Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.51.4.1
      1  1.51.4.1    bouyer /*	$NetBSD: clock.c,v 1.51.4.1 2011/02/17 11:59:33 bouyer Exp $	*/
      2       1.1       leo 
      3       1.1       leo /*
      4  1.51.4.1    bouyer  * Copyright (c) 1988 University of Utah.
      5       1.1       leo  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6       1.1       leo  * All rights reserved.
      7       1.1       leo  *
      8       1.1       leo  * This code is derived from software contributed to Berkeley by
      9       1.1       leo  * the Systems Programming Group of the University of Utah Computer
     10       1.1       leo  * Science Department.
     11       1.1       leo  *
     12       1.1       leo  * Redistribution and use in source and binary forms, with or without
     13       1.1       leo  * modification, are permitted provided that the following conditions
     14       1.1       leo  * are met:
     15       1.1       leo  * 1. Redistributions of source code must retain the above copyright
     16       1.1       leo  *    notice, this list of conditions and the following disclaimer.
     17       1.1       leo  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.1       leo  *    notice, this list of conditions and the following disclaimer in the
     19       1.1       leo  *    documentation and/or other materials provided with the distribution.
     20      1.34       agc  * 3. Neither the name of the University nor the names of its contributors
     21      1.34       agc  *    may be used to endorse or promote products derived from this software
     22      1.34       agc  *    without specific prior written permission.
     23      1.34       agc  *
     24      1.34       agc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25      1.34       agc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26      1.34       agc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27      1.34       agc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28      1.34       agc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29      1.34       agc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30      1.34       agc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31      1.34       agc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32      1.34       agc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33      1.34       agc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34      1.34       agc  * SUCH DAMAGE.
     35      1.34       agc  *
     36      1.34       agc  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     37      1.34       agc  *
     38      1.34       agc  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     39      1.34       agc  */
     40      1.33     lukem 
     41      1.33     lukem #include <sys/cdefs.h>
     42  1.51.4.1    bouyer __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.51.4.1 2011/02/17 11:59:33 bouyer Exp $");
     43       1.1       leo 
     44       1.1       leo #include <sys/param.h>
     45       1.1       leo #include <sys/kernel.h>
     46       1.9       leo #include <sys/systm.h>
     47       1.1       leo #include <sys/device.h>
     48      1.14       leo #include <sys/uio.h>
     49      1.14       leo #include <sys/conf.h>
     50      1.32   thorpej #include <sys/proc.h>
     51      1.31  jdolecek #include <sys/event.h>
     52      1.40     joerg #include <sys/timetc.h>
     53      1.18       leo 
     54      1.18       leo #include <dev/clock_subr.h>
     55      1.18       leo 
     56       1.1       leo #include <machine/psl.h>
     57       1.1       leo #include <machine/cpu.h>
     58       1.1       leo #include <machine/iomap.h>
     59       1.1       leo #include <machine/mfp.h>
     60       1.1       leo #include <atari/dev/clockreg.h>
     61      1.48   tsutsui #include <atari/dev/clockvar.h>
     62      1.14       leo #include <atari/atari/device.h>
     63       1.1       leo 
     64       1.4       leo #if defined(GPROF) && defined(PROFTIMER)
     65       1.4       leo #include <machine/profile.h>
     66       1.1       leo #endif
     67       1.1       leo 
     68      1.51   tsutsui #include "ioconf.h"
     69      1.51   tsutsui 
     70      1.40     joerg static int	atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
     71      1.40     joerg static int	atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
     72      1.40     joerg 
     73       1.1       leo /*
     74       1.5       leo  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     75       1.5       leo  * of 200. Therefore the timer runs at an effective rate of:
     76       1.5       leo  * 2457600/200 = 12288Hz.
