Therefore the timer runs at an effective rate of:
114 1.5 leo * 2457600/200 = 12288Hz.
115 1.5 leo */
116 1.5 leo #define CLOCK_HZ 12288
117 1.5 leo
118 1.40 joerg static u_int clk_getcounter(struct timecounter *);
119 1.40 joerg
120 1.40 joerg static struct timecounter clk_timecounter = {
121 1.40 joerg clk_getcounter, /* get_timecount */
122 1.40 joerg 0, /* no poll_pps */
123 1.40 joerg ~0u, /* counter_mask */
124 1.40 joerg CLOCK_HZ, /* frequency */
125 1.40 joerg "clock", /* name, overriden later */
126 1.40 joerg 100, /* quality */
127 1.40 joerg NULL, /* prev */
128 1.40 joerg NULL, /* next */
129 1.40 joerg };
130 1.40 joerg
131 1.5 leo /*
132 1.1 leo * Machine-dependent clock routines.
133 1.1 leo *
134 1.1 leo * Inittodr initializes the time of day hardware which provides
135 1.1 leo * date functions.
136 1.1 leo *
137 1.1 leo * Resettodr restores the time of day hardware after a time change.
138 1.1 leo */
139 1.1 leo
140 1.14 leo struct clock_softc {
141 1.14 leo struct device sc_dev;
142 1.14 leo int sc_flags;
143 1.14 leo };
144 1.14 leo
145 1.14 leo /*
146 1.14 leo * 'sc_flags' state info. Only used by the rtc-device functions.
147 1.14 leo */
148 1.14 leo #define RTC_OPEN 1
149 1.14 leo
150 1.14 leo dev_type_open(rtcopen);
151 1.14 leo dev_type_close(rtcclose);
152 1.14 leo dev_type_read(rtcread);
153 1.14 leo dev_type_write(rtcwrite);
154 1.14 leo
155 1.43 dsl static void clockattach(struct device *, struct device *, void *);
156 1.43 dsl static int clockmatch(struct device *, struct cfdata *, void *);
157 1.1 leo
158 1.30 thorpej CFATTACH_DECL(clock, sizeof(struct clock_softc),
159 1.30 thorpej clockmatch, clockattach, NULL, NULL);
160 1.10 thorpej
161 1.28 gehenna const struct cdevsw rtc_cdevsw = {
162 1.28 gehenna rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
163 1.31 jdolecek nostop, notty, nopoll, nommap, nokqfilter,
164 1.28 gehenna };
165 1.1 leo
166 1.43 dsl void statintr(struct clockframe);
167 1.9 leo
168 1.43 dsl static int twodigits(char *, int);
169 1.1 leo
170 1.5 leo static int divisor; /* Systemclock divisor */
171 1.5 leo
172 1.5 leo /*
173 1.5 leo * Statistics and profile clock intervals and variances. Variance must
174 1.5 leo * be a power of 2. Since this gives us an even number, not an odd number,
175 1.5 leo * we discard one case and compensate. That is, a variance of 64 would
176 1.5 leo * give us offsets in [0..63]. Instead, we take offsets in [1..63].
177 1.26 wiz * This is symmetric around the point 32, or statvar/2, and thus averages
178 1.5 leo * to that value (assuming uniform random numbers).
179 1.5 leo */
180 1.5 leo #ifdef STATCLOCK
181 1.5 leo static int statvar = 32; /* {stat,prof}clock variance */
182 1.5 leo static int statmin; /* statclock divisor - variance/2 */
183 1.5 leo static int profmin; /* profclock divisor - variance/2 */
184 1.27 wiz static int clk2min; /* current, from above choices */
185 1.5 leo #endif
186 1.1 leo
187 1.1 leo int
188 1.44 dsl clockmatch(struct device *pdp, struct cfdata *cfp, void *auxp)
189 1.1 leo {
190 1.49 tsutsui
191 1.49 tsutsui if (!strcmp("clock", auxp))
192 1.49 tsutsui return 1;
193 1.49 tsutsui return 0;
194 1.1 leo }
195 1.1 leo
196 1.1 leo /*
197 1.1 leo * Start the real-time clock.
