clock.c revision 1.53 1 1.53 tsutsui /* $NetBSD: clock.c,v 1.53 2011/06/05 06:33:42 tsutsui Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.52 rmind * Copyright (c) 1988 University of Utah.
5 1.1 leo * Copyright (c) 1982, 1990 The Regents of the University of California.
6 1.1 leo * All rights reserved.
7 1.1 leo *
8 1.1 leo * This code is derived from software contributed to Berkeley by
9 1.1 leo * the Systems Programming Group of the University of Utah Computer
10 1.1 leo * Science Department.
11 1.1 leo *
12 1.1 leo * Redistribution and use in source and binary forms, with or without
13 1.1 leo * modification, are permitted provided that the following conditions
14 1.1 leo * are met:
15 1.1 leo * 1. Redistributions of source code must retain the above copyright
16 1.1 leo * notice, this list of conditions and the following disclaimer.
17 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 leo * notice, this list of conditions and the following disclaimer in the
19 1.1 leo * documentation and/or other materials provided with the distribution.
20 1.34 agc * 3. Neither the name of the University nor the names of its contributors
21 1.34 agc * may be used to endorse or promote products derived from this software
22 1.34 agc * without specific prior written permission.
23 1.34 agc *
24 1.34 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.34 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.34 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.34 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.34 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.34 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.34 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.34 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.34 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.34 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.34 agc * SUCH DAMAGE.
35 1.34 agc *
36 1.34 agc * from: Utah $Hdr: clock.c 1.18 91/01/21$
37 1.34 agc *
38 1.34 agc * @(#)clock.c 7.6 (Berkeley) 5/7/91
39 1.34 agc */
40 1.33 lukem
41 1.33 lukem #include <sys/cdefs.h>
42 1.53 tsutsui __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.53 2011/06/05 06:33:42 tsutsui Exp $");
43 1.1 leo
44 1.1 leo #include <sys/param.h>
45 1.1 leo #include <sys/kernel.h>
46 1.9 leo #include <sys/systm.h>
47 1.1 leo #include <sys/device.h>
48 1.14 leo #include <sys/uio.h>
49 1.14 leo #include <sys/conf.h>
50 1.32 thorpej #include <sys/proc.h>
51 1.31 jdolecek #include <sys/event.h>
52 1.40 joerg #include <sys/timetc.h>
53 1.18 leo
54 1.18 leo #include <dev/clock_subr.h>
55 1.18 leo
56 1.1 leo #include <machine/psl.h>
57 1.1 leo #include <machine/cpu.h>
58 1.1 leo #include <machine/iomap.h>
59 1.1 leo #include <machine/mfp.h>
60 1.1 leo #include <atari/dev/clockreg.h>
61 1.48 tsutsui #include <atari/dev/clockvar.h>
62 1.14 leo #include <atari/atari/device.h>
63 1.1 leo
64 1.4 leo #if defined(GPROF) && defined(PROFTIMER)
65 1.4 leo #include <machine/profile.h>
66 1.1 leo #endif
67 1.1 leo
68 1.51 tsutsui #include "ioconf.h"
69 1.51 tsutsui
70 1.40 joerg static int atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
71 1.40 joerg static int atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
72 1.40 joerg
73 1.1 leo /*
74 1.5 leo * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
75 1.5 leo * of 200. Therefore the timer runs at an effective rate of:
76 1.5 leo * 2457600/200 = 12288Hz.
77 1.5 leo */
78 1.5 leo #define CLOCK_HZ 12288
79 1.5 leo
80 1.40 joerg static u_int clk_getcounter(struct timecounter *);
81 1.40 joerg
82 1.40 joerg static struct timecounter clk_timecounter = {
83 1.40 joerg clk_getcounter, /* get_timecount */
84 1.40 joerg 0, /* no poll_pps */
85 1.40 joerg ~0u, /* counter_mask */
86 1.40 joerg CLOCK_HZ, /* frequency */
87 1.40 joerg "clock", /* name, overriden later */
88 1.40 joerg 100, /* quality */
89 1.40 joerg NULL, /* prev */
90 1.40 joerg NULL, /* next */
91 1.40 joerg };
92 1.40 joerg
93 1.5 leo /*
94 1.1 leo * Machine-dependent clock routines.