     77       1.5       leo  */
     78       1.5       leo #define CLOCK_HZ	12288
     79       1.5       leo 
     80      1.40     joerg static u_int clk_getcounter(struct timecounter *);
     81      1.40     joerg 
     82      1.40     joerg static struct timecounter clk_timecounter = {
     83      1.40     joerg 	clk_getcounter,	/* get_timecount */
     84      1.40     joerg 	0,		/* no poll_pps */
     85      1.40     joerg 	~0u,		/* counter_mask */
     86      1.40     joerg 	CLOCK_HZ,	/* frequency */
     87      1.40     joerg 	"clock",	/* name, overriden later */
     88      1.40     joerg 	100,		/* quality */
     89      1.40     joerg 	NULL,		/* prev */
     90      1.40     joerg 	NULL,		/* next */
     91      1.40     joerg };
     92      1.40     joerg 
     93       1.5       leo /*
     94       1.1       leo  * Machine-dependent clock routines.
     95       1.1       leo  *
     96       1.1       leo  * Inittodr initializes the time of day hardware which provides
     97       1.1       leo  * date functions.
     98       1.1       leo  *
     99       1.1       leo  * Resettodr restores the time of day hardware after a time change.
    100       1.1       leo  */
    101       1.1       leo 
    102      1.14       leo struct clock_softc {
    103      1.14       leo 	struct device	sc_dev;
    104      1.14       leo 	int		sc_flags;
    105      1.14       leo };
    106      1.14       leo 
    107      1.14       leo /*
    108      1.14       leo  *  'sc_flags' state info. Only used by the rtc-device functions.
    109      1.14       leo  */
    110      1.14       leo #define	RTC_OPEN	1
    111      1.14       leo 
    112      1.14       leo dev_type_open(rtcopen);
    113      1.14       leo dev_type_close(rtcclose);
    114      1.14       leo dev_type_read(rtcread);
    115      1.14       leo dev_type_write(rtcwrite);
    116      1.14       leo 
    117      1.43       dsl static void	clockattach(struct device *, struct device *, void *);
    118      1.43       dsl static int	clockmatch(struct device *, struct cfdata *, void *);
    119       1.1       leo 
    120      1.30   thorpej CFATTACH_DECL(clock, sizeof(struct clock_softc),
    121      1.30   thorpej     clockmatch, clockattach, NULL, NULL);
    122      1.10   thorpej 
    123      1.28   gehenna const struct cdevsw rtc_cdevsw = {
    124      1.28   gehenna 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    125      1.31  jdolecek 	nostop, notty, nopoll, nommap, nokqfilter,
    126      1.28   gehenna };
    127       1.1       leo 
    128      1.43       dsl void statintr(struct clockframe);
    129       1.9       leo 
    130      1.43       dsl static int	twodigits(char *, int);
    131       1.1       leo 
    132       1.5       leo static int	divisor;	/* Systemclock divisor	*/
    133       1.5       leo 
    134       1.5       leo /*
    135       1.5       leo  * Statistics and profile clock intervals and variances. Variance must
    136       1.5       leo  * be a power of 2. Since this gives us an even number, not an odd number,
    137       1.5       leo  * we discard one case and compensate. That is, a variance of 64 would
    138       1.5       leo  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    139      1.26       wiz  * This is symmetric around the point 32, or statvar/2, and thus averages
    140       1.5       leo  * to that value (assuming uniform random numbers).
    141       1.5       leo  */
    142       1.5       leo #ifdef STATCLOCK
    143       1.5       leo static int	statvar = 32;	/* {stat,prof}clock variance		*/
    144       1.5       leo static int	statmin;	/* statclock divisor - variance/2	*/
    145       1.5       leo static int	profmin;	/* profclock divisor - variance/2	*/
    146      1.27       wiz static int	clk2min;	/* current, from above choices		*/
    147       1.5       leo #endif
    148       1.1       leo 
    149       1.1       leo int
    150      1.44       dsl clockmatch(struct device *pdp, struct cfdata *cfp, void *auxp)
    151       1.1       leo {
    152      1.49   tsutsui 
    153      1.49   tsutsui 	if (!strcmp("clock", auxp))
    154      1.49   tsutsui 		return 1;
    155      1.49   tsutsui 	return 0;
    156       1.1       leo }
    157       1.1       leo 
    158       1.1       leo /*
    159       1.1       leo  * Start the real-time clock.
