clock.c revision 1.60 1 1.60 tsutsui /* $NetBSD: clock.c,v 1.60 2019/06/29 16:37:49 tsutsui Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.52 rmind * Copyright (c) 1988 University of Utah.
5 1.1 leo * Copyright (c) 1982, 1990 The Regents of the University of California.
6 1.1 leo * All rights reserved.
7 1.1 leo *
8 1.1 leo * This code is derived from software contributed to Berkeley by
9 1.1 leo * the Systems Programming Group of the University of Utah Computer
10 1.1 leo * Science Department.
11 1.1 leo *
12 1.1 leo * Redistribution and use in source and binary forms, with or without
13 1.1 leo * modification, are permitted provided that the following conditions
14 1.1 leo * are met:
15 1.1 leo * 1. Redistributions of source code must retain the above copyright
16 1.1 leo * notice, this list of conditions and the following disclaimer.
17 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 leo * notice, this list of conditions and the following disclaimer in the
19 1.1 leo * documentation and/or other materials provided with the distribution.
20 1.34 agc * 3. Neither the name of the University nor the names of its contributors
21 1.34 agc * may be used to endorse or promote products derived from this software
22 1.34 agc * without specific prior written permission.
23 1.34 agc *
24 1.34 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.34 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.34 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.34 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.34 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.34 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.34 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.34 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.34 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.34 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.34 agc * SUCH DAMAGE.
35 1.34 agc *
36 1.34 agc * from: Utah $Hdr: clock.c 1.18 91/01/21$
37 1.34 agc *
38 1.34 agc * @(#)clock.c 7.6 (Berkeley) 5/7/91
39 1.34 agc */
40 1.33 lukem
41 1.33 lukem #include <sys/cdefs.h>
42 1.60 tsutsui __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.60 2019/06/29 16:37:49 tsutsui Exp $");
43 1.1 leo
44 1.1 leo #include <sys/param.h>
45 1.1 leo #include <sys/kernel.h>
46 1.9 leo #include <sys/systm.h>
47 1.1 leo #include <sys/device.h>
48 1.14 leo #include <sys/uio.h>
49 1.14 leo #include <sys/conf.h>
50 1.32 thorpej #include <sys/proc.h>
51 1.31 jdolecek #include <sys/event.h>
52 1.40 joerg #include <sys/timetc.h>
53 1.18 leo
54 1.18 leo #include <dev/clock_subr.h>
55 1.18 leo
56 1.1 leo #include <machine/psl.h>
57 1.1 leo #include <machine/cpu.h>
58 1.1 leo #include <machine/iomap.h>
59 1.1 leo #include <machine/mfp.h>
60 1.1 leo #include <atari/dev/clockreg.h>
61 1.48 tsutsui #include <atari/dev/clockvar.h>
62 1.14 leo #include <atari/atari/device.h>
63 1.1 leo
64 1.4 leo #if defined(GPROF) && defined(PROFTIMER)
65 1.4 leo #include <machine/profile.h>
66 1.1 leo #endif
67 1.1 leo
68 1.51 tsutsui #include "ioconf.h"
69 1.51 tsutsui
70 1.40 joerg static int atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
71 1.40 joerg static int atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
72 1.40 joerg
73 1.1 leo /*
74 1.5 leo * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
75 1.5 leo * of 200. Therefore the timer runs at an effective rate of:
76 1.5 leo * 2457600/200 = 12288Hz.
77 1.5 leo */
78 1.5 leo #define CLOCK_HZ 12288
79 1.5 leo
80 1.40 joerg static u_int clk_getcounter(struct timecounter *);
81 1.40 joerg
82 1.40 joerg static struct timecounter clk_timecounter = {
83 1.40 joerg clk_getcounter, /* get_timecount */
84 1.40 joerg 0, /* no poll_pps */
85 1.40 joerg ~0u, /* counter_mask */
86 1.40 joerg CLOCK_HZ, /* frequency */
87 1.40 joerg "clock", /* name, overriden later */
88 1.40 joerg 100, /* quality */
89 1.40 joerg NULL, /* prev */
90 1.40 joerg NULL, /* next */
91 1.40 joerg };
92 1.40 joerg
93 1.5 leo /*
94 1.1 leo * Machine-dependent clock routines.
