Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.8
      1  1.7  leo /*	$NetBSD: clock.c,v 1.8 1996/02/11 12:42:19 leo Exp $	*/
      2  1.1  leo 
      3  1.1  leo /*
      4  1.1  leo  * Copyright (c) 1988 University of Utah.
      5  1.1  leo  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  1.1  leo  * All rights reserved.
      7  1.1  leo  *
      8  1.1  leo  * This code is derived from software contributed to Berkeley by
      9  1.1  leo  * the Systems Programming Group of the University of Utah Computer
     10  1.1  leo  * Science Department.
     11  1.1  leo  *
     12  1.1  leo  * Redistribution and use in source and binary forms, with or without
     13  1.1  leo  * modification, are permitted provided that the following conditions
     14  1.1  leo  * are met:
     15  1.1  leo  * 1. Redistributions of source code must retain the above copyright
     16  1.1  leo  *    notice, this list of conditions and the following disclaimer.
     17  1.1  leo  * 2. Redistributions in binary form must reproduce the above copyright
     18  1.1  leo  *    notice, this list of conditions and the following disclaimer in the
     19  1.1  leo  *    documentation and/or other materials provided with the distribution.
     20  1.1  leo  * 3. All advertising materials mentioning features or use of this software
     21  1.1  leo  *    must display the following acknowledgement:
     22  1.1  leo  *	This product includes software developed by the University of
     23  1.1  leo  *	California, Berkeley and its contributors.
     24  1.1  leo  * 4. Neither the name of the University nor the names of its contributors
     25  1.1  leo  *    may be used to endorse or promote products derived from this software
     26  1.1  leo  *    without specific prior written permission.
     27  1.1  leo  *
     28  1.1  leo  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  1.1  leo  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  1.1  leo  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  1.1  leo  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  1.1  leo  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  1.1  leo  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  1.1  leo  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  1.1  leo  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  1.1  leo  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  1.1  leo  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  1.1  leo  * SUCH DAMAGE.
     39  1.1  leo  *
     40  1.1  leo  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  1.1  leo  *
     42  1.1  leo  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  1.1  leo  */
     44  1.1  leo 
     45  1.1  leo #include <sys/param.h>
     46  1.1  leo #include <sys/kernel.h>
     47  1.1  leo #include <sys/device.h>
     48  1.1  leo #include <machine/psl.h>
     49  1.1  leo #include <machine/cpu.h>
     50  1.1  leo #include <machine/iomap.h>
     51  1.1  leo #include <machine/mfp.h>
     52  1.1  leo #include <atari/dev/clockreg.h>
     53  1.1  leo 
     54  1.4  leo #if defined(GPROF) && defined(PROFTIMER)
     55  1.4  leo #include <machine/profile.h>
     56  1.1  leo #endif
     57  1.1  leo 
     58  1.1  leo /*
     59  1.5  leo  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     60  1.5  leo  * of 200. Therefore the timer runs at an effective rate of:
     61  1.5  leo  * 2457600/200 = 12288Hz.
     62  1.5  leo  */
     63  1.5  leo #define CLOCK_HZ	12288
     64  1.5  leo 
     65  1.5  leo /*
     66  1.1  leo  * Machine-dependent clock routines.
     67  1.1  leo  *
     68  1.1  leo  * Inittodr initializes the time of day hardware which provides
     69  1.1  leo  * date functions.
     70  1.1  leo  *
     71  1.1  leo  * Resettodr restores the time of day hardware after a time change.
     72  1.1  leo  */
     73  1.1  leo 
     74  1.1  leo int	clockmatch __P((struct device *, struct cfdata *, void *));
     75  1.1  leo void	clockattach __P((struct device *, struct device *, void *));
     76  1.1  leo 
     77  1.1  leo struct cfdriver clockcd = {
     78  1.1  leo 	NULL, "clock", (cfmatch_t)clockmatch, clockattach,
     79  1.1  leo 	DV_DULL, sizeof(struct device), NULL, 0
     80  1.1  leo };
     81  1.1  leo 
     82  1.1  leo static u_long	gettod __P((void));
     83  1.1  leo static int	settod __P((u_long));
     84  1.1  leo 
     85  1.5  leo static int	divisor;	/* Systemclock divisor	*/
     86  1.5  leo 
     87  1.5  leo /*
     88  1.5  leo  * Statistics and profile clock intervals and variances. Variance must
     89  1.5  leo  * be a power of 2. Since this gives us an even number, not an odd number,
     90  1.5  leo  * we discard one case and compensate. That is, a variance of 64 would
     91  1.5  leo  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
     92  1.5  leo  * This is symetric around the point 32, or statvar/2, and thus averages
     93  1.5  leo  * to that value (assuming uniform random numbers).