198 1.1 leo */
199 1.49 tsutsui void clockattach(struct device *pdp, struct device *dp, void *auxp)
200 1.1 leo {
201 1.49 tsutsui
202 1.14 leo struct clock_softc *sc = (void *)dp;
203 1.40 joerg static struct todr_chip_handle tch;
204 1.40 joerg
205 1.40 joerg tch.todr_gettime_ymdhms = atari_rtc_get;
206 1.40 joerg tch.todr_settime_ymdhms = atari_rtc_set;
207 1.40 joerg tch.todr_setwen = NULL;
208 1.40 joerg
209 1.40 joerg todr_attach(&tch);
210 1.14 leo
211 1.14 leo sc->sc_flags = 0;
212 1.14 leo
213 1.1 leo /*
214 1.3 leo * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
215 1.3 leo * The MFP clock runs at 2457600Hz. Therefore the timer runs
216 1.3 leo * at an effective rate of: 2457600/200 = 12288Hz. The
217 1.3 leo * following expression works for 48, 64 or 96 hz.
218 1.1 leo */
219 1.5 leo divisor = CLOCK_HZ/hz;
220 1.2 leo MFP->mf_tacr = 0; /* Stop timer */
221 1.2 leo MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
222 1.2 leo MFP->mf_tadr = divisor; /* Set divisor */
223 1.1 leo
224 1.40 joerg clk_timecounter.tc_frequency = CLOCK_HZ;
225 1.40 joerg
226 1.5 leo if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
227 1.13 christos printf (": illegal value %d for systemclock, reset to %d\n\t",
228 1.5 leo hz, 64);
229 1.5 leo hz = 64;
230 1.5 leo }
231 1.13 christos printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
232 1.42 abs tc_init(&clk_timecounter);
233 1.1 leo
234 1.5 leo #ifdef STATCLOCK
235 1.5 leo if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
236 1.5 leo stathz = hz;
237 1.5 leo if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
238 1.5 leo profhz = hz << 1;
239 1.5 leo
240 1.5 leo MFP->mf_tcdcr &= 0x7; /* Stop timer */
241 1.5 leo MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
242 1.5 leo MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
243 1.5 leo
244 1.5 leo statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
245 1.5 leo profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
246 1.5 leo clk2min = statmin;
247 1.5 leo #endif /* STATCLOCK */
248 1.1 leo }
249 1.1 leo
250 1.46 cegger void cpu_initclocks(void)
251 1.1 leo {
252 1.49 tsutsui
253 1.3 leo MFP->mf_tacr = T_Q200; /* Start timer */
254 1.20 leo MFP->mf_ipra = (u_int8_t)~IA_TIMA;/* Clear pending interrupts */
255 1.2 leo MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
256 1.2 leo MFP->mf_imra |= IA_TIMA; /* ..... */
257 1.5 leo
258 1.5 leo #ifdef STATCLOCK
259 1.5 leo MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
260 1.20 leo MFP->mf_iprb = (u_int8_t)~IB_TIMC;/* Clear pending interrupts */
261 1.5 leo MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
262 1.5 leo MFP->mf_imrb |= IB_TIMC; /* ..... */
263 1.5 leo #endif /* STATCLOCK */
264 1.1 leo }
265 1.1 leo
266 1.9 leo void
267 1.44 dsl setstatclockrate(int newhz)
268 1.1 leo {
269 1.49 tsutsui
270 1.5 leo #ifdef STATCLOCK
271 1.5 leo if (newhz == stathz)
272 1.5 leo clk2min = statmin;
273 1.5 leo else clk2min = profmin;
274 1.5 leo #endif /* STATCLOCK */
275 1.1 leo }
276 1.1 leo
277 1.5 leo #ifdef STATCLOCK
278 1.5 leo void
279 1.44 dsl statintr(struct clockframe frame)
280 1.5 leo {
281 1.5 leo register int var, r;
282 1.5 leo
283 1.5 leo var = statvar - 1;
284 1.5 leo do {
285 1.5 leo r = random() & var;
286 1.49 tsutsui } while (r == 0);
287 1.5 leo
288 1.5 leo /*
289 1.5 leo * Note that we are always lagging behind as the new divisor
290 1.5 leo * value will not be loaded until the next interrupt. This
291 1.5 leo * shouldn't disturb the median frequency (I think ;-) ) as
292 1.5 leo * only the value used when switching frequencies is used
293 1.5 leo * twice. This shouldn't happen very often.