95 1.1 leo *
96 1.1 leo * Inittodr initializes the time of day hardware which provides
97 1.1 leo * date functions.
98 1.1 leo *
99 1.1 leo * Resettodr restores the time of day hardware after a time change.
100 1.1 leo */
101 1.1 leo
102 1.14 leo struct clock_softc {
103 1.53 tsutsui device_t sc_dev;
104 1.14 leo int sc_flags;
105 1.53 tsutsui struct todr_chip_handle sc_handle;
106 1.14 leo };
107 1.14 leo
108 1.14 leo /*
109 1.14 leo * 'sc_flags' state info. Only used by the rtc-device functions.
110 1.14 leo */
111 1.14 leo #define RTC_OPEN 1
112 1.14 leo
113 1.14 leo dev_type_open(rtcopen);
114 1.14 leo dev_type_close(rtcclose);
115 1.14 leo dev_type_read(rtcread);
116 1.14 leo dev_type_write(rtcwrite);
117 1.14 leo
118 1.53 tsutsui static void clockattach(device_t, device_t, void *);
119 1.53 tsutsui static int clockmatch(device_t, cfdata_t, void *);
120 1.1 leo
121 1.53 tsutsui CFATTACH_DECL_NEW(clock, sizeof(struct clock_softc),
122 1.30 thorpej clockmatch, clockattach, NULL, NULL);
123 1.10 thorpej
124 1.28 gehenna const struct cdevsw rtc_cdevsw = {
125 1.56 dholland .d_open = rtcopen,
126 1.56 dholland .d_close = rtcclose,
127 1.56 dholland .d_read = rtcread,
128 1.56 dholland .d_write = rtcwrite,
129 1.56 dholland .d_ioctl = noioctl,
130 1.56 dholland .d_stop = nostop,
131 1.56 dholland .d_tty = notty,
132 1.56 dholland .d_poll = nopoll,
133 1.56 dholland .d_mmap = nommap,
134 1.56 dholland .d_kqfilter = nokqfilter,
135 1.59 dholland .d_discard = nodiscard,
136 1.56 dholland .d_flag = 0
137 1.28 gehenna };
138 1.1 leo
139 1.43 dsl void statintr(struct clockframe);
140 1.9 leo
141 1.43 dsl static int twodigits(char *, int);
142 1.1 leo
143 1.5 leo static int divisor; /* Systemclock divisor */
144 1.5 leo
145 1.5 leo /*
146 1.5 leo * Statistics and profile clock intervals and variances. Variance must
147 1.5 leo * be a power of 2. Since this gives us an even number, not an odd number,
148 1.5 leo * we discard one case and compensate. That is, a variance of 64 would
149 1.5 leo * give us offsets in [0..63]. Instead, we take offsets in [1..63].
150 1.26 wiz * This is symmetric around the point 32, or statvar/2, and thus averages
151 1.5 leo * to that value (assuming uniform random numbers).
152 1.5 leo */
153 1.5 leo #ifdef STATCLOCK
154 1.5 leo static int statvar = 32; /* {stat,prof}clock variance */
155 1.5 leo static int statmin; /* statclock divisor - variance/2 */
156 1.5 leo static int profmin; /* profclock divisor - variance/2 */
157 1.27 wiz static int clk2min; /* current, from above choices */
158 1.5 leo #endif
159 1.1 leo
160 1.60 tsutsui static int
161 1.53 tsutsui clockmatch(device_t parent, cfdata_t cf, void *aux)
162 1.1 leo {
163 1.49 tsutsui
164 1.53 tsutsui if (!strcmp("clock", aux))
165 1.49 tsutsui return 1;
166 1.49 tsutsui return 0;
167 1.1 leo }
168 1.1 leo
169 1.1 leo /*
170 1.1 leo * Start the real-time clock.
