clock.c revision 1.8 1 1.7 leo /* $NetBSD: clock.c,v 1.8 1996/02/11 12:42:19 leo Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.1 leo * Copyright (c) 1988 University of Utah.
5 1.1 leo * Copyright (c) 1982, 1990 The Regents of the University of California.
6 1.1 leo * All rights reserved.
7 1.1 leo *
8 1.1 leo * This code is derived from software contributed to Berkeley by
9 1.1 leo * the Systems Programming Group of the University of Utah Computer
10 1.1 leo * Science Department.
11 1.1 leo *
12 1.1 leo * Redistribution and use in source and binary forms, with or without
13 1.1 leo * modification, are permitted provided that the following conditions
14 1.1 leo * are met:
15 1.1 leo * 1. Redistributions of source code must retain the above copyright
16 1.1 leo * notice, this list of conditions and the following disclaimer.
17 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 leo * notice, this list of conditions and the following disclaimer in the
19 1.1 leo * documentation and/or other materials provided with the distribution.
20 1.1 leo * 3. All advertising materials mentioning features or use of this software
21 1.1 leo * must display the following acknowledgement:
22 1.1 leo * This product includes software developed by the University of
23 1.1 leo * California, Berkeley and its contributors.
24 1.1 leo * 4. Neither the name of the University nor the names of its contributors
25 1.1 leo * may be used to endorse or promote products derived from this software
26 1.1 leo * without specific prior written permission.
27 1.1 leo *
28 1.1 leo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 leo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 leo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 leo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 leo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 leo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 leo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 leo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 leo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 leo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 leo * SUCH DAMAGE.
39 1.1 leo *
40 1.1 leo * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 1.1 leo *
42 1.1 leo * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 1.1 leo */
44 1.1 leo
45 1.1 leo #include <sys/param.h>
46 1.1 leo #include <sys/kernel.h>
47 1.1 leo #include <sys/device.h>
48 1.1 leo #include <machine/psl.h>
49 1.1 leo #include <machine/cpu.h>
50 1.1 leo #include <machine/iomap.h>
51 1.1 leo #include <machine/mfp.h>
52 1.1 leo #include <atari/dev/clockreg.h>
53 1.1 leo
54 1.4 leo #if defined(GPROF) && defined(PROFTIMER)
55 1.4 leo #include <machine/profile.h>
56 1.1 leo #endif
57 1.1 leo
58 1.1 leo /*
59 1.5 leo * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
60 1.5 leo * of 200. Therefore the timer runs at an effective rate of:
61 1.5 leo * 2457600/200 = 12288Hz.
62 1.5 leo */
63 1.5 leo #define CLOCK_HZ 12288
64 1.5 leo
65 1.5 leo /*
66 1.1 leo * Machine-dependent clock routines.
67 1.1 leo *
68 1.1 leo * Inittodr initializes the time of day hardware which provides
69 1.1 leo * date functions.
70 1.1 leo *
71 1.1 leo * Resettodr restores the time of day hardware after a time change.
72 1.1 leo */
73 1.1 leo
74 1.1 leo int clockmatch __P((struct device *, struct cfdata *, void *));
75 1.1 leo void clockattach __P((struct device *, struct device *, void *));
76 1.1 leo
77 1.1 leo struct cfdriver clockcd = {
78 1.1 leo NULL, "clock", (cfmatch_t)clockmatch, clockattach,
79 1.1 leo DV_DULL, sizeof(struct device), NULL, 0
80 1.1 leo };
81 1.1 leo
82 1.1 leo static u_long gettod __P((void));
83 1.1 leo static int settod __P((u_long));
84 1.1 leo
85 1.5 leo static int divisor; /* Systemclock divisor */
86 1.5 leo
87 1.5 leo /*
88 1.5 leo * Statistics and profile clock intervals and variances. Variance must
89 1.5 leo * be a power of 2. Since this gives us an even number, not an odd number,
90 1.5 leo * we discard one case and compensate. That is, a variance of 64 would
91 1.5 leo * give us offsets in [0..63]. Instead, we take offsets in [1..63].
92 1.5 leo * This is symetric around the point 32, or statvar/2, and thus averages
93 1.5 leo * to that value (assuming uniform random numbers).
