Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.59.28.1
      1  1.59.28.1    martin /*	$NetBSD: clock.c,v 1.59.28.1 2020/04/13 08:03:39 martin Exp $	*/
      2        1.1       leo 
      3        1.1       leo /*
      4       1.52     rmind  * Copyright (c) 1988 University of Utah.
      5        1.1       leo  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6        1.1       leo  * All rights reserved.
      7        1.1       leo  *
      8        1.1       leo  * This code is derived from software contributed to Berkeley by
      9        1.1       leo  * the Systems Programming Group of the University of Utah Computer
     10        1.1       leo  * Science Department.
     11        1.1       leo  *
     12        1.1       leo  * Redistribution and use in source and binary forms, with or without
     13        1.1       leo  * modification, are permitted provided that the following conditions
     14        1.1       leo  * are met:
     15        1.1       leo  * 1. Redistributions of source code must retain the above copyright
     16        1.1       leo  *    notice, this list of conditions and the following disclaimer.
     17        1.1       leo  * 2. Redistributions in binary form must reproduce the above copyright
     18        1.1       leo  *    notice, this list of conditions and the following disclaimer in the
     19        1.1       leo  *    documentation and/or other materials provided with the distribution.
     20       1.34       agc  * 3. Neither the name of the University nor the names of its contributors
     21       1.34       agc  *    may be used to endorse or promote products derived from this software
     22       1.34       agc  *    without specific prior written permission.
     23       1.34       agc  *
     24       1.34       agc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25       1.34       agc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26       1.34       agc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27       1.34       agc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28       1.34       agc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29       1.34       agc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30       1.34       agc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31       1.34       agc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32       1.34       agc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33       1.34       agc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34       1.34       agc  * SUCH DAMAGE.
     35       1.34       agc  *
     36       1.34       agc  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     37       1.34       agc  *
     38       1.34       agc  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     39       1.34       agc  */
     40       1.33     lukem 
     41       1.33     lukem #include <sys/cdefs.h>
     42  1.59.28.1    martin __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.59.28.1 2020/04/13 08:03:39 martin Exp $");
     43        1.1       leo 
     44        1.1       leo #include <sys/param.h>
     45        1.1       leo #include <sys/kernel.h>
     46        1.9       leo #include <sys/systm.h>
     47        1.1       leo #include <sys/device.h>
     48       1.14       leo #include <sys/uio.h>
     49       1.14       leo #include <sys/conf.h>
     50       1.32   thorpej #include <sys/proc.h>
     51       1.31  jdolecek #include <sys/event.h>
     52       1.40     joerg #include <sys/timetc.h>
     53       1.18       leo 
     54       1.18       leo #include <dev/clock_subr.h>
     55       1.18       leo 
     56        1.1       leo #include <machine/psl.h>
     57        1.1       leo #include <machine/cpu.h>
     58        1.1       leo #include <machine/iomap.h>
     59        1.1       leo #include <machine/mfp.h>
     60        1.1       leo #include <atari/dev/clockreg.h>
     61       1.48   tsutsui #include <atari/dev/clockvar.h>
     62       1.14       leo #include <atari/atari/device.h>
     63        1.1       leo 
     64        1.4       leo #if defined(GPROF) && defined(PROFTIMER)
     65        1.4       leo #include <machine/profile.h>
     66        1.1       leo #endif
     67        1.1       leo 
     68       1.51   tsutsui #include "ioconf.h"
     69       1.51   tsutsui 
     70       1.40     joerg static int	atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
     71       1.40     joerg static int	atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
     72       1.40     joerg 
     73        1.1       leo /*
     74        1.5       leo  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     75        1.5       leo  * of 200. Therefore the timer runs at an effective rate of:
     76        1.5       leo  * 2457600/200 = 12288Hz.