294 1.5 leo */
295 1.5 leo MFP->mf_tcdr = clk2min + r;
296 1.5 leo
297 1.16 leo statclock(&frame);
298 1.5 leo }
299 1.5 leo #endif /* STATCLOCK */
300 1.5 leo
301 1.40 joerg static u_int
302 1.40 joerg clk_getcounter(struct timecounter *tc)
303 1.1 leo {
304 1.47 tsutsui uint32_t delta, count, cur_hardclock;
305 1.47 tsutsui uint8_t ipra, tadr;
306 1.47 tsutsui int s;
307 1.47 tsutsui static uint32_t lastcount;
308 1.3 leo
309 1.40 joerg s = splhigh();
310 1.47 tsutsui cur_hardclock = hardclock_ticks;
311 1.40 joerg ipra = MFP->mf_ipra;
312 1.40 joerg tadr = MFP->mf_tadr;
313 1.40 joerg delta = divisor - tadr;
314 1.40 joerg
315 1.40 joerg if (ipra & IA_TIMA)
316 1.40 joerg delta += divisor;
317 1.40 joerg splx(s);
318 1.22 leo
319 1.47 tsutsui count = (divisor * cur_hardclock) + delta;
320 1.47 tsutsui if ((int32_t)(count - lastcount) < 0) {
321 1.47 tsutsui /* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
322 1.47 tsutsui count = lastcount + 1;
323 1.47 tsutsui }
324 1.47 tsutsui lastcount = count;
325 1.47 tsutsui
326 1.47 tsutsui return count;
327 1.1 leo }
328 1.1 leo
329 1.2 leo #define TIMB_FREQ 614400
330 1.2 leo #define TIMB_LIMIT 256
331 1.1 leo
332 1.48 tsutsui void
333 1.48 tsutsui init_delay(void)
334 1.48 tsutsui {
335 1.48 tsutsui
336 1.48 tsutsui /*
337 1.48 tsutsui * Initialize Timer-B in the ST-MFP. This timer is used by
338 1.48 tsutsui * the 'delay' function below. This timer is setup to be
339 1.48 tsutsui * continueously counting from 255 back to zero at a
340 1.48 tsutsui * frequency of 614400Hz. We do this *early* in the
341 1.48 tsutsui * initialisation process.
342 1.48 tsutsui */
343 1.48 tsutsui MFP->mf_tbcr = 0; /* Stop timer */
344 1.48 tsutsui MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
345 1.48 tsutsui MFP->mf_tbdr = 0;
346 1.48 tsutsui MFP->mf_tbcr = T_Q004; /* Start timer */
347 1.48 tsutsui }
348 1.48 tsutsui
349 1.1 leo /*
350 1.1 leo * Wait "n" microseconds.
351 1.2 leo * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
352 1.1 leo * Note: timer had better have been programmed before this is first used!
353 1.1 leo */
354 1.14 leo void
355 1.39 joerg delay(unsigned int n)
356 1.1 leo {
357 1.39 joerg int ticks, otick, remaining;
358 1.1 leo
359 1.1 leo /*
360 1.1 leo * Read the counter first, so that the rest of the setup overhead is
361 1.1 leo * counted.