171 1.1 leo */
172 1.60 tsutsui static void
173 1.60 tsutsui clockattach(device_t parent, device_t self, void *aux)
174 1.1 leo {
175 1.53 tsutsui struct clock_softc *sc = device_private(self);
176 1.53 tsutsui struct todr_chip_handle *tch;
177 1.49 tsutsui
178 1.53 tsutsui sc->sc_dev = self;
179 1.53 tsutsui tch = &sc->sc_handle;
180 1.53 tsutsui tch->todr_gettime_ymdhms = atari_rtc_get;
181 1.53 tsutsui tch->todr_settime_ymdhms = atari_rtc_set;
182 1.53 tsutsui tch->todr_setwen = NULL;
183 1.40 joerg
184 1.53 tsutsui todr_attach(tch);
185 1.14 leo
186 1.14 leo sc->sc_flags = 0;
187 1.14 leo
188 1.1 leo /*
189 1.3 leo * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
190 1.3 leo * The MFP clock runs at 2457600Hz. Therefore the timer runs
191 1.3 leo * at an effective rate of: 2457600/200 = 12288Hz. The
192 1.3 leo * following expression works for 48, 64 or 96 hz.
193 1.1 leo */
194 1.5 leo divisor = CLOCK_HZ/hz;
195 1.2 leo MFP->mf_tacr = 0; /* Stop timer */
196 1.2 leo MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
197 1.2 leo MFP->mf_tadr = divisor; /* Set divisor */
198 1.1 leo
199 1.40 joerg clk_timecounter.tc_frequency = CLOCK_HZ;
200 1.40 joerg
201 1.5 leo if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
202 1.13 christos printf (": illegal value %d for systemclock, reset to %d\n\t",
203 1.5 leo hz, 64);
204 1.5 leo hz = 64;
205 1.5 leo }
206 1.13 christos printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
207 1.42 abs tc_init(&clk_timecounter);
208 1.1 leo
209 1.5 leo #ifdef STATCLOCK
210 1.5 leo if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
211 1.5 leo stathz = hz;
212 1.5 leo if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
213 1.5 leo profhz = hz << 1;
214 1.5 leo
215 1.5 leo MFP->mf_tcdcr &= 0x7; /* Stop timer */
216 1.5 leo MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
217 1.5 leo MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
218 1.5 leo
219 1.5 leo statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
220 1.5 leo profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
221 1.5 leo clk2min = statmin;
222 1.5 leo #endif /* STATCLOCK */
223 1.1 leo }
224 1.1 leo
225 1.60 tsutsui void
226 1.60 tsutsui cpu_initclocks(void)
227 1.1 leo {
228 1.49 tsutsui
229 1.3 leo MFP->mf_tacr = T_Q200; /* Start timer */
230 1.20 leo MFP->mf_ipra = (u_int8_t)~IA_TIMA;/* Clear pending interrupts */
231 1.2 leo MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
232 1.2 leo MFP->mf_imra |= IA_TIMA; /* ..... */
233 1.5 leo
234 1.5 leo #ifdef STATCLOCK
235 1.5 leo MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
236 1.20 leo MFP->mf_iprb = (u_int8_t)~IB_TIMC;/* Clear pending interrupts */
237 1.5 leo MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
238 1.5 leo MFP->mf_imrb |= IB_TIMC; /* ..... */
239 1.5 leo #endif /* STATCLOCK */
240 1.1 leo }
241 1.1 leo
242 1.9 leo void
243 1.44 dsl setstatclockrate(int newhz)
244 1.1 leo {
245 1.49 tsutsui
246 1.5 leo #ifdef STATCLOCK
247 1.5 leo if (newhz == stathz)
248 1.5 leo clk2min = statmin;
249 1.5 leo else clk2min = profmin;
250 1.5 leo #endif /* STATCLOCK */
251 1.1 leo }
252 1.1 leo
253 1.5 leo #ifdef STATCLOCK
254 1.5 leo void
255 1.44 dsl statintr(struct clockframe frame)
256 1.5 leo {
257 1.5 leo register int var, r;
258 1.5 leo
259 1.5 leo var = statvar - 1;
260 1.5 leo do {
261 1.5 leo r = random() & var;
262 1.49 tsutsui } while (r == 0);
263 1.5 leo
264 1.5 leo /*
265 1.5 leo * Note that we are always lagging behind as the new divisor
266 1.5 leo * value will not be loaded until the next interrupt. This
267 1.5 leo * shouldn't disturb the median frequency (I think ;-) ) as
268 1.5 leo * only the value used when switching frequencies is used
269 1.5 leo * twice. This shouldn't happen very often.