     77        1.5       leo  */
     78        1.5       leo #define CLOCK_HZ	12288
     79        1.5       leo 
     80       1.40     joerg static u_int clk_getcounter(struct timecounter *);
     81       1.40     joerg 
     82       1.40     joerg static struct timecounter clk_timecounter = {
     83       1.40     joerg 	clk_getcounter,	/* get_timecount */
     84       1.40     joerg 	0,		/* no poll_pps */
     85       1.40     joerg 	~0u,		/* counter_mask */
     86       1.40     joerg 	CLOCK_HZ,	/* frequency */
     87       1.40     joerg 	"clock",	/* name, overriden later */
     88       1.40     joerg 	100,		/* quality */
     89       1.40     joerg 	NULL,		/* prev */
     90       1.40     joerg 	NULL,		/* next */
     91       1.40     joerg };
     92       1.40     joerg 
     93        1.5       leo /*
     94        1.1       leo  * Machine-dependent clock routines.
     95        1.1       leo  *
     96        1.1       leo  * Inittodr initializes the time of day hardware which provides
     97        1.1       leo  * date functions.
     98        1.1       leo  *
     99        1.1       leo  * Resettodr restores the time of day hardware after a time change.
    100        1.1       leo  */
    101        1.1       leo 
    102       1.14       leo struct clock_softc {
    103       1.53   tsutsui 	device_t	sc_dev;
    104       1.14       leo 	int		sc_flags;
    105       1.53   tsutsui 	struct todr_chip_handle	sc_handle;
    106       1.14       leo };
    107       1.14       leo 
    108       1.14       leo /*
    109       1.14       leo  *  'sc_flags' state info. Only used by the rtc-device functions.
    110       1.14       leo  */
    111       1.14       leo #define	RTC_OPEN	1
    112       1.14       leo 
    113       1.14       leo dev_type_open(rtcopen);
    114       1.14       leo dev_type_close(rtcclose);
    115       1.14       leo dev_type_read(rtcread);
    116       1.14       leo dev_type_write(rtcwrite);
    117       1.14       leo 
    118       1.53   tsutsui static void	clockattach(device_t, device_t, void *);
    119       1.53   tsutsui static int	clockmatch(device_t, cfdata_t, void *);
    120        1.1       leo 
    121       1.53   tsutsui CFATTACH_DECL_NEW(clock, sizeof(struct clock_softc),
    122       1.30   thorpej     clockmatch, clockattach, NULL, NULL);
    123       1.10   thorpej 
    124       1.28   gehenna const struct cdevsw rtc_cdevsw = {
    125       1.56  dholland 	.d_open = rtcopen,
    126       1.56  dholland 	.d_close = rtcclose,
    127       1.56  dholland 	.d_read = rtcread,
    128       1.56  dholland 	.d_write = rtcwrite,
    129       1.56  dholland 	.d_ioctl = noioctl,
    130       1.56  dholland 	.d_stop = nostop,
    131       1.56  dholland 	.d_tty = notty,
    132       1.56  dholland 	.d_poll = nopoll,
    133       1.56  dholland 	.d_mmap = nommap,
    134       1.56  dholland 	.d_kqfilter = nokqfilter,
    135       1.59  dholland 	.d_discard = nodiscard,
    136       1.56  dholland 	.d_flag = 0
    137       1.28   gehenna };
    138        1.1       leo 
    139       1.43       dsl void statintr(struct clockframe);
    140        1.9       leo 
    141       1.43       dsl static int	twodigits(char *, int);
    142        1.1       leo 
    143        1.5       leo static int	divisor;	/* Systemclock divisor	*/
    144        1.5       leo 
    145        1.5       leo /*
    146        1.5       leo  * Statistics and profile clock intervals and variances. Variance must
    147        1.5       leo  * be a power of 2. Since this gives us an even number, not an odd number,
    148        1.5       leo  * we discard one case and compensate. That is, a variance of 64 would
    149        1.5       leo  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    150       1.26       wiz  * This is symmetric around the point 32, or statvar/2, and thus averages
    151        1.5       leo  * to that value (assuming uniform random numbers).
    152        1.5       leo  */
    153        1.5       leo #ifdef STATCLOCK
    154        1.5       leo static int	statvar = 32;	/* {stat,prof}clock variance		*/
    155        1.5       leo static int	statmin;	/* statclock divisor - variance/2	*/
    156        1.5       leo static int	profmin;	/* profclock divisor - variance/2	*/
    157       1.27       wiz static int	clk2min;	/* current, from above choices		*/
    158        1.5       leo #endif
    159        1.1       leo 
    160  1.59.28.1    martin static int
    161       1.53   tsutsui clockmatch(device_t parent, cfdata_t cf, void *aux)
    162        1.1       leo {
    163       1.49   tsutsui 
    164       1.53   tsutsui 	if (!strcmp("clock", aux))
    165       1.49   tsutsui 		return 1;
    166       1.49   tsutsui 	return 0;
    167        1.1       leo }
    168        1.1       leo 
    169        1.1       leo /*
    170        1.1       leo  * Start the real-time clock.