    160       1.1       leo  */
    161      1.49   tsutsui void clockattach(struct device *pdp, struct device *dp, void *auxp)
    162       1.1       leo {
    163      1.49   tsutsui 
    164      1.14       leo 	struct clock_softc *sc = (void *)dp;
    165      1.40     joerg 	static struct todr_chip_handle	tch;
    166      1.40     joerg 
    167      1.40     joerg 	tch.todr_gettime_ymdhms = atari_rtc_get;
    168      1.40     joerg 	tch.todr_settime_ymdhms = atari_rtc_set;
    169      1.40     joerg 	tch.todr_setwen = NULL;
    170      1.40     joerg 
    171      1.40     joerg 	todr_attach(&tch);
    172      1.14       leo 
    173      1.14       leo 	sc->sc_flags = 0;
    174      1.14       leo 
    175       1.1       leo 	/*
    176       1.3       leo 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    177       1.3       leo 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    178       1.3       leo 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    179       1.3       leo 	 * following expression works for 48, 64 or 96 hz.
    180       1.1       leo 	 */
    181       1.5       leo 	divisor       = CLOCK_HZ/hz;
    182       1.2       leo 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    183       1.2       leo 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    184       1.2       leo 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    185       1.1       leo 
    186      1.40     joerg 	clk_timecounter.tc_frequency = CLOCK_HZ;
    187      1.40     joerg 
    188       1.5       leo 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    189      1.13  christos 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    190       1.5       leo 								hz, 64);
    191       1.5       leo 		hz = 64;
    192       1.5       leo 	}
    193      1.13  christos 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    194      1.42       abs 	tc_init(&clk_timecounter);
    195       1.1       leo 
    196       1.5       leo #ifdef STATCLOCK
    197       1.5       leo 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    198       1.5       leo 		stathz = hz;
    199       1.5       leo 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    200       1.5       leo 		profhz = hz << 1;
    201       1.5       leo 
    202       1.5       leo 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    203       1.5       leo 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    204       1.5       leo 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    205       1.5       leo 
    206       1.5       leo 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    207       1.5       leo 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    208       1.5       leo 	clk2min  = statmin;
    209       1.5       leo #endif /* STATCLOCK */
    210       1.1       leo }
    211       1.1       leo 
    212      1.46    cegger void cpu_initclocks(void)
    213       1.1       leo {
    214      1.49   tsutsui 
    215       1.3       leo 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    216      1.20       leo 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    217       1.2       leo 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    218       1.2       leo 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    219       1.5       leo 
    220       1.5       leo #ifdef STATCLOCK
    221       1.5       leo 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    222      1.20       leo 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    223       1.5       leo 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    224       1.5       leo 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    225       1.5       leo #endif /* STATCLOCK */
    226       1.1       leo }
    227       1.1       leo 
    228       1.9       leo void
    229      1.44       dsl setstatclockrate(int newhz)
    230       1.1       leo {
    231      1.49   tsutsui 
    232       1.5       leo #ifdef STATCLOCK
    233       1.5       leo 	if (newhz == stathz)
    234       1.5       leo 		clk2min = statmin;
    235       1.5       leo 	else clk2min = profmin;
    236       1.5       leo #endif /* STATCLOCK */
    237       1.1       leo }
    238       1.1       leo 
    239       1.5       leo #ifdef STATCLOCK
    240       1.5       leo void
    241      1.44       dsl statintr(struct clockframe frame)
    242       1.5       leo {
    243       1.5       leo 	register int	var, r;
    244       1.5       leo 
    245       1.5       leo 	var = statvar - 1;
    246       1.5       leo 	do {
    247       1.5       leo 		r = random() & var;
    248      1.49   tsutsui 	} while (r == 0);
    249       1.5       leo 
    250       1.5       leo 	/*
    251       1.5       leo 	 * Note that we are always lagging behind as the new divisor
    252       1.5       leo 	 * value will not be loaded until the next interrupt. This
    253       1.5       leo 	 * shouldn't disturb the median frequency (I think ;-) ) as
    254       1.5       leo 	 * only the value used when switching frequencies is used
    255       1.5       leo 	 * twice. This shouldn't happen very often.