270 1.5 leo */
271 1.5 leo MFP->mf_tcdr = clk2min + r;
272 1.5 leo
273 1.16 leo statclock(&frame);
274 1.5 leo }
275 1.5 leo #endif /* STATCLOCK */
276 1.5 leo
277 1.40 joerg static u_int
278 1.40 joerg clk_getcounter(struct timecounter *tc)
279 1.1 leo {
280 1.47 tsutsui uint32_t delta, count, cur_hardclock;
281 1.47 tsutsui uint8_t ipra, tadr;
282 1.47 tsutsui int s;
283 1.47 tsutsui static uint32_t lastcount;
284 1.3 leo
285 1.40 joerg s = splhigh();
286 1.47 tsutsui cur_hardclock = hardclock_ticks;
287 1.40 joerg ipra = MFP->mf_ipra;
288 1.40 joerg tadr = MFP->mf_tadr;
289 1.40 joerg delta = divisor - tadr;
290 1.40 joerg
291 1.40 joerg if (ipra & IA_TIMA)
292 1.40 joerg delta += divisor;
293 1.40 joerg splx(s);
294 1.22 leo
295 1.47 tsutsui count = (divisor * cur_hardclock) + delta;
296 1.47 tsutsui if ((int32_t)(count - lastcount) < 0) {
297 1.47 tsutsui /* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
298 1.47 tsutsui count = lastcount + 1;
299 1.47 tsutsui }
300 1.47 tsutsui lastcount = count;
301 1.47 tsutsui
302 1.47 tsutsui return count;
303 1.1 leo }
304 1.1 leo
305 1.2 leo #define TIMB_FREQ 614400
306 1.2 leo #define TIMB_LIMIT 256
307 1.1 leo
308 1.48 tsutsui void
309 1.48 tsutsui init_delay(void)
310 1.48 tsutsui {
311 1.48 tsutsui
312 1.48 tsutsui /*
313 1.48 tsutsui * Initialize Timer-B in the ST-MFP. This timer is used by
314 1.48 tsutsui * the 'delay' function below. This timer is setup to be
315 1.48 tsutsui * continueously counting from 255 back to zero at a
316 1.48 tsutsui * frequency of 614400Hz. We do this *early* in the
317 1.48 tsutsui * initialisation process.
318 1.48 tsutsui */
319 1.48 tsutsui MFP->mf_tbcr = 0; /* Stop timer */
320 1.48 tsutsui MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
321 1.60 tsutsui MFP->mf_tbdr = 0;
322 1.48 tsutsui MFP->mf_tbcr = T_Q004; /* Start timer */
323 1.48 tsutsui }
324 1.48 tsutsui
325 1.1 leo /*
326 1.1 leo * Wait "n" microseconds.
327 1.2 leo * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
328 1.1 leo * Note: timer had better have been programmed before this is first used!
329 1.1 leo */
330 1.14 leo void
331 1.39 joerg delay(unsigned int n)
332 1.1 leo {
333 1.39 joerg int ticks, otick, remaining;
334 1.1 leo
335 1.1 leo /*
336 1.1 leo * Read the counter first, so that the rest of the setup overhead is
337 1.1 leo * counted.
