Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.52.2.1
      1  1.52.2.1    cherry /*	$NetBSD: clock.c,v 1.52.2.1 2011/06/23 14:19:01 cherry Exp $	*/
      2       1.1       leo 
      3       1.1       leo /*
      4      1.52     rmind  * Copyright (c) 1988 University of Utah.
      5       1.1       leo  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6       1.1       leo  * All rights reserved.
      7       1.1       leo  *
      8       1.1       leo  * This code is derived from software contributed to Berkeley by
      9       1.1       leo  * the Systems Programming Group of the University of Utah Computer
     10       1.1       leo  * Science Department.
     11       1.1       leo  *
     12       1.1       leo  * Redistribution and use in source and binary forms, with or without
     13       1.1       leo  * modification, are permitted provided that the following conditions
     14       1.1       leo  * are met:
     15       1.1       leo  * 1. Redistributions of source code must retain the above copyright
     16       1.1       leo  *    notice, this list of conditions and the following disclaimer.
     17       1.1       leo  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.1       leo  *    notice, this list of conditions and the following disclaimer in the
     19       1.1       leo  *    documentation and/or other materials provided with the distribution.
     20      1.34       agc  * 3. Neither the name of the University nor the names of its contributors
     21      1.34       agc  *    may be used to endorse or promote products derived from this software
     22      1.34       agc  *    without specific prior written permission.
     23      1.34       agc  *
     24      1.34       agc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25      1.34       agc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26      1.34       agc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27      1.34       agc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28      1.34       agc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29      1.34       agc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30      1.34       agc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31      1.34       agc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32      1.34       agc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33      1.34       agc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34      1.34       agc  * SUCH DAMAGE.
     35      1.34       agc  *
     36      1.34       agc  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     37      1.34       agc  *
     38      1.34       agc  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     39      1.34       agc  */
     40      1.33     lukem 
     41      1.33     lukem #include <sys/cdefs.h>
     42  1.52.2.1    cherry __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.52.2.1 2011/06/23 14:19:01 cherry Exp $");
     43       1.1       leo 
     44       1.1       leo #include <sys/param.h>
     45       1.1       leo #include <sys/kernel.h>
     46       1.9       leo #include <sys/systm.h>
     47       1.1       leo #include <sys/device.h>
     48      1.14       leo #include <sys/uio.h>
     49      1.14       leo #include <sys/conf.h>
     50      1.32   thorpej #include <sys/proc.h>
     51      1.31  jdolecek #include <sys/event.h>
     52      1.40     joerg #include <sys/timetc.h>
     53      1.18       leo 
     54      1.18       leo #include <dev/clock_subr.h>
     55      1.18       leo 
     56       1.1       leo #include <machine/psl.h>
     57       1.1       leo #include <machine/cpu.h>
     58       1.1       leo #include <machine/iomap.h>
     59       1.1       leo #include <machine/mfp.h>
     60       1.1       leo #include <atari/dev/clockreg.h>
     61      1.48   tsutsui #include <atari/dev/clockvar.h>
     62      1.14       leo #include <atari/atari/device.h>
     63       1.1       leo 
     64       1.4       leo #if defined(GPROF) && defined(PROFTIMER)
     65       1.4       leo #include <machine/profile.h>
     66       1.1       leo #endif
     67       1.1       leo 
     68      1.51   tsutsui #include "ioconf.h"
     69      1.51   tsutsui 
     70      1.40     joerg static int	atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
     71      1.40     joerg static int	atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
     72      1.40     joerg 
     73       1.1       leo /*
     74       1.5       leo  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     75       1.5       leo  * of 200. Therefore the timer runs at an effective rate of:
     76       1.5       leo  * 2457600/200 = 12288Hz.