94 1.5 leo */
95 1.5 leo #ifdef STATCLOCK
96 1.5 leo static int statvar = 32; /* {stat,prof}clock variance */
97 1.5 leo static int statmin; /* statclock divisor - variance/2 */
98 1.5 leo static int profmin; /* profclock divisor - variance/2 */
99 1.5 leo static int clk2min; /* current, from above choises */
100 1.5 leo #endif
101 1.1 leo
102 1.1 leo int
103 1.1 leo clockmatch(pdp, cfp, auxp)
104 1.1 leo struct device *pdp;
105 1.1 leo struct cfdata *cfp;
106 1.1 leo void *auxp;
107 1.1 leo {
108 1.1 leo if(!strcmp("clock", auxp))
109 1.1 leo return(1);
110 1.1 leo return(0);
111 1.1 leo }
112 1.1 leo
113 1.1 leo /*
114 1.1 leo * Start the real-time clock.
115 1.1 leo */
116 1.1 leo void clockattach(pdp, dp, auxp)
117 1.1 leo struct device *pdp, *dp;
118 1.1 leo void *auxp;
119 1.1 leo {
120 1.1 leo /*
121 1.3 leo * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
122 1.3 leo * The MFP clock runs at 2457600Hz. Therefore the timer runs
123 1.3 leo * at an effective rate of: 2457600/200 = 12288Hz. The
124 1.3 leo * following expression works for 48, 64 or 96 hz.
125 1.1 leo */
126 1.5 leo divisor = CLOCK_HZ/hz;
127 1.2 leo MFP->mf_tacr = 0; /* Stop timer */
128 1.2 leo MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
129 1.2 leo MFP->mf_tadr = divisor; /* Set divisor */
130 1.1 leo
131 1.5 leo if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
132 1.5 leo printf (": illegal value %d for systemclock, reset to %d\n\t",
133 1.5 leo hz, 64);
134 1.5 leo hz = 64;
135 1.5 leo }
136 1.3 leo printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
137 1.1 leo
138 1.5 leo #ifdef STATCLOCK
139 1.5 leo if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
140 1.5 leo stathz = hz;
141 1.5 leo if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
142 1.5 leo profhz = hz << 1;
143 1.5 leo
144 1.5 leo MFP->mf_tcdcr &= 0x7; /* Stop timer */
145 1.5 leo MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
146 1.5 leo MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
147 1.5 leo
148 1.5 leo statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
149 1.5 leo profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
150 1.5 leo clk2min = statmin;
151 1.5 leo #endif /* STATCLOCK */
152 1.5 leo
153 1.1 leo /*
154 1.2 leo * Initialize Timer-B in the ST-MFP. This timer is used by the 'delay'
155 1.1 leo * function below. This time is setup to be continueously counting from
156 1.1 leo * 255 back to zero at a frequency of 614400Hz.
157 1.1 leo */
158 1.2 leo MFP->mf_tbcr = 0; /* Stop timer */
159 1.2 leo MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
160 1.2 leo MFP->mf_tbdr = 0;
161 1.2 leo MFP->mf_tbcr = T_Q004; /* Start timer */
162 1.1 leo
163 1.1 leo }
164 1.1 leo
165 1.1 leo void cpu_initclocks()
166 1.1 leo {
167 1.3 leo MFP->mf_tacr = T_Q200; /* Start timer */
168 1.2 leo MFP->mf_ipra &= ~IA_TIMA; /* Clear pending interrupts */
169 1.2 leo MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
170 1.2 leo MFP->mf_imra |= IA_TIMA; /* ..... */
171 1.5 leo
172 1.5 leo #ifdef STATCLOCK
173 1.5 leo MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
174 1.5 leo MFP->mf_iprb &= ~IB_TIMC; /* Clear pending interrupts */
175 1.5 leo MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
176 1.5 leo MFP->mf_imrb |= IB_TIMC; /* ..... */
177 1.5 leo #endif /* STATCLOCK */
178 1.1 leo }
179 1.1 leo
180 1.5 leo setstatclockrate(newhz)
181 1.5 leo int newhz;
182 1.1 leo {
183 1.5 leo #ifdef STATCLOCK
184 1.5 leo if (newhz == stathz)
185 1.5 leo clk2min = statmin;
186 1.5 leo else clk2min = profmin;
187 1.5 leo #endif /* STATCLOCK */
188 1.1 leo }
189 1.1 leo
190 1.5 leo #ifdef STATCLOCK
191 1.5 leo void
192 1.5 leo statintr(frame)
193 1.5 leo register struct clockframe *frame;
194 1.5 leo {
195 1.5 leo register int var, r;
196 1.5 leo
197 1.5 leo var = statvar - 1;
198 1.5 leo do {
199 1.5 leo r = random() & var;
200 1.5 leo } while(r == 0);
201 1.5 leo
202 1.5 leo /*
203 1.5 leo * Note that we are always lagging behind as the new divisor
204 1.5 leo * value will not be loaded until the next interrupt. This
205 1.5 leo * shouldn't disturb the median frequency (I think ;-) ) as
206 1.5 leo * only the value used when switching frequencies is used
207 1.5 leo * twice. This shouldn't happen very often.