    171        1.1       leo  */
    172  1.59.28.1    martin static void
    173  1.59.28.1    martin clockattach(device_t parent, device_t self, void *aux)
    174        1.1       leo {
    175       1.53   tsutsui 	struct clock_softc *sc = device_private(self);
    176       1.53   tsutsui 	struct todr_chip_handle	*tch;
    177       1.49   tsutsui 
    178       1.53   tsutsui 	sc->sc_dev = self;
    179       1.53   tsutsui 	tch = &sc->sc_handle;
    180       1.53   tsutsui 	tch->todr_gettime_ymdhms = atari_rtc_get;
    181       1.53   tsutsui 	tch->todr_settime_ymdhms = atari_rtc_set;
    182       1.53   tsutsui 	tch->todr_setwen = NULL;
    183       1.40     joerg 
    184       1.53   tsutsui 	todr_attach(tch);
    185       1.14       leo 
    186       1.14       leo 	sc->sc_flags = 0;
    187       1.14       leo 
    188        1.1       leo 	/*
    189        1.3       leo 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    190        1.3       leo 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    191        1.3       leo 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    192        1.3       leo 	 * following expression works for 48, 64 or 96 hz.
    193        1.1       leo 	 */
    194        1.5       leo 	divisor       = CLOCK_HZ/hz;
    195        1.2       leo 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    196        1.2       leo 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    197        1.2       leo 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    198        1.1       leo 
    199       1.40     joerg 	clk_timecounter.tc_frequency = CLOCK_HZ;
    200       1.40     joerg 
    201        1.5       leo 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    202       1.13  christos 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    203        1.5       leo 								hz, 64);
    204        1.5       leo 		hz = 64;
    205        1.5       leo 	}
    206       1.13  christos 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    207       1.42       abs 	tc_init(&clk_timecounter);
    208        1.1       leo 
    209        1.5       leo #ifdef STATCLOCK
    210        1.5       leo 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    211        1.5       leo 		stathz = hz;
    212        1.5       leo 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    213        1.5       leo 		profhz = hz << 1;
    214        1.5       leo 
    215        1.5       leo 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    216        1.5       leo 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    217        1.5       leo 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    218        1.5       leo 
    219        1.5       leo 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    220        1.5       leo 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    221        1.5       leo 	clk2min  = statmin;
    222        1.5       leo #endif /* STATCLOCK */
    223        1.1       leo }
    224        1.1       leo 
    225  1.59.28.1    martin void
    226  1.59.28.1    martin cpu_initclocks(void)
    227        1.1       leo {
    228       1.49   tsutsui 
    229        1.3       leo 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    230       1.20       leo 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    231        1.2       leo 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    232        1.2       leo 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    233        1.5       leo 
    234        1.5       leo #ifdef STATCLOCK
    235        1.5       leo 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    236       1.20       leo 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    237        1.5       leo 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    238        1.5       leo 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    239        1.5       leo #endif /* STATCLOCK */
    240        1.1       leo }
    241        1.1       leo 
    242        1.9       leo void
    243       1.44       dsl setstatclockrate(int newhz)
    244        1.1       leo {
    245       1.49   tsutsui 
    246        1.5       leo #ifdef STATCLOCK
    247        1.5       leo 	if (newhz == stathz)
    248        1.5       leo 		clk2min = statmin;
    249        1.5       leo 	else clk2min = profmin;
    250        1.5       leo #endif /* STATCLOCK */
    251        1.1       leo }
    252        1.1       leo 
    253        1.5       leo #ifdef STATCLOCK
    254        1.5       leo void
    255       1.44       dsl statintr(struct clockframe frame)
    256        1.5       leo {
    257        1.5       leo 	register int	var, r;
    258        1.5       leo 
    259        1.5       leo 	var = statvar - 1;
    260        1.5       leo 	do {
    261        1.5       leo 		r = random() & var;
    262       1.49   tsutsui 	} while (r == 0);
    263        1.5       leo 
    264        1.5       leo 	/*
    265        1.5       leo 	 * Note that we are always lagging behind as the new divisor
    266        1.5       leo 	 * value will not be loaded until the next interrupt. This
    267        1.5       leo 	 * shouldn't disturb the median frequency (I think ;-) ) as
    268        1.5       leo 	 * only the value used when switching frequencies is used
    269        1.5       leo 	 * twice. This shouldn't happen very often.