     77       1.5       leo  */
     78       1.5       leo #define CLOCK_HZ	12288
     79       1.5       leo 
     80      1.40     joerg static u_int clk_getcounter(struct timecounter *);
     81      1.40     joerg 
     82      1.40     joerg static struct timecounter clk_timecounter = {
     83      1.40     joerg 	clk_getcounter,	/* get_timecount */
     84      1.40     joerg 	0,		/* no poll_pps */
     85      1.40     joerg 	~0u,		/* counter_mask */
     86      1.40     joerg 	CLOCK_HZ,	/* frequency */
     87      1.40     joerg 	"clock",	/* name, overriden later */
     88      1.40     joerg 	100,		/* quality */
     89      1.40     joerg 	NULL,		/* prev */
     90      1.40     joerg 	NULL,		/* next */
     91      1.40     joerg };
     92      1.40     joerg 
     93       1.5       leo /*
     94       1.1       leo  * Machine-dependent clock routines.
     95       1.1       leo  *
     96       1.1       leo  * Inittodr initializes the time of day hardware which provides
     97       1.1       leo  * date functions.
     98       1.1       leo  *
     99       1.1       leo  * Resettodr restores the time of day hardware after a time change.
    100       1.1       leo  */
    101       1.1       leo 
    102      1.14       leo struct clock_softc {
    103  1.52.2.1    cherry 	device_t	sc_dev;
    104      1.14       leo 	int		sc_flags;
    105  1.52.2.1    cherry 	struct todr_chip_handle	sc_handle;
    106      1.14       leo };
    107      1.14       leo 
    108      1.14       leo /*
    109      1.14       leo  *  'sc_flags' state info. Only used by the rtc-device functions.
    110      1.14       leo  */
    111      1.14       leo #define	RTC_OPEN	1
    112      1.14       leo 
    113      1.14       leo dev_type_open(rtcopen);
    114      1.14       leo dev_type_close(rtcclose);
    115      1.14       leo dev_type_read(rtcread);
    116      1.14       leo dev_type_write(rtcwrite);
    117      1.14       leo 
    118  1.52.2.1    cherry static void	clockattach(device_t, device_t, void *);
    119  1.52.2.1    cherry static int	clockmatch(device_t, cfdata_t, void *);
    120       1.1       leo 
    121  1.52.2.1    cherry CFATTACH_DECL_NEW(clock, sizeof(struct clock_softc),
    122      1.30   thorpej     clockmatch, clockattach, NULL, NULL);
    123      1.10   thorpej 
    124      1.28   gehenna const struct cdevsw rtc_cdevsw = {
    125      1.28   gehenna 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    126      1.31  jdolecek 	nostop, notty, nopoll, nommap, nokqfilter,
    127      1.28   gehenna };
    128       1.1       leo 
    129      1.43       dsl void statintr(struct clockframe);
    130       1.9       leo 
    131      1.43       dsl static int	twodigits(char *, int);
    132       1.1       leo 
    133       1.5       leo static int	divisor;	/* Systemclock divisor	*/
    134       1.5       leo 
    135       1.5       leo /*
    136       1.5       leo  * Statistics and profile clock intervals and variances. Variance must
    137       1.5       leo  * be a power of 2. Since this gives us an even number, not an odd number,
    138       1.5       leo  * we discard one case and compensate. That is, a variance of 64 would
    139       1.5       leo  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    140      1.26       wiz  * This is symmetric around the point 32, or statvar/2, and thus averages
    141       1.5       leo  * to that value (assuming uniform random numbers).
    142       1.5       leo  */
    143       1.5       leo #ifdef STATCLOCK
    144       1.5       leo static int	statvar = 32;	/* {stat,prof}clock variance		*/
    145       1.5       leo static int	statmin;	/* statclock divisor - variance/2	*/
    146       1.5       leo static int	profmin;	/* profclock divisor - variance/2	*/
    147      1.27       wiz static int	clk2min;	/* current, from above choices		*/
    148       1.5       leo #endif
    149       1.1       leo 
    150       1.1       leo int
    151  1.52.2.1    cherry clockmatch(device_t parent, cfdata_t cf, void *aux)
    152       1.1       leo {
    153      1.49   tsutsui 
    154  1.52.2.1    cherry 	if (!strcmp("clock", aux))
    155      1.49   tsutsui 		return 1;
    156      1.49   tsutsui 	return 0;
    157       1.1       leo }
    158       1.1       leo 
    159       1.1       leo /*
    160       1.1       leo  * Start the real-time clock.