     94  1.5  leo  */
     95  1.5  leo #ifdef STATCLOCK
     96  1.5  leo static int	statvar = 32;	/* {stat,prof}clock variance		*/
     97  1.5  leo static int	statmin;	/* statclock divisor - variance/2	*/
     98  1.5  leo static int	profmin;	/* profclock divisor - variance/2	*/
     99  1.5  leo static int	clk2min;	/* current, from above choises		*/
    100  1.5  leo #endif
    101  1.1  leo 
    102  1.1  leo int
    103  1.1  leo clockmatch(pdp, cfp, auxp)
    104  1.1  leo struct device *pdp;
    105  1.1  leo struct cfdata *cfp;
    106  1.1  leo void *auxp;
    107  1.1  leo {
    108  1.1  leo 	if(!strcmp("clock", auxp))
    109  1.1  leo 		return(1);
    110  1.1  leo 	return(0);
    111  1.1  leo }
    112  1.1  leo 
    113  1.1  leo /*
    114  1.1  leo  * Start the real-time clock.
    115  1.1  leo  */
    116  1.1  leo void clockattach(pdp, dp, auxp)
    117  1.1  leo struct device	*pdp, *dp;
    118  1.1  leo void			*auxp;
    119  1.1  leo {
    120  1.1  leo 	/*
    121  1.3  leo 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    122  1.3  leo 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    123  1.3  leo 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    124  1.3  leo 	 * following expression works for 48, 64 or 96 hz.
    125  1.1  leo 	 */
    126  1.5  leo 	divisor       = CLOCK_HZ/hz;
    127  1.2  leo 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    128  1.2  leo 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    129  1.2  leo 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    130  1.1  leo 
    131  1.5  leo 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    132  1.5  leo 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    133  1.5  leo 								hz, 64);
    134  1.5  leo 		hz = 64;
    135  1.5  leo 	}
    136  1.3  leo 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    137  1.1  leo 
    138  1.5  leo #ifdef STATCLOCK
    139  1.5  leo 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    140  1.5  leo 		stathz = hz;
    141  1.5  leo 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    142  1.5  leo 		profhz = hz << 1;
    143  1.5  leo 
    144  1.5  leo 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    145  1.5  leo 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    146  1.5  leo 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    147  1.5  leo 
    148  1.5  leo 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    149  1.5  leo 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    150  1.5  leo 	clk2min  = statmin;
    151  1.5  leo #endif /* STATCLOCK */
    152  1.5  leo 
    153  1.1  leo 	/*
    154  1.2  leo 	 * Initialize Timer-B in the ST-MFP. This timer is used by the 'delay'
    155  1.1  leo 	 * function below. This time is setup to be continueously counting from
    156  1.1  leo 	 * 255 back to zero at a frequency of 614400Hz.
    157  1.1  leo 	 */
    158  1.2  leo 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
    159  1.2  leo 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    160  1.2  leo 	MFP->mf_tbdr  = 0;
    161  1.2  leo 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    162  1.1  leo 
    163  1.1  leo }
    164  1.1  leo 
    165  1.1  leo void cpu_initclocks()
    166  1.1  leo {
    167  1.3  leo 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    168  1.2  leo 	MFP->mf_ipra &= ~IA_TIMA;	/* Clear pending interrupts	*/
    169  1.2  leo 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    170  1.2  leo 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    171  1.5  leo 
    172  1.5  leo #ifdef STATCLOCK
    173  1.5  leo 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    174  1.5  leo 	MFP->mf_iprb &= ~IB_TIMC;	/* Clear pending interrupts	*/
    175  1.5  leo 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    176  1.5  leo 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    177  1.5  leo #endif /* STATCLOCK */
    178  1.1  leo }
    179  1.1  leo 
    180  1.5  leo setstatclockrate(newhz)
    181  1.5  leo 	int newhz;
    182  1.1  leo {
    183  1.5  leo #ifdef STATCLOCK
    184  1.5  leo 	if (newhz == stathz)
    185  1.5  leo 		clk2min = statmin;
    186  1.5  leo 	else clk2min = profmin;
    187  1.5  leo #endif /* STATCLOCK */
    188  1.1  leo }
    189  1.1  leo 
    190  1.5  leo #ifdef STATCLOCK
    191  1.5  leo void
    192  1.5  leo statintr(frame)
    193  1.5  leo 	register struct clockframe *frame;
    194  1.5  leo {
    195  1.5  leo 	register int	var, r;
    196  1.5  leo 
    197  1.5  leo 	var = statvar - 1;
    198  1.5  leo 	do {
    199  1.5  leo 		r = random() & var;
    200  1.5  leo 	} while(r == 0);
    201  1.5  leo 
    202  1.5  leo 	/*
    203  1.5  leo 	 * Note that we are always lagging behind as the new divisor
    204  1.5  leo 	 * value will not be loaded until the next interrupt. This
    205  1.5  leo 	 * shouldn't disturb the median frequency (I think ;-) ) as
    206  1.5  leo 	 * only the value used when switching frequencies is used
    207  1.5  leo 	 * twice. This shouldn't happen very often.