    270        1.5       leo 	 */
    271        1.5       leo 	MFP->mf_tcdr = clk2min + r;
    272        1.5       leo 
    273       1.16       leo 	statclock(&frame);
    274        1.5       leo }
    275        1.5       leo #endif /* STATCLOCK */
    276        1.5       leo 
    277       1.40     joerg static u_int
    278       1.40     joerg clk_getcounter(struct timecounter *tc)
    279        1.1       leo {
    280       1.47   tsutsui 	uint32_t delta, count, cur_hardclock;
    281       1.47   tsutsui 	uint8_t ipra, tadr;
    282       1.47   tsutsui 	int s;
    283       1.47   tsutsui 	static uint32_t lastcount;
    284        1.3       leo 
    285       1.40     joerg 	s = splhigh();
    286       1.47   tsutsui 	cur_hardclock = hardclock_ticks;
    287       1.40     joerg 	ipra = MFP->mf_ipra;
    288       1.40     joerg 	tadr = MFP->mf_tadr;
    289       1.40     joerg 	delta = divisor - tadr;
    290       1.40     joerg 
    291       1.40     joerg 	if (ipra & IA_TIMA)
    292       1.40     joerg 		delta += divisor;
    293       1.40     joerg 	splx(s);
    294       1.22       leo 
    295       1.47   tsutsui 	count = (divisor * cur_hardclock) + delta;
    296       1.47   tsutsui 	if ((int32_t)(count - lastcount) < 0) {
    297       1.47   tsutsui 		/* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
    298       1.47   tsutsui 		count = lastcount + 1;
    299       1.47   tsutsui 	}
    300       1.47   tsutsui 	lastcount = count;
    301       1.47   tsutsui 
    302       1.47   tsutsui 	return count;
    303        1.1       leo }
    304        1.1       leo 
    305        1.2       leo #define TIMB_FREQ	614400
    306        1.2       leo #define TIMB_LIMIT	256
    307        1.1       leo 
    308       1.48   tsutsui void
    309       1.48   tsutsui init_delay(void)
    310       1.48   tsutsui {
    311       1.48   tsutsui 
    312       1.48   tsutsui 	/*
    313       1.48   tsutsui 	 * Initialize Timer-B in the ST-MFP. This timer is used by
    314       1.48   tsutsui 	 * the 'delay' function below. This timer is setup to be
    315       1.48   tsutsui 	 * continueously counting from 255 back to zero at a
    316       1.48   tsutsui 	 * frequency of 614400Hz. We do this *early* in the
    317       1.48   tsutsui 	 * initialisation process.
    318       1.48   tsutsui 	 */
    319       1.48   tsutsui 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
    320       1.48   tsutsui 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    321  1.59.28.1    martin 	MFP->mf_tbdr  = 0;
    322       1.48   tsutsui 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    323       1.48   tsutsui }
    324       1.48   tsutsui 
    325        1.1       leo /*
    326        1.1       leo  * Wait "n" microseconds.
    327        1.2       leo  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    328        1.1       leo  * Note: timer had better have been programmed before this is first used!
    329        1.1       leo  */
    330       1.14       leo void
    331       1.39     joerg delay(unsigned int n)
    332        1.1       leo {
    333       1.39     joerg 	int	ticks, otick, remaining;
    334        1.1       leo 
    335        1.1       leo 	/*
    336        1.1       leo 	 * Read the counter first, so that the rest of the setup overhead is
    337        1.1       leo 	 * counted.