338 1.1 leo */
339 1.2 leo otick = MFP->mf_tbdr;
340 1.1 leo
341 1.39 joerg if (n <= UINT_MAX / TIMB_FREQ) {
342 1.39 joerg /*
343 1.39 joerg * For unsigned arithmetic, division can be replaced with
344 1.39 joerg * multiplication with the inverse and a shift.
345 1.39 joerg */
346 1.39 joerg remaining = n * TIMB_FREQ / 1000000;
347 1.39 joerg } else {
348 1.39 joerg /* This is a very long delay.
349 1.39 joerg * Being slow here doesn't matter.
350 1.39 joerg */
351 1.39 joerg remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
352 1.1 leo }
353 1.1 leo
354 1.49 tsutsui while (remaining > 0) {
355 1.35 he ticks = MFP->mf_tbdr;
356 1.49 tsutsui if (ticks > otick)
357 1.39 joerg remaining -= TIMB_LIMIT - (ticks - otick);
358 1.39 joerg else
359 1.39 joerg remaining -= otick - ticks;
360 1.35 he otick = ticks;
361 1.1 leo }
362 1.1 leo }
363 1.1 leo
364 1.4 leo #ifdef GPROF
365 1.1 leo /*
366 1.1 leo * profclock() is expanded in line in lev6intr() unless profiling kernel.
367 1.1 leo * Assumes it is called with clock interrupts blocked.
368 1.1 leo */
369 1.44 dsl profclock(void *pc, int ps)
370 1.1 leo {
371 1.49 tsutsui
372 1.1 leo /*
373 1.1 leo * Came from user mode.
374 1.1 leo * If this process is being profiled record the tick.
375 1.1 leo */
376 1.1 leo if (USERMODE(ps)) {
377 1.1 leo if (p->p_stats.p_prof.pr_scale)
378 1.1 leo addupc(pc, &curproc->p_stats.p_prof, 1);
379 1.1 leo }
380 1.1 leo /*
381 1.1 leo * Came from kernel (supervisor) mode.
382 1.1 leo * If we are profiling the kernel, record the tick.
383 1.1 leo */
384 1.1 leo else if (profiling < 2) {
385 1.1 leo register int s = pc - s_lowpc;
386 1.1 leo
387 1.1 leo if (s < s_textsize)
388 1.49 tsutsui kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
389 1.1 leo }
390 1.1 leo /*
391 1.1 leo * Kernel profiling was on but has been disabled.
392 1.1 leo * Mark as no longer profiling kernel and if all profiling done,
393 1.1 leo * disable the clock.
394 1.1 leo */
395 1.1 leo if (profiling && (profon & PRF_KERNEL)) {
396 1.1 leo profon &= ~PRF_KERNEL;
397 1.1 leo if (profon == PRF_NONE)
398 1.1 leo stopprofclock();
399 1.1 leo }
400 1.1 leo }
401 1.1 leo #endif
402 1.7 leo
403 1.7 leo /***********************************************************************
404 1.7 leo * Real Time Clock support *
405 1.7 leo ***********************************************************************/
406 1.7 leo
407 1.50 tsutsui u_int mc146818_read(void *cookie, u_int regno)
408 1.7 leo {
409 1.50 tsutsui struct rtc *rtc = cookie;
410 1.49 tsutsui
411 1.50 tsutsui rtc->rtc_regno = regno;
412 1.50 tsutsui return rtc->rtc_data & 0xff;
413 1.7 leo }
414 1.7 leo
415 1.50 tsutsui void mc146818_write(void *cookie, u_int regno, u_int value)
416 1.7 leo {
417 1.50 tsutsui struct rtc *rtc = cookie;
418 1.49 tsutsui
419 1.50 tsutsui rtc->rtc_regno = regno;
420 1.50 tsutsui rtc->rtc_data = value;
421 1.7 leo }
422 1.1 leo
423 1.40 joerg static int