95 1.1 leo *
96 1.1 leo * Inittodr initializes the time of day hardware which provides
97 1.1 leo * date functions.
98 1.1 leo *
99 1.1 leo * Resettodr restores the time of day hardware after a time change.
100 1.1 leo */
101 1.1 leo
102 1.14 leo struct clock_softc {
103 1.53 tsutsui device_t sc_dev;
104 1.14 leo int sc_flags;
105 1.53 tsutsui struct todr_chip_handle sc_handle;
106 1.14 leo };
107 1.14 leo
108 1.14 leo /*
109 1.14 leo * 'sc_flags' state info. Only used by the rtc-device functions.
110 1.14 leo */
111 1.14 leo #define RTC_OPEN 1
112 1.14 leo
113 1.14 leo dev_type_open(rtcopen);
114 1.14 leo dev_type_close(rtcclose);
115 1.14 leo dev_type_read(rtcread);
116 1.14 leo dev_type_write(rtcwrite);
117 1.14 leo
118 1.53 tsutsui static void clockattach(device_t, device_t, void *);
119 1.53 tsutsui static int clockmatch(device_t, cfdata_t, void *);
120 1.1 leo
121 1.53 tsutsui CFATTACH_DECL_NEW(clock, sizeof(struct clock_softc),
122 1.30 thorpej clockmatch, clockattach, NULL, NULL);
123 1.10 thorpej
124 1.28 gehenna const struct cdevsw rtc_cdevsw = {
125 1.28 gehenna rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
126 1.31 jdolecek nostop, notty, nopoll, nommap, nokqfilter,
127 1.28 gehenna };
128 1.1 leo
129 1.43 dsl void statintr(struct clockframe);
130 1.9 leo
131 1.43 dsl static int twodigits(char *, int);
132 1.1 leo
133 1.5 leo static int divisor; /* Systemclock divisor */
134 1.5 leo
135 1.5 leo /*
136 1.5 leo * Statistics and profile clock intervals and variances. Variance must
137 1.5 leo * be a power of 2. Since this gives us an even number, not an odd number,
138 1.5 leo * we discard one case and compensate. That is, a variance of 64 would
139 1.5 leo * give us offsets in [0..63]. Instead, we take offsets in [1..63].
140 1.26 wiz * This is symmetric around the point 32, or statvar/2, and thus averages
141 1.5 leo * to that value (assuming uniform random numbers).
142 1.5 leo */
143 1.5 leo #ifdef STATCLOCK
144 1.5 leo static int statvar = 32; /* {stat,prof}clock variance */
145 1.5 leo static int statmin; /* statclock divisor - variance/2 */
146 1.5 leo static int profmin; /* profclock divisor - variance/2 */
147 1.27 wiz static int clk2min; /* current, from above choices */
148 1.5 leo #endif
149 1.1 leo
150 1.1 leo int
151 1.53 tsutsui clockmatch(device_t parent, cfdata_t cf, void *aux)
152 1.1 leo {
153 1.49 tsutsui
154 1.53 tsutsui if (!strcmp("clock", aux))
155 1.49 tsutsui return 1;
156 1.49 tsutsui return 0;
157 1.1 leo }
158 1.1 leo
159 1.1 leo /*
160 1.1 leo * Start the real-time clock.