    338        1.1       leo 	 */
    339        1.2       leo 	otick = MFP->mf_tbdr;
    340        1.1       leo 
    341       1.39     joerg 	if (n <= UINT_MAX / TIMB_FREQ) {
    342       1.39     joerg 		/*
    343       1.39     joerg 		 * For unsigned arithmetic, division can be replaced with
    344       1.39     joerg 		 * multiplication with the inverse and a shift.
    345       1.39     joerg 		 */
    346       1.39     joerg 		remaining = n * TIMB_FREQ / 1000000;
    347       1.39     joerg 	} else {
    348       1.39     joerg 		/* This is a very long delay.
    349       1.39     joerg 		 * Being slow here doesn't matter.
    350       1.39     joerg 		 */
    351       1.39     joerg 		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
    352        1.1       leo 	}
    353        1.1       leo 
    354       1.49   tsutsui 	while (remaining > 0) {
    355       1.35        he 		ticks = MFP->mf_tbdr;
    356       1.49   tsutsui 		if (ticks > otick)
    357       1.39     joerg 			remaining -= TIMB_LIMIT - (ticks - otick);
    358       1.39     joerg 		else
    359       1.39     joerg 			remaining -= otick - ticks;
    360       1.35        he 		otick = ticks;
    361        1.1       leo 	}
    362        1.1       leo }
    363        1.1       leo 
    364        1.4       leo #ifdef GPROF
    365        1.1       leo /*
    366        1.1       leo  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    367        1.1       leo  * Assumes it is called with clock interrupts blocked.
    368        1.1       leo  */
    369       1.44       dsl profclock(void *pc, int ps)
    370        1.1       leo {
    371       1.49   tsutsui 
    372        1.1       leo 	/*
    373        1.1       leo 	 * Came from user mode.
    374        1.1       leo 	 * If this process is being profiled record the tick.
    375        1.1       leo 	 */
    376        1.1       leo 	if (USERMODE(ps)) {
    377        1.1       leo 		if (p->p_stats.p_prof.pr_scale)
    378        1.1       leo 			addupc(pc, &curproc->p_stats.p_prof, 1);
    379        1.1       leo 	}
    380        1.1       leo 	/*
    381        1.1       leo 	 * Came from kernel (supervisor) mode.
    382        1.1       leo 	 * If we are profiling the kernel, record the tick.
    383        1.1       leo 	 */
    384        1.1       leo 	else if (profiling < 2) {
    385        1.1       leo 		register int s = pc - s_lowpc;
    386        1.1       leo 
    387        1.1       leo 		if (s < s_textsize)
    388       1.49   tsutsui 			kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
    389        1.1       leo 	}
    390        1.1       leo 	/*
    391        1.1       leo 	 * Kernel profiling was on but has been disabled.
    392        1.1       leo 	 * Mark as no longer profiling kernel and if all profiling done,
    393        1.1       leo 	 * disable the clock.
    394        1.1       leo 	 */
    395        1.1       leo 	if (profiling && (profon & PRF_KERNEL)) {
    396        1.1       leo 		profon &= ~PRF_KERNEL;
    397        1.1       leo 		if (profon == PRF_NONE)
    398        1.1       leo 			stopprofclock();
    399        1.1       leo 	}
    400        1.1       leo }
    401        1.1       leo #endif
    402        1.7       leo 
    403        1.7       leo /***********************************************************************
    404        1.7       leo  *                   Real Time Clock support                           *
    405        1.7       leo  ***********************************************************************/
    406        1.7       leo 
    407       1.50   tsutsui u_int mc146818_read(void *cookie, u_int regno)
    408        1.7       leo {
    409       1.50   tsutsui 	struct rtc *rtc = cookie;
    410       1.49   tsutsui 
    411       1.50   tsutsui 	rtc->rtc_regno = regno;
    412       1.50   tsutsui 	return rtc->rtc_data & 0xff;
    413        1.7       leo }
    414        1.7       leo 
    415       1.50   tsutsui void mc146818_write(void *cookie, u_int regno, u_int value)
    416        1.7       leo {
    417       1.50   tsutsui 	struct rtc *rtc = cookie;
    418       1.49   tsutsui 
    419       1.50   tsutsui 	rtc->rtc_regno = regno;
    420       1.50   tsutsui 	rtc->rtc_data  = value;
    421        1.7       leo }
    422        1.1       leo 
    423       1.40     joerg static int