208 1.5 leo */
209 1.5 leo MFP->mf_tcdr = clk2min + r;
210 1.5 leo
211 1.5 leo statclock(frame);
212 1.5 leo }
213 1.5 leo #endif /* STATCLOCK */
214 1.5 leo
215 1.1 leo /*
216 1.1 leo * Returns number of usec since last recorded clock "tick"
217 1.1 leo * (i.e. clock interrupt).
218 1.1 leo */
219 1.1 leo clkread()
220 1.1 leo {
221 1.3 leo u_int delta;
222 1.3 leo
223 1.3 leo delta = ((divisor - MFP->mf_tadr) * tick) / divisor;
224 1.1 leo /*
225 1.1 leo * Account for pending clock interrupts
226 1.1 leo */
227 1.2 leo if(MFP->mf_iera & IA_TIMA)
228 1.1 leo return(delta + tick);
229 1.1 leo return(delta);
230 1.1 leo }
231 1.1 leo
232 1.2 leo #define TIMB_FREQ 614400
233 1.2 leo #define TIMB_LIMIT 256
234 1.1 leo
235 1.1 leo /*
236 1.1 leo * Wait "n" microseconds.
237 1.2 leo * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
238 1.1 leo * Note: timer had better have been programmed before this is first used!
239 1.1 leo */
240 1.1 leo void delay(n)
241 1.1 leo int n;
242 1.1 leo {
243 1.1 leo int tick, otick;
244 1.1 leo
245 1.1 leo /*
246 1.1 leo * Read the counter first, so that the rest of the setup overhead is
247 1.1 leo * counted.
248 1.1 leo */
249 1.2 leo otick = MFP->mf_tbdr;
250 1.1 leo
251 1.1 leo /*
252 1.1 leo * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
253 1.1 leo * we can take advantage of the intermediate 64-bit quantity to prevent
254 1.1 leo * loss of significance.
255 1.1 leo */
256 1.1 leo n -= 5;
257 1.1 leo if(n < 0)
258 1.1 leo return;
259 1.1 leo {
260 1.1 leo u_int temp;
261 1.1 leo
262 1.1 leo __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
263 1.2 leo : "d" (TIMB_FREQ));
264 1.1 leo __asm __volatile ("divul %1,%2:%0" : "=d" (n)
265 1.1 leo : "d"(1000000),"d"(temp),"0"(n));
266 1.1 leo }
267 1.1 leo
268 1.1 leo while(n > 0) {
269 1.2 leo tick = MFP->mf_tbdr;
270 1.1 leo if(tick > otick)
271 1.2 leo n -= TIMB_LIMIT - (tick - otick);
272 1.1 leo else n -= otick - tick;
273 1.1 leo otick = tick;
274 1.1 leo }
275 1.1 leo }
276 1.1 leo
277 1.4 leo #ifdef GPROF
278 1.1 leo /*
279 1.1 leo * profclock() is expanded in line in lev6intr() unless profiling kernel.
280 1.1 leo * Assumes it is called with clock interrupts blocked.
281 1.1 leo */
282 1.1 leo profclock(pc, ps)
283 1.1 leo caddr_t pc;
284 1.1 leo int ps;
285 1.1 leo {
286 1.1 leo /*
287 1.1 leo * Came from user mode.
288 1.1 leo * If this process is being profiled record the tick.