    161       1.1       leo  */
    162  1.52.2.1    cherry void clockattach(device_t parent, device_t self, void *aux)
    163       1.1       leo {
    164  1.52.2.1    cherry 	struct clock_softc *sc = device_private(self);
    165  1.52.2.1    cherry 	struct todr_chip_handle	*tch;
    166      1.49   tsutsui 
    167  1.52.2.1    cherry 	sc->sc_dev = self;
    168  1.52.2.1    cherry 	tch = &sc->sc_handle;
    169  1.52.2.1    cherry 	tch->todr_gettime_ymdhms = atari_rtc_get;
    170  1.52.2.1    cherry 	tch->todr_settime_ymdhms = atari_rtc_set;
    171  1.52.2.1    cherry 	tch->todr_setwen = NULL;
    172      1.40     joerg 
    173  1.52.2.1    cherry 	todr_attach(tch);
    174      1.14       leo 
    175      1.14       leo 	sc->sc_flags = 0;
    176      1.14       leo 
    177       1.1       leo 	/*
    178       1.3       leo 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    179       1.3       leo 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    180       1.3       leo 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    181       1.3       leo 	 * following expression works for 48, 64 or 96 hz.
    182       1.1       leo 	 */
    183       1.5       leo 	divisor       = CLOCK_HZ/hz;
    184       1.2       leo 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    185       1.2       leo 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    186       1.2       leo 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    187       1.1       leo 
    188      1.40     joerg 	clk_timecounter.tc_frequency = CLOCK_HZ;
    189      1.40     joerg 
    190       1.5       leo 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    191      1.13  christos 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    192       1.5       leo 								hz, 64);
    193       1.5       leo 		hz = 64;
    194       1.5       leo 	}
    195      1.13  christos 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    196      1.42       abs 	tc_init(&clk_timecounter);
    197       1.1       leo 
    198       1.5       leo #ifdef STATCLOCK
    199       1.5       leo 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    200       1.5       leo 		stathz = hz;
    201       1.5       leo 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    202       1.5       leo 		profhz = hz << 1;
    203       1.5       leo 
    204       1.5       leo 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    205       1.5       leo 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    206       1.5       leo 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    207       1.5       leo 
    208       1.5       leo 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    209       1.5       leo 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    210       1.5       leo 	clk2min  = statmin;
    211       1.5       leo #endif /* STATCLOCK */
    212       1.1       leo }
    213       1.1       leo 
    214      1.46    cegger void cpu_initclocks(void)
    215       1.1       leo {
    216      1.49   tsutsui 
    217       1.3       leo 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    218      1.20       leo 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    219       1.2       leo 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    220       1.2       leo 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    221       1.5       leo 
    222       1.5       leo #ifdef STATCLOCK
    223       1.5       leo 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    224      1.20       leo 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    225       1.5       leo 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    226       1.5       leo 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    227       1.5       leo #endif /* STATCLOCK */
    228       1.1       leo }
    229       1.1       leo 
    230       1.9       leo void
    231      1.44       dsl setstatclockrate(int newhz)
    232       1.1       leo {
    233      1.49   tsutsui 
    234       1.5       leo #ifdef STATCLOCK
    235       1.5       leo 	if (newhz == stathz)
    236       1.5       leo 		clk2min = statmin;
    237       1.5       leo 	else clk2min = profmin;
    238       1.5       leo #endif /* STATCLOCK */
    239       1.1       leo }
    240       1.1       leo 
    241       1.5       leo #ifdef STATCLOCK
    242       1.5       leo void
    243      1.44       dsl statintr(struct clockframe frame)
    244       1.5       leo {
    245       1.5       leo 	register int	var, r;
    246       1.5       leo 
    247       1.5       leo 	var = statvar - 1;
    248       1.5       leo 	do {
    249       1.5       leo 		r = random() & var;
    250      1.49   tsutsui 	} while (r == 0);
    251       1.5       leo 
    252       1.5       leo 	/*
    253       1.5       leo 	 * Note that we are always lagging behind as the new divisor
    254       1.5       leo 	 * value will not be loaded until the next interrupt. This
    255       1.5       leo 	 * shouldn't disturb the median frequency (I think ;-) ) as
    256       1.5       leo 	 * only the value used when switching frequencies is used
    257       1.5       leo 	 * twice. This shouldn't happen very often.