    424       1.40     joerg atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    425        1.1       leo {
    426       1.18       leo 	int			sps;
    427       1.18       leo 	mc_todregs		clkregs;
    428       1.25       leo 	u_int			regb;
    429        1.3       leo 
    430        1.3       leo 	sps = splhigh();
    431       1.25       leo 	regb = mc146818_read(RTC, MC_REGB);
    432        1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    433        1.3       leo 	splx(sps);
    434        1.1       leo 
    435       1.25       leo 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    436       1.25       leo 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    437       1.25       leo 		printf("Error: Nonstandard RealTimeClock Configuration -"
    438       1.25       leo 			" value ignored\n"
    439       1.25       leo 			"       A write to /dev/rtc will correct this.\n");
    440       1.49   tsutsui 			return 0;
    441       1.25       leo 	}
    442       1.49   tsutsui 	if (clkregs[MC_SEC] > 59)
    443       1.40     joerg 		return -1;
    444       1.49   tsutsui 	if (clkregs[MC_MIN] > 59)
    445       1.40     joerg 		return -1;
    446       1.49   tsutsui 	if (clkregs[MC_HOUR] > 23)
    447       1.40     joerg 		return -1;
    448       1.49   tsutsui 	if (range_test(clkregs[MC_DOM], 1, 31))
    449       1.40     joerg 		return -1;
    450        1.3       leo 	if (range_test(clkregs[MC_MONTH], 1, 12))
    451       1.40     joerg 		return -1;
    452       1.49   tsutsui 	if (clkregs[MC_YEAR] > 99)
    453       1.40     joerg 		return -1;
    454       1.40     joerg 
    455       1.40     joerg 	dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    456       1.40     joerg 	dtp->dt_mon  = clkregs[MC_MONTH];
    457       1.40     joerg 	dtp->dt_day  = clkregs[MC_DOM];
    458       1.40     joerg 	dtp->dt_hour = clkregs[MC_HOUR];
    459       1.40     joerg 	dtp->dt_min  = clkregs[MC_MIN];
    460       1.40     joerg 	dtp->dt_sec  = clkregs[MC_SEC];
    461       1.40     joerg 
    462       1.40     joerg 	return 0;
    463       1.40     joerg }
    464       1.40     joerg 
    465       1.40     joerg static int
    466       1.40     joerg atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    467       1.40     joerg {
    468       1.40     joerg 	int s;
    469       1.40     joerg 	mc_todregs clkregs;
    470        1.1       leo 
    471       1.40     joerg 	clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
    472       1.40     joerg 	clkregs[MC_MONTH] = dtp->dt_mon;
    473       1.40     joerg 	clkregs[MC_DOM] = dtp->dt_day;
    474       1.40     joerg 	clkregs[MC_HOUR] = dtp->dt_hour;
    475       1.40     joerg 	clkregs[MC_MIN] = dtp->dt_min;
    476       1.40     joerg 	clkregs[MC_SEC] = dtp->dt_sec;
    477        1.1       leo 
    478       1.40     joerg 	s = splclock();
    479       1.40     joerg 	MC146818_PUTTOD(RTC, &clkregs);
    480       1.40     joerg 	splx(s);
    481       1.40     joerg 
    482       1.40     joerg 	return 0;
    483        1.1       leo }
    484       1.40     joerg 
    485       1.14       leo /***********************************************************************
    486       1.14       leo  *                   RTC-device support				       *
    487       1.14       leo  ***********************************************************************/
    488       1.14       leo int
    489       1.45       dsl rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
    490       1.14       leo {
    491       1.14       leo 	int			unit = minor(dev);
    492       1.14       leo 	struct clock_softc	*sc;
    493       1.14       leo 
    494       1.41   tsutsui 	sc = device_lookup_private(&clock_cd, unit);
    495       1.41   tsutsui 	if (sc == NULL)
    496       1.14       leo 		return ENXIO;
    497       1.14       leo 	if (sc->sc_flags & RTC_OPEN)
    498       1.14       leo 		return EBUSY;
    499       1.14       leo 
    500       1.14       leo 	sc->sc_flags = RTC_OPEN;
    501       1.14       leo 	return 0;
    502       1.14       leo }
    503        1.1       leo 
    504       1.14       leo int
    505       1.44       dsl rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
    506        1.1       leo {
    507       1.14       leo 	int			unit = minor(dev);