161 1.1 leo */
162 1.53 tsutsui void clockattach(device_t parent, device_t self, void *aux)
163 1.1 leo {
164 1.53 tsutsui struct clock_softc *sc = device_private(self);
165 1.53 tsutsui struct todr_chip_handle *tch;
166 1.49 tsutsui
167 1.53 tsutsui sc->sc_dev = self;
168 1.53 tsutsui tch = &sc->sc_handle;
169 1.53 tsutsui tch->todr_gettime_ymdhms = atari_rtc_get;
170 1.53 tsutsui tch->todr_settime_ymdhms = atari_rtc_set;
171 1.53 tsutsui tch->todr_setwen = NULL;
172 1.40 joerg
173 1.53 tsutsui todr_attach(tch);
174 1.14 leo
175 1.14 leo sc->sc_flags = 0;
176 1.14 leo
177 1.1 leo /*
178 1.3 leo * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
179 1.3 leo * The MFP clock runs at 2457600Hz. Therefore the timer runs
180 1.3 leo * at an effective rate of: 2457600/200 = 12288Hz. The
181 1.3 leo * following expression works for 48, 64 or 96 hz.
182 1.1 leo */
183 1.5 leo divisor = CLOCK_HZ/hz;
184 1.2 leo MFP->mf_tacr = 0; /* Stop timer */
185 1.2 leo MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
186 1.2 leo MFP->mf_tadr = divisor; /* Set divisor */
187 1.1 leo
188 1.40 joerg clk_timecounter.tc_frequency = CLOCK_HZ;
189 1.40 joerg
190 1.5 leo if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
191 1.13 christos printf (": illegal value %d for systemclock, reset to %d\n\t",
192 1.5 leo hz, 64);
193 1.5 leo hz = 64;
194 1.5 leo }
195 1.13 christos printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
196 1.42 abs tc_init(&clk_timecounter);
197 1.1 leo
198 1.5 leo #ifdef STATCLOCK
199 1.5 leo if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
200 1.5 leo stathz = hz;
201 1.5 leo if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
202 1.5 leo profhz = hz << 1;
203 1.5 leo
204 1.5 leo MFP->mf_tcdcr &= 0x7; /* Stop timer */
205 1.5 leo MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
206 1.5 leo MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
207 1.5 leo
208 1.5 leo statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
209 1.5 leo profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
210 1.5 leo clk2min = statmin;
211 1.5 leo #endif /* STATCLOCK */
212 1.1 leo }
213 1.1 leo
214 1.46 cegger void cpu_initclocks(void)
215 1.1 leo {
216 1.49 tsutsui
217 1.3 leo MFP->mf_tacr = T_Q200; /* Start timer */
218 1.20 leo MFP->mf_ipra = (u_int8_t)~IA_TIMA;/* Clear pending interrupts */
219 1.2 leo MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
220 1.2 leo MFP->mf_imra |= IA_TIMA; /* ..... */
221 1.5 leo
222 1.5 leo #ifdef STATCLOCK
223 1.5 leo MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
224 1.20 leo MFP->mf_iprb = (u_int8_t)~IB_TIMC;/* Clear pending interrupts */
225 1.5 leo MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
226 1.5 leo MFP->mf_imrb |= IB_TIMC; /* ..... */
227 1.5 leo #endif /* STATCLOCK */
228 1.1 leo }
229 1.1 leo
230 1.9 leo void
231 1.44 dsl setstatclockrate(int newhz)
232 1.1 leo {
233 1.49 tsutsui
234 1.5 leo #ifdef STATCLOCK
235 1.5 leo if (newhz == stathz)
236 1.5 leo clk2min = statmin;
237 1.5 leo else clk2min = profmin;
238 1.5 leo #endif /* STATCLOCK */
239 1.1 leo }
240 1.1 leo
241 1.5 leo #ifdef STATCLOCK
242 1.5 leo void
243 1.44 dsl statintr(struct clockframe frame)
244 1.5 leo {
245 1.5 leo register int var, r;
246 1.5 leo
247 1.5 leo var = statvar - 1;
248 1.5 leo do {
249 1.5 leo r = random() & var;
250 1.49 tsutsui } while (r == 0);
251 1.5 leo
252 1.5 leo /*
253 1.5 leo * Note that we are always lagging behind as the new divisor
254 1.5 leo * value will not be loaded until the next interrupt. This
255 1.5 leo * shouldn't disturb the median frequency (I think ;-) ) as
256 1.5 leo * only the value used when switching frequencies is used
257 1.5 leo * twice. This shouldn't happen very often.