362 1.1 leo */
363 1.2 leo otick = MFP->mf_tbdr;
364 1.1 leo
365 1.39 joerg if (n <= UINT_MAX / TIMB_FREQ) {
366 1.39 joerg /*
367 1.39 joerg * For unsigned arithmetic, division can be replaced with
368 1.39 joerg * multiplication with the inverse and a shift.
369 1.39 joerg */
370 1.39 joerg remaining = n * TIMB_FREQ / 1000000;
371 1.39 joerg } else {
372 1.39 joerg /* This is a very long delay.
373 1.39 joerg * Being slow here doesn't matter.
374 1.39 joerg */
375 1.39 joerg remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
376 1.1 leo }
377 1.1 leo
378 1.49 tsutsui while (remaining > 0) {
379 1.35 he ticks = MFP->mf_tbdr;
380 1.49 tsutsui if (ticks > otick)
381 1.39 joerg remaining -= TIMB_LIMIT - (ticks - otick);
382 1.39 joerg else
383 1.39 joerg remaining -= otick - ticks;
384 1.35 he otick = ticks;
385 1.1 leo }
386 1.1 leo }
387 1.1 leo
388 1.4 leo #ifdef GPROF
389 1.1 leo /*
390 1.1 leo * profclock() is expanded in line in lev6intr() unless profiling kernel.
391 1.1 leo * Assumes it is called with clock interrupts blocked.
392 1.1 leo */
393 1.44 dsl profclock(void *pc, int ps)
394 1.1 leo {
395 1.49 tsutsui
396 1.1 leo /*
397 1.1 leo * Came from user mode.
398 1.1 leo * If this process is being profiled record the tick.
399 1.1 leo */
400 1.1 leo if (USERMODE(ps)) {
401 1.1 leo if (p->p_stats.p_prof.pr_scale)
402 1.1 leo addupc(pc, &curproc->p_stats.p_prof, 1);
403 1.1 leo }
404 1.1 leo /*
405 1.1 leo * Came from kernel (supervisor) mode.
406 1.1 leo * If we are profiling the kernel, record the tick.
407 1.1 leo */
408 1.1 leo else if (profiling < 2) {
409 1.1 leo register int s = pc - s_lowpc;
410 1.1 leo
411 1.1 leo if (s < s_textsize)
412 1.49 tsutsui kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
413 1.1 leo }
414 1.1 leo /*
415 1.1 leo * Kernel profiling was on but has been disabled.
416 1.1 leo * Mark as no longer profiling kernel and if all profiling done,
417 1.1 leo * disable the clock.
418 1.1 leo */
419 1.1 leo if (profiling && (profon & PRF_KERNEL)) {
420 1.1 leo profon &= ~PRF_KERNEL;
421 1.1 leo if (profon == PRF_NONE)
422 1.1 leo stopprofclock();
423 1.1 leo }
424 1.1 leo }
425 1.1 leo #endif
426 1.7 leo
427 1.7 leo /***********************************************************************
428 1.7 leo * Real Time Clock support *
429 1.7 leo ***********************************************************************/
430 1.7 leo
431 1.50 tsutsui u_int mc146818_read(void *cookie, u_int regno)
432 1.7 leo {
433 1.50 tsutsui struct rtc *rtc = cookie;
434 1.49 tsutsui
435 1.50 tsutsui rtc->rtc_regno = regno;
436 1.50 tsutsui return rtc->rtc_data & 0xff;
437 1.7 leo }
438 1.7 leo
439 1.50 tsutsui void mc146818_write(void *cookie, u_int regno, u_int value)
440 1.7 leo {
441 1.50 tsutsui struct rtc *rtc = cookie;
442 1.49 tsutsui
443 1.50 tsutsui rtc->rtc_regno = regno;
444 1.50 tsutsui rtc->rtc_data = value;
445 1.7 leo }
446 1.1 leo
447 1.40 joerg static int
448 1.40 joerg atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