    508       1.41   tsutsui 	struct clock_softc	*sc = device_lookup_private(&clock_cd, unit);
    509       1.14       leo 
    510       1.14       leo 	sc->sc_flags = 0;
    511       1.14       leo 	return 0;
    512       1.14       leo }
    513       1.14       leo 
    514       1.14       leo int
    515       1.44       dsl rtcread(dev_t dev, struct uio *uio, int flags)
    516       1.14       leo {
    517       1.14       leo 	mc_todregs		clkregs;
    518       1.14       leo 	int			s, length;
    519       1.54   tsutsui 	char			buffer[16 + 1];
    520       1.14       leo 
    521       1.14       leo 	s = splhigh();
    522       1.14       leo 	MC146818_GETTOD(RTC, &clkregs);
    523       1.14       leo 	splx(s);
    524       1.14       leo 
    525       1.58  christos 	snprintf(buffer, sizeof(buffer), "%4d%02d%02d%02d%02d.%02d\n",
    526       1.21       leo 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    527       1.14       leo 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    528       1.14       leo 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    529       1.14       leo 
    530       1.14       leo 	if (uio->uio_offset > strlen(buffer))
    531       1.14       leo 		return 0;
    532        1.1       leo 
    533       1.14       leo 	length = strlen(buffer) - uio->uio_offset;
    534       1.14       leo 	if (length > uio->uio_resid)
    535       1.14       leo 		length = uio->uio_resid;
    536        1.1       leo 
    537       1.49   tsutsui 	return uiomove((void *)buffer, length, uio);
    538       1.14       leo }
    539       1.14       leo 
    540       1.14       leo static int
    541       1.44       dsl twodigits(char *buffer, int pos)
    542       1.14       leo {
    543       1.14       leo 	int result = 0;
    544       1.14       leo 
    545       1.14       leo 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    546       1.14       leo 		result = (buffer[pos] - '0') * 10;
    547       1.14       leo 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    548       1.14       leo 		result += (buffer[pos+1] - '0');
    549       1.49   tsutsui 	return result;
    550       1.14       leo }
    551        1.1       leo 
    552       1.14       leo int
    553       1.44       dsl rtcwrite(dev_t dev, struct uio *uio, int flags)
    554       1.14       leo {
    555       1.14       leo 	mc_todregs		clkregs;
    556       1.14       leo 	int			s, length, error;
    557       1.21       leo 	char			buffer[16];
    558       1.14       leo 
    559       1.14       leo 	/*
    560       1.14       leo 	 * We require atomic updates!
    561       1.14       leo 	 */
    562       1.14       leo 	length = uio->uio_resid;
    563       1.14       leo 	if (uio->uio_offset || (length != sizeof(buffer)
    564  1.59.28.1    martin 	    && length != sizeof(buffer) - 1))
    565       1.49   tsutsui 		return EINVAL;
    566  1.59.28.1    martin 
    567       1.38  christos 	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
    568       1.49   tsutsui 		return error;
    569        1.1       leo 
    570       1.14       leo 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    571       1.49   tsutsui 		return EINVAL;
    572        1.1       leo 
    573       1.14       leo 	s = splclock();
    574       1.25       leo 	mc146818_write(RTC, MC_REGB,
    575       1.49   tsutsui 	    mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    576        1.3       leo 	MC146818_GETTOD(RTC, &clkregs);
    577       1.14       leo 	splx(s);
    578       1.14       leo 
    579       1.21       leo 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    580       1.21       leo 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    581       1.21       leo 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    582       1.21       leo 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    583       1.21       leo 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    584       1.21       leo 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    585  1.59.28.1    martin 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    586       1.14       leo 
    587       1.14       leo 	s = splclock();
    588        1.3       leo 	MC146818_PUTTOD(RTC, &clkregs);
    589       1.14       leo 	splx(s);
    590        1.1       leo 
    591       1.49   tsutsui 	return 0;
    592        1.1       leo }
    593