    256       1.5       leo 	 */
    257       1.5       leo 	MFP->mf_tcdr = clk2min + r;
    258       1.5       leo 
    259      1.16       leo 	statclock(&frame);
    260       1.5       leo }
    261       1.5       leo #endif /* STATCLOCK */
    262       1.5       leo 
    263      1.40     joerg static u_int
    264      1.40     joerg clk_getcounter(struct timecounter *tc)
    265       1.1       leo {
    266      1.47   tsutsui 	uint32_t delta, count, cur_hardclock;
    267      1.47   tsutsui 	uint8_t ipra, tadr;
    268      1.47   tsutsui 	int s;
    269      1.47   tsutsui 	static uint32_t lastcount;
    270       1.3       leo 
    271      1.40     joerg 	s = splhigh();
    272      1.47   tsutsui 	cur_hardclock = hardclock_ticks;
    273      1.40     joerg 	ipra = MFP->mf_ipra;
    274      1.40     joerg 	tadr = MFP->mf_tadr;
    275      1.40     joerg 	delta = divisor - tadr;
    276      1.40     joerg 
    277      1.40     joerg 	if (ipra & IA_TIMA)
    278      1.40     joerg 		delta += divisor;
    279      1.40     joerg 	splx(s);
    280      1.22       leo 
    281      1.47   tsutsui 	count = (divisor * cur_hardclock) + delta;
    282      1.47   tsutsui 	if ((int32_t)(count - lastcount) < 0) {
    283      1.47   tsutsui 		/* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
    284      1.47   tsutsui 		count = lastcount + 1;
    285      1.47   tsutsui 	}
    286      1.47   tsutsui 	lastcount = count;
    287      1.47   tsutsui 
    288      1.47   tsutsui 	return count;
    289       1.1       leo }
    290       1.1       leo 
    291       1.2       leo #define TIMB_FREQ	614400
    292       1.2       leo #define TIMB_LIMIT	256
    293       1.1       leo 
    294      1.48   tsutsui void
    295      1.48   tsutsui init_delay(void)
    296      1.48   tsutsui {
    297      1.48   tsutsui 
    298      1.48   tsutsui 	/*
    299      1.48   tsutsui 	 * Initialize Timer-B in the ST-MFP. This timer is used by
    300      1.48   tsutsui 	 * the 'delay' function below. This timer is setup to be
    301      1.48   tsutsui 	 * continueously counting from 255 back to zero at a
    302      1.48   tsutsui 	 * frequency of 614400Hz. We do this *early* in the
    303      1.48   tsutsui 	 * initialisation process.
    304      1.48   tsutsui 	 */
    305      1.48   tsutsui 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
    306      1.48   tsutsui 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    307      1.48   tsutsui 	MFP->mf_tbdr  = 0;
    308      1.48   tsutsui 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    309      1.48   tsutsui }
    310      1.48   tsutsui 
    311       1.1       leo /*
    312       1.1       leo  * Wait "n" microseconds.
    313       1.2       leo  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    314       1.1       leo  * Note: timer had better have been programmed before this is first used!
    315       1.1       leo  */
    316      1.14       leo void
    317      1.39     joerg delay(unsigned int n)
    318       1.1       leo {
    319      1.39     joerg 	int	ticks, otick, remaining;
    320       1.1       leo 
    321       1.1       leo 	/*
    322       1.1       leo 	 * Read the counter first, so that the rest of the setup overhead is
    323       1.1       leo 	 * counted.
    324       1.1       leo 	 */
    325       1.2       leo 	otick = MFP->mf_tbdr;
    326       1.1       leo 
    327      1.39     joerg 	if (n <= UINT_MAX / TIMB_FREQ) {
    328      1.39     joerg 		/*
    329      1.39     joerg 		 * For unsigned arithmetic, division can be replaced with
    330      1.39     joerg 		 * multiplication with the inverse and a shift.