    258       1.5       leo 	 */
    259       1.5       leo 	MFP->mf_tcdr = clk2min + r;
    260       1.5       leo 
    261      1.16       leo 	statclock(&frame);
    262       1.5       leo }
    263       1.5       leo #endif /* STATCLOCK */
    264       1.5       leo 
    265      1.40     joerg static u_int
    266      1.40     joerg clk_getcounter(struct timecounter *tc)
    267       1.1       leo {
    268      1.47   tsutsui 	uint32_t delta, count, cur_hardclock;
    269      1.47   tsutsui 	uint8_t ipra, tadr;
    270      1.47   tsutsui 	int s;
    271      1.47   tsutsui 	static uint32_t lastcount;
    272       1.3       leo 
    273      1.40     joerg 	s = splhigh();
    274      1.47   tsutsui 	cur_hardclock = hardclock_ticks;
    275      1.40     joerg 	ipra = MFP->mf_ipra;
    276      1.40     joerg 	tadr = MFP->mf_tadr;
    277      1.40     joerg 	delta = divisor - tadr;
    278      1.40     joerg 
    279      1.40     joerg 	if (ipra & IA_TIMA)
    280      1.40     joerg 		delta += divisor;
    281      1.40     joerg 	splx(s);
    282      1.22       leo 
    283      1.47   tsutsui 	count = (divisor * cur_hardclock) + delta;
    284      1.47   tsutsui 	if ((int32_t)(count - lastcount) < 0) {
    285      1.47   tsutsui 		/* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
    286      1.47   tsutsui 		count = lastcount + 1;
    287      1.47   tsutsui 	}
    288      1.47   tsutsui 	lastcount = count;
    289      1.47   tsutsui 
    290      1.47   tsutsui 	return count;
    291       1.1       leo }
    292       1.1       leo 
    293       1.2       leo #define TIMB_FREQ	614400
    294       1.2       leo #define TIMB_LIMIT	256
    295       1.1       leo 
    296      1.48   tsutsui void
    297      1.48   tsutsui init_delay(void)
    298      1.48   tsutsui {
    299      1.48   tsutsui 
    300      1.48   tsutsui 	/*
    301      1.48   tsutsui 	 * Initialize Timer-B in the ST-MFP. This timer is used by
    302      1.48   tsutsui 	 * the 'delay' function below. This timer is setup to be
    303      1.48   tsutsui 	 * continueously counting from 255 back to zero at a
    304      1.48   tsutsui 	 * frequency of 614400Hz. We do this *early* in the
    305      1.48   tsutsui 	 * initialisation process.
    306      1.48   tsutsui 	 */
    307      1.48   tsutsui 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
    308      1.48   tsutsui 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    309      1.48   tsutsui 	MFP->mf_tbdr  = 0;
    310      1.48   tsutsui 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    311      1.48   tsutsui }
    312      1.48   tsutsui 
    313       1.1       leo /*
    314       1.1       leo  * Wait "n" microseconds.
    315       1.2       leo  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    316       1.1       leo  * Note: timer had better have been programmed before this is first used!
    317       1.1       leo  */
    318      1.14       leo void
    319      1.39     joerg delay(unsigned int n)
    320       1.1       leo {
    321      1.39     joerg 	int	ticks, otick, remaining;
    322       1.1       leo 
    323       1.1       leo 	/*
    324       1.1       leo 	 * Read the counter first, so that the rest of the setup overhead is
    325       1.1       leo 	 * counted.
    326       1.1       leo 	 */
    327       1.2       leo 	otick = MFP->mf_tbdr;
    328       1.1       leo 
    329      1.39     joerg 	if (n <= UINT_MAX / TIMB_FREQ) {
    330      1.39     joerg 		/*
    331      1.39     joerg 		 * For unsigned arithmetic, division can be replaced with
    332      1.39     joerg 		 * multiplication with the inverse and a shift.