258 1.5 leo */
259 1.5 leo MFP->mf_tcdr = clk2min + r;
260 1.5 leo
261 1.16 leo statclock(&frame);
262 1.5 leo }
263 1.5 leo #endif /* STATCLOCK */
264 1.5 leo
265 1.40 joerg static u_int
266 1.40 joerg clk_getcounter(struct timecounter *tc)
267 1.1 leo {
268 1.47 tsutsui uint32_t delta, count, cur_hardclock;
269 1.47 tsutsui uint8_t ipra, tadr;
270 1.47 tsutsui int s;
271 1.47 tsutsui static uint32_t lastcount;
272 1.3 leo
273 1.40 joerg s = splhigh();
274 1.47 tsutsui cur_hardclock = hardclock_ticks;
275 1.40 joerg ipra = MFP->mf_ipra;
276 1.40 joerg tadr = MFP->mf_tadr;
277 1.40 joerg delta = divisor - tadr;
278 1.40 joerg
279 1.40 joerg if (ipra & IA_TIMA)
280 1.40 joerg delta += divisor;
281 1.40 joerg splx(s);
282 1.22 leo
283 1.47 tsutsui count = (divisor * cur_hardclock) + delta;
284 1.47 tsutsui if ((int32_t)(count - lastcount) < 0) {
285 1.47 tsutsui /* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
286 1.47 tsutsui count = lastcount + 1;
287 1.47 tsutsui }
288 1.47 tsutsui lastcount = count;
289 1.47 tsutsui
290 1.47 tsutsui return count;
291 1.1 leo }
292 1.1 leo
293 1.2 leo #define TIMB_FREQ 614400
294 1.2 leo #define TIMB_LIMIT 256
295 1.1 leo
296 1.48 tsutsui void
297 1.48 tsutsui init_delay(void)
298 1.48 tsutsui {
299 1.48 tsutsui
300 1.48 tsutsui /*
301 1.48 tsutsui * Initialize Timer-B in the ST-MFP. This timer is used by
302 1.48 tsutsui * the 'delay' function below. This timer is setup to be
303 1.48 tsutsui * continueously counting from 255 back to zero at a
304 1.48 tsutsui * frequency of 614400Hz. We do this *early* in the
305 1.48 tsutsui * initialisation process.
306 1.48 tsutsui */
307 1.48 tsutsui MFP->mf_tbcr = 0; /* Stop timer */
308 1.48 tsutsui MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
309 1.48 tsutsui MFP->mf_tbdr = 0;
310 1.48 tsutsui MFP->mf_tbcr = T_Q004; /* Start timer */
311 1.48 tsutsui }
312 1.48 tsutsui
313 1.1 leo /*
314 1.1 leo * Wait "n" microseconds.
315 1.2 leo * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
316 1.1 leo * Note: timer had better have been programmed before this is first used!
317 1.1 leo */
318 1.14 leo void
319 1.39 joerg delay(unsigned int n)
320 1.1 leo {
321 1.39 joerg int ticks, otick, remaining;
322 1.1 leo
323 1.1 leo /*
324 1.1 leo * Read the counter first, so that the rest of the setup overhead is
325 1.1 leo * counted.
326 1.1 leo */
327 1.2 leo otick = MFP->mf_tbdr;
328 1.1 leo
329 1.39 joerg if (n <= UINT_MAX / TIMB_FREQ) {
330 1.39 joerg /*
331 1.39 joerg * For unsigned arithmetic, division can be replaced with
332 1.39 joerg * multiplication with the inverse and a shift.