424 1.40 joerg atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
425 1.1 leo {
426 1.18 leo int sps;
427 1.18 leo mc_todregs clkregs;
428 1.25 leo u_int regb;
429 1.3 leo
430 1.3 leo sps = splhigh();
431 1.25 leo regb = mc146818_read(RTC, MC_REGB);
432 1.3 leo MC146818_GETTOD(RTC, &clkregs);
433 1.3 leo splx(sps);
434 1.1 leo
435 1.25 leo regb &= MC_REGB_24HR|MC_REGB_BINARY;
436 1.25 leo if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
437 1.25 leo printf("Error: Nonstandard RealTimeClock Configuration -"
438 1.25 leo " value ignored\n"
439 1.25 leo " A write to /dev/rtc will correct this.\n");
440 1.49 tsutsui return 0;
441 1.25 leo }
442 1.49 tsutsui if (clkregs[MC_SEC] > 59)
443 1.40 joerg return -1;
444 1.49 tsutsui if (clkregs[MC_MIN] > 59)
445 1.40 joerg return -1;
446 1.49 tsutsui if (clkregs[MC_HOUR] > 23)
447 1.40 joerg return -1;
448 1.49 tsutsui if (range_test(clkregs[MC_DOM], 1, 31))
449 1.40 joerg return -1;
450 1.3 leo if (range_test(clkregs[MC_MONTH], 1, 12))
451 1.40 joerg return -1;
452 1.49 tsutsui if (clkregs[MC_YEAR] > 99)
453 1.40 joerg return -1;
454 1.40 joerg
455 1.40 joerg dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
456 1.40 joerg dtp->dt_mon = clkregs[MC_MONTH];
457 1.40 joerg dtp->dt_day = clkregs[MC_DOM];
458 1.40 joerg dtp->dt_hour = clkregs[MC_HOUR];
459 1.40 joerg dtp->dt_min = clkregs[MC_MIN];
460 1.40 joerg dtp->dt_sec = clkregs[MC_SEC];
461 1.40 joerg
462 1.40 joerg return 0;
463 1.40 joerg }
464 1.40 joerg
465 1.40 joerg static int
466 1.40 joerg atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
467 1.40 joerg {
468 1.40 joerg int s;
469 1.40 joerg mc_todregs clkregs;
470 1.1 leo
471 1.40 joerg clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
472 1.40 joerg clkregs[MC_MONTH] = dtp->dt_mon;
473 1.40 joerg clkregs[MC_DOM] = dtp->dt_day;
474 1.40 joerg clkregs[MC_HOUR] = dtp->dt_hour;
475 1.40 joerg clkregs[MC_MIN] = dtp->dt_min;
476 1.40 joerg clkregs[MC_SEC] = dtp->dt_sec;
477 1.1 leo
478 1.40 joerg s = splclock();
479 1.40 joerg MC146818_PUTTOD(RTC, &clkregs);
480 1.40 joerg splx(s);
481 1.40 joerg
482 1.40 joerg return 0;
483 1.1 leo }
484 1.40 joerg
485 1.14 leo /***********************************************************************
486 1.14 leo * RTC-device support *
487 1.14 leo ***********************************************************************/
488 1.14 leo int
489 1.45 dsl rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
490 1.14 leo {
491 1.14 leo int unit = minor(dev);
492 1.14 leo struct clock_softc *sc;
493 1.14 leo
494 1.41 tsutsui sc = device_lookup_private(&clock_cd, unit);
495 1.41 tsutsui if (sc == NULL)
496 1.14 leo return ENXIO;
497 1.14 leo if (sc->sc_flags & RTC_OPEN)
498 1.14 leo return EBUSY;
499 1.14 leo
500 1.14 leo sc->sc_flags = RTC_OPEN;
501 1.14 leo return 0;
502 1.14 leo }
503 1.1 leo
504 1.14 leo int
505 1.44 dsl rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
506 1.1 leo {
507 1.14 leo int unit = minor(dev);