289 1.1 leo */
290 1.1 leo if (USERMODE(ps)) {
291 1.1 leo if (p->p_stats.p_prof.pr_scale)
292 1.1 leo addupc(pc, &curproc->p_stats.p_prof, 1);
293 1.1 leo }
294 1.1 leo /*
295 1.1 leo * Came from kernel (supervisor) mode.
296 1.1 leo * If we are profiling the kernel, record the tick.
297 1.1 leo */
298 1.1 leo else if (profiling < 2) {
299 1.1 leo register int s = pc - s_lowpc;
300 1.1 leo
301 1.1 leo if (s < s_textsize)
302 1.1 leo kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
303 1.1 leo }
304 1.1 leo /*
305 1.1 leo * Kernel profiling was on but has been disabled.
306 1.1 leo * Mark as no longer profiling kernel and if all profiling done,
307 1.1 leo * disable the clock.
308 1.1 leo */
309 1.1 leo if (profiling && (profon & PRF_KERNEL)) {
310 1.1 leo profon &= ~PRF_KERNEL;
311 1.1 leo if (profon == PRF_NONE)
312 1.1 leo stopprofclock();
313 1.1 leo }
314 1.1 leo }
315 1.1 leo #endif
316 1.7 leo
317 1.7 leo /***********************************************************************
318 1.7 leo * Real Time Clock support *
319 1.7 leo ***********************************************************************/
320 1.7 leo
321 1.7 leo u_int mc146818_read(rtc, regno)
322 1.7 leo void *rtc;
323 1.7 leo u_int regno;
324 1.7 leo {
325 1.7 leo ((struct rtc *)rtc)->rtc_regno = regno;
326 1.7 leo return(((struct rtc *)rtc)->rtc_data & 0377);
327 1.7 leo }
328 1.7 leo
329 1.7 leo void mc146818_write(rtc, regno, value)
330 1.7 leo void *rtc;
331 1.7 leo u_int regno, value;
332 1.7 leo {
333 1.7 leo ((struct rtc *)rtc)->rtc_regno = regno;
334 1.7 leo ((struct rtc *)rtc)->rtc_data = value;
335 1.7 leo }
336 1.1 leo
337 1.1 leo /*
338 1.1 leo * Initialize the time of day register, based on the time base which is, e.g.
339 1.1 leo * from a filesystem.
340 1.1 leo */
341 1.1 leo inittodr(base)
342 1.1 leo time_t base;
343 1.1 leo {
344 1.1 leo u_long timbuf = base; /* assume no battery clock exists */
345 1.1 leo
346 1.1 leo timbuf = gettod();
347 1.1 leo
348 1.1 leo if(timbuf < base) {
349 1.1 leo printf("WARNING: bad date in battery clock\n");
350 1.1 leo timbuf = base;
351 1.1 leo }
352 1.1 leo
353 1.1 leo /* Battery clock does not store usec's, so forget about it. */
354 1.1 leo time.tv_sec = timbuf;
355 1.1 leo }
356 1.1 leo
357 1.1 leo resettodr()
358 1.1 leo {
359 1.1 leo if(settod(time.tv_sec) == 1)
360 1.1 leo return;
361 1.1 leo printf("Cannot set battery backed clock\n");
362 1.1 leo }
363 1.1 leo
364 1.1 leo static char dmsize[12] =
365 1.1 leo {
366 1.1 leo 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
367 1.1 leo };
368 1.1 leo
369 1.1 leo static char ldmsize[12] =
370 1.1 leo {
371 1.1 leo 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
372 1.1 leo };
373 1.1 leo
374 1.1 leo static u_long
375 1.1 leo gettod()
376 1.1 leo {
377 1.3 leo int i, sps;
378 1.3 leo u_long new_time = 0;
379 1.3 leo char *msize;
380 1.3 leo mc_todregs clkregs;
381 1.3 leo
382 1.3 leo sps = splhigh();