333 1.39 joerg */
334 1.39 joerg remaining = n * TIMB_FREQ / 1000000;
335 1.39 joerg } else {
336 1.39 joerg /* This is a very long delay.
337 1.39 joerg * Being slow here doesn't matter.
338 1.39 joerg */
339 1.39 joerg remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
340 1.1 leo }
341 1.1 leo
342 1.49 tsutsui while (remaining > 0) {
343 1.35 he ticks = MFP->mf_tbdr;
344 1.49 tsutsui if (ticks > otick)
345 1.39 joerg remaining -= TIMB_LIMIT - (ticks - otick);
346 1.39 joerg else
347 1.39 joerg remaining -= otick - ticks;
348 1.35 he otick = ticks;
349 1.1 leo }
350 1.1 leo }
351 1.1 leo
352 1.4 leo #ifdef GPROF
353 1.1 leo /*
354 1.1 leo * profclock() is expanded in line in lev6intr() unless profiling kernel.
355 1.1 leo * Assumes it is called with clock interrupts blocked.
356 1.1 leo */
357 1.44 dsl profclock(void *pc, int ps)
358 1.1 leo {
359 1.49 tsutsui
360 1.1 leo /*
361 1.1 leo * Came from user mode.
362 1.1 leo * If this process is being profiled record the tick.
363 1.1 leo */
364 1.1 leo if (USERMODE(ps)) {
365 1.1 leo if (p->p_stats.p_prof.pr_scale)
366 1.1 leo addupc(pc, &curproc->p_stats.p_prof, 1);
367 1.1 leo }
368 1.1 leo /*
369 1.1 leo * Came from kernel (supervisor) mode.
370 1.1 leo * If we are profiling the kernel, record the tick.
371 1.1 leo */
372 1.1 leo else if (profiling < 2) {
373 1.1 leo register int s = pc - s_lowpc;
374 1.1 leo
375 1.1 leo if (s < s_textsize)
376 1.49 tsutsui kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
377 1.1 leo }
378 1.1 leo /*
379 1.1 leo * Kernel profiling was on but has been disabled.
380 1.1 leo * Mark as no longer profiling kernel and if all profiling done,
381 1.1 leo * disable the clock.
382 1.1 leo */
383 1.1 leo if (profiling && (profon & PRF_KERNEL)) {
384 1.1 leo profon &= ~PRF_KERNEL;
385 1.1 leo if (profon == PRF_NONE)
386 1.1 leo stopprofclock();
387 1.1 leo }
388 1.1 leo }
389 1.1 leo #endif
390 1.7 leo
391 1.7 leo /***********************************************************************
392 1.7 leo * Real Time Clock support *
393 1.7 leo ***********************************************************************/
394 1.7 leo
395 1.50 tsutsui u_int mc146818_read(void *cookie, u_int regno)
396 1.7 leo {
397 1.50 tsutsui struct rtc *rtc = cookie;
398 1.49 tsutsui
399 1.50 tsutsui rtc->rtc_regno = regno;
400 1.50 tsutsui return rtc->rtc_data & 0xff;
401 1.7 leo }
402 1.7 leo
403 1.50 tsutsui void mc146818_write(void *cookie, u_int regno, u_int value)
404 1.7 leo {
405 1.50 tsutsui struct rtc *rtc = cookie;
406 1.49 tsutsui
407 1.50 tsutsui rtc->rtc_regno = regno;
408 1.50 tsutsui rtc->rtc_data = value;
409 1.7 leo }
410 1.1 leo
411 1.40 joerg static int
412 1.40 joerg atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
413 1.1 leo {
414 1.18 leo int sps;
415 1.18 leo mc_todregs clkregs;
416 1.25 leo u_int regb;
417 1.3 leo
418 1.3 leo sps = splhigh();