    331      1.39     joerg 		 */
    332      1.39     joerg 		remaining = n * TIMB_FREQ / 1000000;
    333      1.39     joerg 	} else {
    334      1.39     joerg 		/* This is a very long delay.
    335      1.39     joerg 		 * Being slow here doesn't matter.
    336      1.39     joerg 		 */
    337      1.39     joerg 		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
    338       1.1       leo 	}
    339       1.1       leo 
    340      1.49   tsutsui 	while (remaining > 0) {
    341      1.35        he 		ticks = MFP->mf_tbdr;
    342      1.49   tsutsui 		if (ticks > otick)
    343      1.39     joerg 			remaining -= TIMB_LIMIT - (ticks - otick);
    344      1.39     joerg 		else
    345      1.39     joerg 			remaining -= otick - ticks;
    346      1.35        he 		otick = ticks;
    347       1.1       leo 	}
    348       1.1       leo }
    349       1.1       leo 
    350       1.4       leo #ifdef GPROF
    351       1.1       leo /*
    352       1.1       leo  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    353       1.1       leo  * Assumes it is called with clock interrupts blocked.
    354       1.1       leo  */
    355      1.44       dsl profclock(void *pc, int ps)
    356       1.1       leo {
    357      1.49   tsutsui 
    358       1.1       leo 	/*
    359       1.1       leo 	 * Came from user mode.
    360       1.1       leo 	 * If this process is being profiled record the tick.
    361       1.1       leo 	 */
    362       1.1       leo 	if (USERMODE(ps)) {
    363       1.1       leo 		if (p->p_stats.p_prof.pr_scale)
    364       1.1       leo 			addupc(pc, &curproc->p_stats.p_prof, 1);
    365       1.1       leo 	}
    366       1.1       leo 	/*
    367       1.1       leo 	 * Came from kernel (supervisor) mode.
    368       1.1       leo 	 * If we are profiling the kernel, record the tick.
    369       1.1       leo 	 */
    370       1.1       leo 	else if (profiling < 2) {
    371       1.1       leo 		register int s = pc - s_lowpc;
    372       1.1       leo 
    373       1.1       leo 		if (s < s_textsize)
    374      1.49   tsutsui 			kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
    375       1.1       leo 	}
    376       1.1       leo 	/*
    377       1.1       leo 	 * Kernel profiling was on but has been disabled.
    378       1.1       leo 	 * Mark as no longer profiling kernel and if all profiling done,
    379       1.1       leo 	 * disable the clock.
    380       1.1       leo 	 */
    381       1.1       leo 	if (profiling && (profon & PRF_KERNEL)) {
    382       1.1       leo 		profon &= ~PRF_KERNEL;
    383       1.1       leo 		if (profon == PRF_NONE)
    384       1.1       leo 			stopprofclock();
    385       1.1       leo 	}
    386       1.1       leo }
    387       1.1       leo #endif
    388       1.7       leo 
    389       1.7       leo /***********************************************************************
    390       1.7       leo  *                   Real Time Clock support                           *
    391       1.7       leo  ***********************************************************************/
    392       1.7       leo 
    393      1.50   tsutsui u_int mc146818_read(void *cookie, u_int regno)
    394       1.7       leo {
    395      1.50   tsutsui 	struct rtc *rtc = cookie;
    396      1.49   tsutsui 
    397      1.50   tsutsui 	rtc->rtc_regno = regno;
    398      1.50   tsutsui 	return rtc->rtc_data & 0xff;
    399       1.7       leo }
    400       1.7       leo 
    401      1.50   tsutsui void mc146818_write(void *cookie, u_int regno, u_int value)
    402       1.7       leo {
    403      1.50   tsutsui 	struct rtc *rtc = cookie;
    404      1.49   tsutsui 
    405      1.50   tsutsui 	rtc->rtc_regno = regno;
    406      1.50   tsutsui 	rtc->rtc_data  = value;
    407       1.7       leo }
    408       1.1       leo 
    409      1.40     joerg static int
    410      1.40     joerg atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    411       1.1       leo {
    412      1.18       leo 	int			sps;
    413      1.18       leo 	mc_todregs		clkregs;
    414      1.25       leo 	u_int			regb;
    415       1.3       leo 
    416       1.3       leo 	sps = splhigh();