508 1.41 tsutsui struct clock_softc *sc = device_lookup_private(&clock_cd, unit);
509 1.14 leo
510 1.14 leo sc->sc_flags = 0;
511 1.14 leo return 0;
512 1.14 leo }
513 1.14 leo
514 1.14 leo int
515 1.44 dsl rtcread(dev_t dev, struct uio *uio, int flags)
516 1.14 leo {
517 1.14 leo mc_todregs clkregs;
518 1.14 leo int s, length;
519 1.54 tsutsui char buffer[16 + 1];
520 1.14 leo
521 1.14 leo s = splhigh();
522 1.14 leo MC146818_GETTOD(RTC, &clkregs);
523 1.14 leo splx(s);
524 1.14 leo
525 1.58 christos snprintf(buffer, sizeof(buffer), "%4d%02d%02d%02d%02d.%02d\n",
526 1.21 leo clkregs[MC_YEAR] + GEMSTARTOFTIME,
527 1.14 leo clkregs[MC_MONTH], clkregs[MC_DOM],
528 1.14 leo clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
529 1.14 leo
530 1.14 leo if (uio->uio_offset > strlen(buffer))
531 1.14 leo return 0;
532 1.1 leo
533 1.14 leo length = strlen(buffer) - uio->uio_offset;
534 1.14 leo if (length > uio->uio_resid)
535 1.14 leo length = uio->uio_resid;
536 1.1 leo
537 1.49 tsutsui return uiomove((void *)buffer, length, uio);
538 1.14 leo }
539 1.14 leo
540 1.14 leo static int
541 1.44 dsl twodigits(char *buffer, int pos)
542 1.14 leo {
543 1.14 leo int result = 0;
544 1.14 leo
545 1.14 leo if (buffer[pos] >= '0' && buffer[pos] <= '9')
546 1.14 leo result = (buffer[pos] - '0') * 10;
547 1.14 leo if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
548 1.14 leo result += (buffer[pos+1] - '0');
549 1.49 tsutsui return result;
550 1.14 leo }
551 1.1 leo
552 1.14 leo int
553 1.44 dsl rtcwrite(dev_t dev, struct uio *uio, int flags)
554 1.14 leo {
555 1.14 leo mc_todregs clkregs;
556 1.14 leo int s, length, error;
557 1.21 leo char buffer[16];
558 1.14 leo
559 1.14 leo /*
560 1.14 leo * We require atomic updates!
561 1.14 leo */
562 1.14 leo length = uio->uio_resid;
563 1.14 leo if (uio->uio_offset || (length != sizeof(buffer)
564 1.60 tsutsui && length != sizeof(buffer) - 1))
565 1.49 tsutsui return EINVAL;
566 1.60 tsutsui
567 1.38 christos if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
568 1.49 tsutsui return error;
569 1.1 leo
570 1.14 leo if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
571 1.49 tsutsui return EINVAL;
572 1.1 leo
573 1.14 leo s = splclock();
574 1.25 leo mc146818_write(RTC, MC_REGB,
575 1.49 tsutsui mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
576 1.3 leo MC146818_GETTOD(RTC, &clkregs);
577 1.14 leo splx(s);
578 1.14 leo
579 1.21 leo clkregs[MC_SEC] = twodigits(buffer, 13);
580 1.21 leo clkregs[MC_MIN] = twodigits(buffer, 10);
581 1.21 leo clkregs[MC_HOUR] = twodigits(buffer, 8);
582 1.21 leo clkregs[MC_DOM] = twodigits(buffer, 6);
583 1.21 leo clkregs[MC_MONTH] = twodigits(buffer, 4);
584 1.21 leo s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
585 1.60 tsutsui clkregs[MC_YEAR] = s - GEMSTARTOFTIME;
586 1.14 leo
587 1.14 leo s = splclock();
588 1.3 leo MC146818_PUTTOD(RTC, &clkregs);
589 1.14 leo splx(s);
590 1.1 leo
591 1.49 tsutsui return 0;
592 1.1 leo }
593