419 1.25 leo regb = mc146818_read(RTC, MC_REGB);
420 1.3 leo MC146818_GETTOD(RTC, &clkregs);
421 1.3 leo splx(sps);
422 1.1 leo
423 1.25 leo regb &= MC_REGB_24HR|MC_REGB_BINARY;
424 1.25 leo if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
425 1.25 leo printf("Error: Nonstandard RealTimeClock Configuration -"
426 1.25 leo " value ignored\n"
427 1.25 leo " A write to /dev/rtc will correct this.\n");
428 1.49 tsutsui return 0;
429 1.25 leo }
430 1.49 tsutsui if (clkregs[MC_SEC] > 59)
431 1.40 joerg return -1;
432 1.49 tsutsui if (clkregs[MC_MIN] > 59)
433 1.40 joerg return -1;
434 1.49 tsutsui if (clkregs[MC_HOUR] > 23)
435 1.40 joerg return -1;
436 1.49 tsutsui if (range_test(clkregs[MC_DOM], 1, 31))
437 1.40 joerg return -1;
438 1.3 leo if (range_test(clkregs[MC_MONTH], 1, 12))
439 1.40 joerg return -1;
440 1.49 tsutsui if (clkregs[MC_YEAR] > 99)
441 1.40 joerg return -1;
442 1.40 joerg
443 1.40 joerg dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
444 1.40 joerg dtp->dt_mon = clkregs[MC_MONTH];
445 1.40 joerg dtp->dt_day = clkregs[MC_DOM];
446 1.40 joerg dtp->dt_hour = clkregs[MC_HOUR];
447 1.40 joerg dtp->dt_min = clkregs[MC_MIN];
448 1.40 joerg dtp->dt_sec = clkregs[MC_SEC];
449 1.40 joerg
450 1.40 joerg return 0;
451 1.40 joerg }
452 1.40 joerg
453 1.40 joerg static int
454 1.40 joerg atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
455 1.40 joerg {
456 1.40 joerg int s;
457 1.40 joerg mc_todregs clkregs;
458 1.1 leo
459 1.40 joerg clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
460 1.40 joerg clkregs[MC_MONTH] = dtp->dt_mon;
461 1.40 joerg clkregs[MC_DOM] = dtp->dt_day;
462 1.40 joerg clkregs[MC_HOUR] = dtp->dt_hour;
463 1.40 joerg clkregs[MC_MIN] = dtp->dt_min;
464 1.40 joerg clkregs[MC_SEC] = dtp->dt_sec;
465 1.1 leo
466 1.40 joerg s = splclock();
467 1.40 joerg MC146818_PUTTOD(RTC, &clkregs);
468 1.40 joerg splx(s);
469 1.40 joerg
470 1.40 joerg return 0;
471 1.1 leo }
472 1.40 joerg
473 1.14 leo /***********************************************************************
474 1.14 leo * RTC-device support *
475 1.14 leo ***********************************************************************/
476 1.14 leo int
477 1.45 dsl rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
478 1.14 leo {
479 1.14 leo int unit = minor(dev);
480 1.14 leo struct clock_softc *sc;
481 1.14 leo
482 1.41 tsutsui sc = device_lookup_private(&clock_cd, unit);
483 1.41 tsutsui if (sc == NULL)
484 1.14 leo return ENXIO;
485 1.14 leo if (sc->sc_flags & RTC_OPEN)
486 1.14 leo return EBUSY;
487 1.14 leo
488 1.14 leo sc->sc_flags = RTC_OPEN;
489 1.14 leo return 0;
490 1.14 leo }
491 1.1 leo
492 1.14 leo int
493 1.44 dsl rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
494 1.1 leo {
495 1.14 leo int unit = minor(dev);
496 1.41 tsutsui struct clock_softc *sc = device_lookup_private(&clock_cd, unit);
497 1.14 leo
498 1.14 leo sc->sc_flags = 0;
499 1.14 leo return 0;