    333      1.39     joerg 		 */
    334      1.39     joerg 		remaining = n * TIMB_FREQ / 1000000;
    335      1.39     joerg 	} else {
    336      1.39     joerg 		/* This is a very long delay.
    337      1.39     joerg 		 * Being slow here doesn't matter.
    338      1.39     joerg 		 */
    339      1.39     joerg 		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
    340       1.1       leo 	}
    341       1.1       leo 
    342      1.49   tsutsui 	while (remaining > 0) {
    343      1.35        he 		ticks = MFP->mf_tbdr;
    344      1.49   tsutsui 		if (ticks > otick)
    345      1.39     joerg 			remaining -= TIMB_LIMIT - (ticks - otick);
    346      1.39     joerg 		else
    347      1.39     joerg 			remaining -= otick - ticks;
    348      1.35        he 		otick = ticks;
    349       1.1       leo 	}
    350       1.1       leo }
    351       1.1       leo 
    352       1.4       leo #ifdef GPROF
    353       1.1       leo /*
    354       1.1       leo  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    355       1.1       leo  * Assumes it is called with clock interrupts blocked.
    356       1.1       leo  */
    357      1.44       dsl profclock(void *pc, int ps)
    358       1.1       leo {
    359      1.49   tsutsui 
    360       1.1       leo 	/*
    361       1.1       leo 	 * Came from user mode.
    362       1.1       leo 	 * If this process is being profiled record the tick.
    363       1.1       leo 	 */
    364       1.1       leo 	if (USERMODE(ps)) {
    365       1.1       leo 		if (p->p_stats.p_prof.pr_scale)
    366       1.1       leo 			addupc(pc, &curproc->p_stats.p_prof, 1);
    367       1.1       leo 	}
    368       1.1       leo 	/*
    369       1.1       leo 	 * Came from kernel (supervisor) mode.
    370       1.1       leo 	 * If we are profiling the kernel, record the tick.
    371       1.1       leo 	 */
    372       1.1       leo 	else if (profiling < 2) {
    373       1.1       leo 		register int s = pc - s_lowpc;
    374       1.1       leo 
    375       1.1       leo 		if (s < s_textsize)
    376      1.49   tsutsui 			kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
    377       1.1       leo 	}
    378       1.1       leo 	/*
    379       1.1       leo 	 * Kernel profiling was on but has been disabled.
    380       1.1       leo 	 * Mark as no longer profiling kernel and if all profiling done,
    381       1.1       leo 	 * disable the clock.
    382       1.1       leo 	 */
    383       1.1       leo 	if (profiling && (profon & PRF_KERNEL)) {
    384       1.1       leo 		profon &= ~PRF_KERNEL;
    385       1.1       leo 		if (profon == PRF_NONE)
    386       1.1       leo 			stopprofclock();
    387       1.1       leo 	}
    388       1.1       leo }
    389       1.1       leo #endif
    390       1.7       leo 
    391       1.7       leo /***********************************************************************
    392       1.7       leo  *                   Real Time Clock support                           *
    393       1.7       leo  ***********************************************************************/
    394       1.7       leo 
    395      1.50   tsutsui u_int mc146818_read(void *cookie, u_int regno)
    396       1.7       leo {
    397      1.50   tsutsui 	struct rtc *rtc = cookie;
    398      1.49   tsutsui 
    399      1.50   tsutsui 	rtc->rtc_regno = regno;
    400      1.50   tsutsui 	return rtc->rtc_data & 0xff;
    401       1.7       leo }
    402       1.7       leo 
    403      1.50   tsutsui void mc146818_write(void *cookie, u_int regno, u_int value)
    404       1.7       leo {
    405      1.50   tsutsui 	struct rtc *rtc = cookie;
    406      1.49   tsutsui 
    407      1.50   tsutsui 	rtc->rtc_regno = regno;
    408      1.50   tsutsui 	rtc->rtc_data  = value;
    409       1.7       leo }
    410       1.1       leo 
    411      1.40     joerg static int
    412      1.40     joerg atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    413       1.1       leo {
    414      1.18       leo 	int			sps;
    415      1.18       leo 	mc_todregs		clkregs;
    416      1.25       leo 	u_int			regb;
    417       1.3       leo 
    418       1.3       leo 	sps = splhigh();