    417      1.25       leo 	regb = mc146818_read(RTC, MC_REGB);
    418       1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    419       1.3       leo 	splx(sps);
    420       1.1       leo 
    421      1.25       leo 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    422      1.25       leo 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    423      1.25       leo 		printf("Error: Nonstandard RealTimeClock Configuration -"
    424      1.25       leo 			" value ignored\n"
    425      1.25       leo 			"       A write to /dev/rtc will correct this.\n");
    426      1.49   tsutsui 			return 0;
    427      1.25       leo 	}
    428      1.49   tsutsui 	if (clkregs[MC_SEC] > 59)
    429      1.40     joerg 		return -1;
    430      1.49   tsutsui 	if (clkregs[MC_MIN] > 59)
    431      1.40     joerg 		return -1;
    432      1.49   tsutsui 	if (clkregs[MC_HOUR] > 23)
    433      1.40     joerg 		return -1;
    434      1.49   tsutsui 	if (range_test(clkregs[MC_DOM], 1, 31))
    435      1.40     joerg 		return -1;
    436       1.3       leo 	if (range_test(clkregs[MC_MONTH], 1, 12))
    437      1.40     joerg 		return -1;
    438      1.49   tsutsui 	if (clkregs[MC_YEAR] > 99)
    439      1.40     joerg 		return -1;
    440      1.40     joerg 
    441      1.40     joerg 	dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    442      1.40     joerg 	dtp->dt_mon  = clkregs[MC_MONTH];
    443      1.40     joerg 	dtp->dt_day  = clkregs[MC_DOM];
    444      1.40     joerg 	dtp->dt_hour = clkregs[MC_HOUR];
    445      1.40     joerg 	dtp->dt_min  = clkregs[MC_MIN];
    446      1.40     joerg 	dtp->dt_sec  = clkregs[MC_SEC];
    447      1.40     joerg 
    448      1.40     joerg 	return 0;
    449      1.40     joerg }
    450      1.40     joerg 
    451      1.40     joerg static int
    452      1.40     joerg atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    453      1.40     joerg {
    454      1.40     joerg 	int s;
    455      1.40     joerg 	mc_todregs clkregs;
    456       1.1       leo 
    457      1.40     joerg 	clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
    458      1.40     joerg 	clkregs[MC_MONTH] = dtp->dt_mon;
    459      1.40     joerg 	clkregs[MC_DOM] = dtp->dt_day;
    460      1.40     joerg 	clkregs[MC_HOUR] = dtp->dt_hour;
    461      1.40     joerg 	clkregs[MC_MIN] = dtp->dt_min;
    462      1.40     joerg 	clkregs[MC_SEC] = dtp->dt_sec;
    463       1.1       leo 
    464      1.40     joerg 	s = splclock();
    465      1.40     joerg 	MC146818_PUTTOD(RTC, &clkregs);
    466      1.40     joerg 	splx(s);
    467      1.40     joerg 
    468      1.40     joerg 	return 0;
    469       1.1       leo }
    470      1.40     joerg 
    471      1.14       leo /***********************************************************************
    472      1.14       leo  *                   RTC-device support				       *
    473      1.14       leo  ***********************************************************************/
    474      1.14       leo int
    475      1.45       dsl rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
    476      1.14       leo {
    477      1.14       leo 	int			unit = minor(dev);
    478      1.14       leo 	struct clock_softc	*sc;
    479      1.14       leo 
    480      1.41   tsutsui 	sc = device_lookup_private(&clock_cd, unit);
    481      1.41   tsutsui 	if (sc == NULL)
    482      1.14       leo 		return ENXIO;
    483      1.14       leo 	if (sc->sc_flags & RTC_OPEN)
    484      1.14       leo 		return EBUSY;
    485      1.14       leo 
    486      1.14       leo 	sc->sc_flags = RTC_OPEN;
    487      1.14       leo 	return 0;
    488      1.14       leo }
    489       1.1       leo 
    490      1.14       leo int
    491      1.44       dsl rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
    492       1.1       leo {
    493      1.14       leo 	int			unit = minor(dev);
    494      1.41   tsutsui 	struct clock_softc	*sc = device_lookup_private(&clock_cd, unit);
    495      1.14       leo 
    496      1.14       leo 	sc->sc_flags = 0;
    497      1.14       leo 	return 0;
    498      1.14       leo }
    499      1.14       leo 