383 1.3 leo MC146818_GETTOD(RTC, &clkregs);
384 1.3 leo splx(sps);
385 1.1 leo
386 1.8 leo if(range_test(clkregs[MC_SEC], 0, 59))
387 1.8 leo return(0);
388 1.8 leo if(range_test(clkregs[MC_MIN], 0, 59))
389 1.8 leo return(0);
390 1.3 leo if(range_test(clkregs[MC_HOUR], 0, 23))
391 1.1 leo return(0);
392 1.3 leo if(range_test(clkregs[MC_DOM], 1, 31))
393 1.1 leo return(0);
394 1.3 leo if (range_test(clkregs[MC_MONTH], 1, 12))
395 1.1 leo return(0);
396 1.3 leo if(range_test(clkregs[MC_YEAR], 0, 2000 - GEMSTARTOFTIME))
397 1.1 leo return(0);
398 1.3 leo clkregs[MC_YEAR] += GEMSTARTOFTIME;
399 1.1 leo
400 1.3 leo for(i = BSDSTARTOFTIME; i < clkregs[MC_YEAR]; i++) {
401 1.1 leo if(is_leap(i))
402 1.1 leo new_time += 366;
403 1.1 leo else new_time += 365;
404 1.1 leo }
405 1.1 leo
406 1.3 leo msize = is_leap(clkregs[MC_YEAR]) ? ldmsize : dmsize;
407 1.3 leo for(i = 0; i < (clkregs[MC_MONTH] - 1); i++)
408 1.1 leo new_time += msize[i];
409 1.3 leo new_time += clkregs[MC_DOM] - 1;
410 1.3 leo new_time *= SECS_DAY;
411 1.3 leo new_time += (clkregs[MC_HOUR] * 3600) + (clkregs[MC_MIN] * 60);
412 1.3 leo return(new_time + clkregs[MC_SEC]);
413 1.1 leo }
414 1.1 leo
415 1.1 leo static int
416 1.1 leo settod(newtime)
417 1.1 leo u_long newtime;
418 1.1 leo {
419 1.1 leo register long days, rem, year;
420 1.1 leo register char *ml;
421 1.3 leo int sps, sec, min, hour, month;
422 1.3 leo mc_todregs clkregs;
423 1.1 leo
424 1.3 leo /* Number of days since Jan. 1 'BSDSTARTOFTIME' */
425 1.1 leo days = newtime / SECS_DAY;
426 1.1 leo rem = newtime % SECS_DAY;
427 1.1 leo
428 1.1 leo /*
429 1.1 leo * Calculate sec, min, hour
430 1.1 leo */
431 1.1 leo hour = rem / SECS_HOUR;
432 1.1 leo rem %= SECS_HOUR;
433 1.1 leo min = rem / 60;
434 1.1 leo sec = rem % 60;
435 1.1 leo
436 1.1 leo /*
437 1.1 leo * Figure out the year. Day in year is left in 'days'.
438 1.1 leo */
439 1.3 leo year = BSDSTARTOFTIME;
440 1.1 leo while(days >= (rem = is_leap(year) ? 366 : 365)) {
441 1.3 leo ++year;
442 1.3 leo days -= rem;
443 1.1 leo }
444 1.1 leo
445 1.1 leo /*
446 1.1 leo * Determine the month
447 1.1 leo */
448 1.1 leo ml = is_leap(year) ? ldmsize : dmsize;
449 1.1 leo for(month = 0; days >= ml[month]; ++month)
450 1.1 leo days -= ml[month];
451 1.1 leo
452 1.1 leo /*
453 1.1 leo * Now that everything is calculated, program the RTC
454 1.1 leo */
455 1.3 leo mc146818_write(RTC, MC_REGA, MC_BASE_32_KHz);
456 1.3 leo mc146818_write(RTC, MC_REGB, MC_REGB_24HR | MC_REGB_BINARY);
457 1.3 leo sps = splhigh();
458 1.3 leo MC146818_GETTOD(RTC, &clkregs);
459 1.3 leo clkregs[MC_SEC] = sec;
460 1.3 leo clkregs[MC_MIN] = min;
461 1.3 leo clkregs[MC_HOUR] = hour;
462 1.3 leo clkregs[MC_DOM] = days+1;
463 1.3 leo clkregs[MC_MONTH] = month+1;
464 1.3 leo clkregs[MC_YEAR] = year - GEMSTARTOFTIME;
465 1.3 leo MC146818_PUTTOD(RTC, &clkregs);
466 1.3 leo splx(sps);
467 1.1 leo
468 1.1 leo return(1);
469 1.1 leo }
470