449 1.1 leo {
450 1.18 leo int sps;
451 1.18 leo mc_todregs clkregs;
452 1.25 leo u_int regb;
453 1.3 leo
454 1.3 leo sps = splhigh();
455 1.25 leo regb = mc146818_read(RTC, MC_REGB);
456 1.3 leo MC146818_GETTOD(RTC, &clkregs);
457 1.3 leo splx(sps);
458 1.1 leo
459 1.25 leo regb &= MC_REGB_24HR|MC_REGB_BINARY;
460 1.25 leo if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
461 1.25 leo printf("Error: Nonstandard RealTimeClock Configuration -"
462 1.25 leo " value ignored\n"
463 1.25 leo " A write to /dev/rtc will correct this.\n");
464 1.49 tsutsui return 0;
465 1.25 leo }
466 1.49 tsutsui if (clkregs[MC_SEC] > 59)
467 1.40 joerg return -1;
468 1.49 tsutsui if (clkregs[MC_MIN] > 59)
469 1.40 joerg return -1;
470 1.49 tsutsui if (clkregs[MC_HOUR] > 23)
471 1.40 joerg return -1;
472 1.49 tsutsui if (range_test(clkregs[MC_DOM], 1, 31))
473 1.40 joerg return -1;
474 1.3 leo if (range_test(clkregs[MC_MONTH], 1, 12))
475 1.40 joerg return -1;
476 1.49 tsutsui if (clkregs[MC_YEAR] > 99)
477 1.40 joerg return -1;
478 1.40 joerg
479 1.40 joerg dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
480 1.40 joerg dtp->dt_mon = clkregs[MC_MONTH];
481 1.40 joerg dtp->dt_day = clkregs[MC_DOM];
482 1.40 joerg dtp->dt_hour = clkregs[MC_HOUR];
483 1.40 joerg dtp->dt_min = clkregs[MC_MIN];
484 1.40 joerg dtp->dt_sec = clkregs[MC_SEC];
485 1.40 joerg
486 1.40 joerg return 0;
487 1.40 joerg }
488 1.40 joerg
489 1.40 joerg static int
490 1.40 joerg atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
491 1.40 joerg {
492 1.40 joerg int s;
493 1.40 joerg mc_todregs clkregs;
494 1.1 leo
495 1.40 joerg clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
496 1.40 joerg clkregs[MC_MONTH] = dtp->dt_mon;
497 1.40 joerg clkregs[MC_DOM] = dtp->dt_day;
498 1.40 joerg clkregs[MC_HOUR] = dtp->dt_hour;
499 1.40 joerg clkregs[MC_MIN] = dtp->dt_min;
500 1.40 joerg clkregs[MC_SEC] = dtp->dt_sec;
501 1.1 leo
502 1.40 joerg s = splclock();
503 1.40 joerg MC146818_PUTTOD(RTC, &clkregs);
504 1.40 joerg splx(s);
505 1.40 joerg
506 1.40 joerg return 0;
507 1.1 leo }
508 1.40 joerg
509 1.14 leo /***********************************************************************
510 1.14 leo * RTC-device support *
511 1.14 leo ***********************************************************************/
512 1.14 leo int
513 1.45 dsl rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
514 1.14 leo {
515 1.14 leo int unit = minor(dev);
516 1.14 leo struct clock_softc *sc;
517 1.14 leo
518 1.41 tsutsui sc = device_lookup_private(&clock_cd, unit);
519 1.41 tsutsui if (sc == NULL)
520 1.14 leo return ENXIO;
521 1.14 leo if (sc->sc_flags & RTC_OPEN)
522 1.14 leo return EBUSY;
523 1.14 leo
524 1.14 leo sc->sc_flags = RTC_OPEN;
525 1.14 leo return 0;
526 1.14 leo }
527 1.1 leo
528 1.14 leo int
529 1.44 dsl rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
530 1.1 leo {
531 1.14 leo int unit = minor(dev);
532 1.41 tsutsui struct clock_softc *sc = device_lookup_private(&clock_cd, unit);