500 1.14 leo }
501 1.14 leo
502 1.14 leo int
503 1.44 dsl rtcread(dev_t dev, struct uio *uio, int flags)
504 1.14 leo {
505 1.14 leo struct clock_softc *sc;
506 1.14 leo mc_todregs clkregs;
507 1.14 leo int s, length;
508 1.14 leo char buffer[16];
509 1.14 leo
510 1.41 tsutsui sc = device_lookup_private(&clock_cd, minor(dev));
511 1.14 leo
512 1.14 leo s = splhigh();
513 1.14 leo MC146818_GETTOD(RTC, &clkregs);
514 1.14 leo splx(s);
515 1.14 leo
516 1.21 leo sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
517 1.21 leo clkregs[MC_YEAR] + GEMSTARTOFTIME,
518 1.14 leo clkregs[MC_MONTH], clkregs[MC_DOM],
519 1.14 leo clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
520 1.14 leo
521 1.14 leo if (uio->uio_offset > strlen(buffer))
522 1.14 leo return 0;
523 1.1 leo
524 1.14 leo length = strlen(buffer) - uio->uio_offset;
525 1.14 leo if (length > uio->uio_resid)
526 1.14 leo length = uio->uio_resid;
527 1.1 leo
528 1.49 tsutsui return uiomove((void *)buffer, length, uio);
529 1.14 leo }
530 1.14 leo
531 1.14 leo static int
532 1.44 dsl twodigits(char *buffer, int pos)
533 1.14 leo {
534 1.14 leo int result = 0;
535 1.14 leo
536 1.14 leo if (buffer[pos] >= '0' && buffer[pos] <= '9')
537 1.14 leo result = (buffer[pos] - '0') * 10;
538 1.14 leo if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
539 1.14 leo result += (buffer[pos+1] - '0');
540 1.49 tsutsui return result;
541 1.14 leo }
542 1.1 leo
543 1.14 leo int
544 1.44 dsl rtcwrite(dev_t dev, struct uio *uio, int flags)
545 1.14 leo {
546 1.14 leo mc_todregs clkregs;
547 1.14 leo int s, length, error;
548 1.21 leo char buffer[16];
549 1.14 leo
550 1.14 leo /*
551 1.14 leo * We require atomic updates!
552 1.14 leo */
553 1.14 leo length = uio->uio_resid;
554 1.14 leo if (uio->uio_offset || (length != sizeof(buffer)
555 1.14 leo && length != sizeof(buffer - 1)))
556 1.49 tsutsui return EINVAL;
557 1.14 leo
558 1.38 christos if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
559 1.49 tsutsui return error;
560 1.1 leo
561 1.14 leo if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
562 1.49 tsutsui return EINVAL;
563 1.1 leo
564 1.14 leo s = splclock();
565 1.25 leo mc146818_write(RTC, MC_REGB,
566 1.49 tsutsui mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
567 1.3 leo MC146818_GETTOD(RTC, &clkregs);
568 1.14 leo splx(s);
569 1.14 leo
570 1.21 leo clkregs[MC_SEC] = twodigits(buffer, 13);
571 1.21 leo clkregs[MC_MIN] = twodigits(buffer, 10);
572 1.21 leo clkregs[MC_HOUR] = twodigits(buffer, 8);
573 1.21 leo clkregs[MC_DOM] = twodigits(buffer, 6);
574 1.21 leo clkregs[MC_MONTH] = twodigits(buffer, 4);
575 1.21 leo s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
576 1.14 leo clkregs[MC_YEAR] = s - GEMSTARTOFTIME;
577 1.14 leo
578 1.14 leo s = splclock();
579 1.3 leo MC146818_PUTTOD(RTC, &clkregs);
580 1.14 leo splx(s);
581 1.1 leo
582 1.49 tsutsui return 0;
583 1.1 leo }
584