    419      1.25       leo 	regb = mc146818_read(RTC, MC_REGB);
    420       1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    421       1.3       leo 	splx(sps);
    422       1.1       leo 
    423      1.25       leo 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    424      1.25       leo 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    425      1.25       leo 		printf("Error: Nonstandard RealTimeClock Configuration -"
    426      1.25       leo 			" value ignored\n"
    427      1.25       leo 			"       A write to /dev/rtc will correct this.\n");
    428      1.49   tsutsui 			return 0;
    429      1.25       leo 	}
    430      1.49   tsutsui 	if (clkregs[MC_SEC] > 59)
    431      1.40     joerg 		return -1;
    432      1.49   tsutsui 	if (clkregs[MC_MIN] > 59)
    433      1.40     joerg 		return -1;
    434      1.49   tsutsui 	if (clkregs[MC_HOUR] > 23)
    435      1.40     joerg 		return -1;
    436      1.49   tsutsui 	if (range_test(clkregs[MC_DOM], 1, 31))
    437      1.40     joerg 		return -1;
    438       1.3       leo 	if (range_test(clkregs[MC_MONTH], 1, 12))
    439      1.40     joerg 		return -1;
    440      1.49   tsutsui 	if (clkregs[MC_YEAR] > 99)
    441      1.40     joerg 		return -1;
    442      1.40     joerg 
    443      1.40     joerg 	dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    444      1.40     joerg 	dtp->dt_mon  = clkregs[MC_MONTH];
    445      1.40     joerg 	dtp->dt_day  = clkregs[MC_DOM];
    446      1.40     joerg 	dtp->dt_hour = clkregs[MC_HOUR];
    447      1.40     joerg 	dtp->dt_min  = clkregs[MC_MIN];
    448      1.40     joerg 	dtp->dt_sec  = clkregs[MC_SEC];
    449      1.40     joerg 
    450      1.40     joerg 	return 0;
    451      1.40     joerg }
    452      1.40     joerg 
    453      1.40     joerg static int
    454      1.40     joerg atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    455      1.40     joerg {
    456      1.40     joerg 	int s;
    457      1.40     joerg 	mc_todregs clkregs;
    458       1.1       leo 
    459      1.40     joerg 	clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
    460      1.40     joerg 	clkregs[MC_MONTH] = dtp->dt_mon;
    461      1.40     joerg 	clkregs[MC_DOM] = dtp->dt_day;
    462      1.40     joerg 	clkregs[MC_HOUR] = dtp->dt_hour;
    463      1.40     joerg 	clkregs[MC_MIN] = dtp->dt_min;
    464      1.40     joerg 	clkregs[MC_SEC] = dtp->dt_sec;
    465       1.1       leo 
    466      1.40     joerg 	s = splclock();
    467      1.40     joerg 	MC146818_PUTTOD(RTC, &clkregs);
    468      1.40     joerg 	splx(s);
    469      1.40     joerg 
    470      1.40     joerg 	return 0;
    471       1.1       leo }
    472      1.40     joerg 
    473      1.14       leo /***********************************************************************
    474      1.14       leo  *                   RTC-device support				       *
    475      1.14       leo  ***********************************************************************/
    476      1.14       leo int
    477      1.45       dsl rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
    478      1.14       leo {
    479      1.14       leo 	int			unit = minor(dev);
    480      1.14       leo 	struct clock_softc	*sc;
    481      1.14       leo 
    482      1.41   tsutsui 	sc = device_lookup_private(&clock_cd, unit);
    483      1.41   tsutsui 	if (sc == NULL)
    484      1.14       leo 		return ENXIO;
    485      1.14       leo 	if (sc->sc_flags & RTC_OPEN)
    486      1.14       leo 		return EBUSY;
    487      1.14       leo 
    488      1.14       leo 	sc->sc_flags = RTC_OPEN;
    489      1.14       leo 	return 0;
    490      1.14       leo }
    491       1.1       leo 
    492      1.14       leo int
    493      1.44       dsl rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
    494       1.1       leo {
    495      1.14       leo 	int			unit = minor(dev);
    496      1.41   tsutsui 	struct clock_softc	*sc = device_lookup_private(&clock_cd, unit);
    497      1.14       leo 
    498      1.14       leo 	sc->sc_flags = 0;
    499      1.14       leo 	return 0;
    500      1.14       leo }
    501      1.14       leo 