533 1.14 leo
534 1.14 leo sc->sc_flags = 0;
535 1.14 leo return 0;
536 1.14 leo }
537 1.14 leo
538 1.14 leo int
539 1.44 dsl rtcread(dev_t dev, struct uio *uio, int flags)
540 1.14 leo {
541 1.14 leo struct clock_softc *sc;
542 1.14 leo mc_todregs clkregs;
543 1.14 leo int s, length;
544 1.14 leo char buffer[16];
545 1.14 leo
546 1.41 tsutsui sc = device_lookup_private(&clock_cd, minor(dev));
547 1.14 leo
548 1.14 leo s = splhigh();
549 1.14 leo MC146818_GETTOD(RTC, &clkregs);
550 1.14 leo splx(s);
551 1.14 leo
552 1.21 leo sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
553 1.21 leo clkregs[MC_YEAR] + GEMSTARTOFTIME,
554 1.14 leo clkregs[MC_MONTH], clkregs[MC_DOM],
555 1.14 leo clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
556 1.14 leo
557 1.14 leo if (uio->uio_offset > strlen(buffer))
558 1.14 leo return 0;
559 1.1 leo
560 1.14 leo length = strlen(buffer) - uio->uio_offset;
561 1.14 leo if (length > uio->uio_resid)
562 1.14 leo length = uio->uio_resid;
563 1.1 leo
564 1.49 tsutsui return uiomove((void *)buffer, length, uio);
565 1.14 leo }
566 1.14 leo
567 1.14 leo static int
568 1.44 dsl twodigits(char *buffer, int pos)
569 1.14 leo {
570 1.14 leo int result = 0;
571 1.14 leo
572 1.14 leo if (buffer[pos] >= '0' && buffer[pos] <= '9')
573 1.14 leo result = (buffer[pos] - '0') * 10;
574 1.14 leo if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
575 1.14 leo result += (buffer[pos+1] - '0');
576 1.49 tsutsui return result;
577 1.14 leo }
578 1.1 leo
579 1.14 leo int
580 1.44 dsl rtcwrite(dev_t dev, struct uio *uio, int flags)
581 1.14 leo {
582 1.14 leo mc_todregs clkregs;
583 1.14 leo int s, length, error;
584 1.21 leo char buffer[16];
585 1.14 leo
586 1.14 leo /*
587 1.14 leo * We require atomic updates!
588 1.14 leo */
589 1.14 leo length = uio->uio_resid;
590 1.14 leo if (uio->uio_offset || (length != sizeof(buffer)
591 1.14 leo && length != sizeof(buffer - 1)))
592 1.49 tsutsui return EINVAL;
593 1.14 leo
594 1.38 christos if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
595 1.49 tsutsui return error;
596 1.1 leo
597 1.14 leo if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
598 1.49 tsutsui return EINVAL;
599 1.1 leo
600 1.14 leo s = splclock();
601 1.25 leo mc146818_write(RTC, MC_REGB,
602 1.49 tsutsui mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
603 1.3 leo MC146818_GETTOD(RTC, &clkregs);
604 1.14 leo splx(s);
605 1.14 leo
606 1.21 leo clkregs[MC_SEC] = twodigits(buffer, 13);
607 1.21 leo clkregs[MC_MIN] = twodigits(buffer, 10);
608 1.21 leo clkregs[MC_HOUR] = twodigits(buffer, 8);
609 1.21 leo clkregs[MC_DOM] = twodigits(buffer, 6);
610 1.21 leo clkregs[MC_MONTH] = twodigits(buffer, 4);
611 1.21 leo s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
612 1.14 leo clkregs[MC_YEAR] = s - GEMSTARTOFTIME;
613 1.14 leo
614 1.14 leo s = splclock();
615 1.3 leo MC146818_PUTTOD(RTC, &clkregs);
616 1.14 leo splx(s);
617 1.1 leo
618 1.49 tsutsui return 0;
619 1.1 leo }
620