    500      1.14       leo int
    501      1.44       dsl rtcread(dev_t dev, struct uio *uio, int flags)
    502      1.14       leo {
    503      1.14       leo 	struct clock_softc	*sc;
    504      1.14       leo 	mc_todregs		clkregs;
    505      1.14       leo 	int			s, length;
    506      1.14       leo 	char			buffer[16];
    507      1.14       leo 
    508      1.41   tsutsui 	sc = device_lookup_private(&clock_cd, minor(dev));
    509      1.14       leo 
    510      1.14       leo 	s = splhigh();
    511      1.14       leo 	MC146818_GETTOD(RTC, &clkregs);
    512      1.14       leo 	splx(s);
    513      1.14       leo 
    514      1.21       leo 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    515      1.21       leo 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    516      1.14       leo 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    517      1.14       leo 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    518      1.14       leo 
    519      1.14       leo 	if (uio->uio_offset > strlen(buffer))
    520      1.14       leo 		return 0;
    521       1.1       leo 
    522      1.14       leo 	length = strlen(buffer) - uio->uio_offset;
    523      1.14       leo 	if (length > uio->uio_resid)
    524      1.14       leo 		length = uio->uio_resid;
    525       1.1       leo 
    526      1.49   tsutsui 	return uiomove((void *)buffer, length, uio);
    527      1.14       leo }
    528      1.14       leo 
    529      1.14       leo static int
    530      1.44       dsl twodigits(char *buffer, int pos)
    531      1.14       leo {
    532      1.14       leo 	int result = 0;
    533      1.14       leo 
    534      1.14       leo 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    535      1.14       leo 		result = (buffer[pos] - '0') * 10;
    536      1.14       leo 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    537      1.14       leo 		result += (buffer[pos+1] - '0');
    538      1.49   tsutsui 	return result;
    539      1.14       leo }
    540       1.1       leo 
    541      1.14       leo int
    542      1.44       dsl rtcwrite(dev_t dev, struct uio *uio, int flags)
    543      1.14       leo {
    544      1.14       leo 	mc_todregs		clkregs;
    545      1.14       leo 	int			s, length, error;
    546      1.21       leo 	char			buffer[16];
    547      1.14       leo 
    548      1.14       leo 	/*
    549      1.14       leo 	 * We require atomic updates!
    550      1.14       leo 	 */
    551      1.14       leo 	length = uio->uio_resid;
    552      1.14       leo 	if (uio->uio_offset || (length != sizeof(buffer)
    553      1.14       leo 	  && length != sizeof(buffer - 1)))
    554      1.49   tsutsui 		return EINVAL;
    555      1.14       leo 
    556      1.38  christos 	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
    557      1.49   tsutsui 		return error;
    558       1.1       leo 
    559      1.14       leo 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    560      1.49   tsutsui 		return EINVAL;
    561       1.1       leo 
    562      1.14       leo 	s = splclock();
    563      1.25       leo 	mc146818_write(RTC, MC_REGB,
    564      1.49   tsutsui 	    mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    565       1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    566      1.14       leo 	splx(s);
    567      1.14       leo 
    568      1.21       leo 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    569      1.21       leo 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    570      1.21       leo 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    571      1.21       leo 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    572      1.21       leo 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    573      1.21       leo 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    574      1.14       leo 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    575      1.14       leo 
    576      1.14       leo 	s = splclock();
    577       1.3       leo 	MC146818_PUTTOD(RTC, &clkregs);
    578      1.14       leo 	splx(s);
    579       1.1       leo 
    580      1.49   tsutsui 	return 0;
    581       1.1       leo }
    582