    502      1.14       leo int
    503      1.44       dsl rtcread(dev_t dev, struct uio *uio, int flags)
    504      1.14       leo {
    505      1.14       leo 	struct clock_softc	*sc;
    506      1.14       leo 	mc_todregs		clkregs;
    507      1.14       leo 	int			s, length;
    508      1.14       leo 	char			buffer[16];
    509      1.14       leo 
    510      1.41   tsutsui 	sc = device_lookup_private(&clock_cd, minor(dev));
    511      1.14       leo 
    512      1.14       leo 	s = splhigh();
    513      1.14       leo 	MC146818_GETTOD(RTC, &clkregs);
    514      1.14       leo 	splx(s);
    515      1.14       leo 
    516      1.21       leo 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    517      1.21       leo 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    518      1.14       leo 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    519      1.14       leo 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    520      1.14       leo 
    521      1.14       leo 	if (uio->uio_offset > strlen(buffer))
    522      1.14       leo 		return 0;
    523       1.1       leo 
    524      1.14       leo 	length = strlen(buffer) - uio->uio_offset;
    525      1.14       leo 	if (length > uio->uio_resid)
    526      1.14       leo 		length = uio->uio_resid;
    527       1.1       leo 
    528      1.49   tsutsui 	return uiomove((void *)buffer, length, uio);
    529      1.14       leo }
    530      1.14       leo 
    531      1.14       leo static int
    532      1.44       dsl twodigits(char *buffer, int pos)
    533      1.14       leo {
    534      1.14       leo 	int result = 0;
    535      1.14       leo 
    536      1.14       leo 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    537      1.14       leo 		result = (buffer[pos] - '0') * 10;
    538      1.14       leo 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    539      1.14       leo 		result += (buffer[pos+1] - '0');
    540      1.49   tsutsui 	return result;
    541      1.14       leo }
    542       1.1       leo 
    543      1.14       leo int
    544      1.44       dsl rtcwrite(dev_t dev, struct uio *uio, int flags)
    545      1.14       leo {
    546      1.14       leo 	mc_todregs		clkregs;
    547      1.14       leo 	int			s, length, error;
    548      1.21       leo 	char			buffer[16];
    549      1.14       leo 
    550      1.14       leo 	/*
    551      1.14       leo 	 * We require atomic updates!
    552      1.14       leo 	 */
    553      1.14       leo 	length = uio->uio_resid;
    554      1.14       leo 	if (uio->uio_offset || (length != sizeof(buffer)
    555      1.14       leo 	  && length != sizeof(buffer - 1)))
    556      1.49   tsutsui 		return EINVAL;
    557      1.14       leo 
    558      1.38  christos 	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
    559      1.49   tsutsui 		return error;
    560       1.1       leo 
    561      1.14       leo 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    562      1.49   tsutsui 		return EINVAL;
    563       1.1       leo 
    564      1.14       leo 	s = splclock();
    565      1.25       leo 	mc146818_write(RTC, MC_REGB,
    566      1.49   tsutsui 	    mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    567       1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    568      1.14       leo 	splx(s);
    569      1.14       leo 
    570      1.21       leo 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    571      1.21       leo 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    572      1.21       leo 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    573      1.21       leo 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    574      1.21       leo 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    575      1.21       leo 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    576      1.14       leo 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    577      1.14       leo 
    578      1.14       leo 	s = splclock();
    579       1.3       leo 	MC146818_PUTTOD(RTC, &clkregs);
    580      1.14       leo 	splx(s);
    581       1.1       leo 
    582      1.49   tsutsui 	return 0;
    583       1.1       leo }
    584