    208  1.5  leo 	 */
    209  1.5  leo 	MFP->mf_tcdr = clk2min + r;
    210  1.5  leo 
    211  1.5  leo 	statclock(frame);
    212  1.5  leo }
    213  1.5  leo #endif /* STATCLOCK */
    214  1.5  leo 
    215  1.1  leo /*
    216  1.1  leo  * Returns number of usec since last recorded clock "tick"
    217  1.1  leo  * (i.e. clock interrupt).
    218  1.1  leo  */
    219  1.1  leo clkread()
    220  1.1  leo {
    221  1.3  leo 	u_int	delta;
    222  1.3  leo 
    223  1.3  leo 	delta = ((divisor - MFP->mf_tadr) * tick) / divisor;
    224  1.1  leo 	/*
    225  1.1  leo 	 * Account for pending clock interrupts
    226  1.1  leo 	 */
    227  1.2  leo 	if(MFP->mf_iera & IA_TIMA)
    228  1.1  leo 		return(delta + tick);
    229  1.1  leo 	return(delta);
    230  1.1  leo }
    231  1.1  leo 
    232  1.2  leo #define TIMB_FREQ	614400
    233  1.2  leo #define TIMB_LIMIT	256
    234  1.1  leo 
    235  1.1  leo /*
    236  1.1  leo  * Wait "n" microseconds.
    237  1.2  leo  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    238  1.1  leo  * Note: timer had better have been programmed before this is first used!
    239  1.1  leo  */
    240  1.1  leo void delay(n)
    241  1.1  leo int	n;
    242  1.1  leo {
    243  1.1  leo 	int	tick, otick;
    244  1.1  leo 
    245  1.1  leo 	/*
    246  1.1  leo 	 * Read the counter first, so that the rest of the setup overhead is
    247  1.1  leo 	 * counted.
    248  1.1  leo 	 */
    249  1.2  leo 	otick = MFP->mf_tbdr;
    250  1.1  leo 
    251  1.1  leo 	/*
    252  1.1  leo 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    253  1.1  leo 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    254  1.1  leo 	 * loss of significance.
    255  1.1  leo 	 */
    256  1.1  leo 	n -= 5;
    257  1.1  leo 	if(n < 0)
    258  1.1  leo 		return;
    259  1.1  leo 	{
    260  1.1  leo 	    u_int	temp;
    261  1.1  leo 
    262  1.1  leo 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    263  1.2  leo 					       : "d" (TIMB_FREQ));
    264  1.1  leo 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    265  1.1  leo 					       : "d"(1000000),"d"(temp),"0"(n));
    266  1.1  leo 	}
    267  1.1  leo 
    268  1.1  leo 	while(n > 0) {
    269  1.2  leo 		tick = MFP->mf_tbdr;
    270  1.1  leo 		if(tick > otick)
    271  1.2  leo 			n -= TIMB_LIMIT - (tick - otick);
    272  1.1  leo 		else n -= otick - tick;
    273  1.1  leo 		otick = tick;
    274  1.1  leo 	}
    275  1.1  leo }
    276  1.1  leo 
    277  1.4  leo #ifdef GPROF
    278  1.1  leo /*
    279  1.1  leo  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    280  1.1  leo  * Assumes it is called with clock interrupts blocked.
    281  1.1  leo  */
    282  1.1  leo profclock(pc, ps)
    283  1.1  leo 	caddr_t pc;
    284  1.1  leo 	int ps;
    285  1.1  leo {
    286  1.1  leo 	/*
    287  1.1  leo 	 * Came from user mode.
    288  1.1  leo 	 * If this process is being profiled record the tick.
    289  1.1  leo 	 */
    290  1.1  leo 	if (USERMODE(ps)) {
    291  1.1  leo 		if (p->p_stats.p_prof.pr_scale)
    292  1.1  leo 			addupc(pc, &curproc->p_stats.p_prof, 1);
    293  1.1  leo 	}
    294  1.1  leo 	/*
    295  1.1  leo 	 * Came from kernel (supervisor) mode.
    296  1.1  leo 	 * If we are profiling the kernel, record the tick.
    297  1.1  leo 	 */
    298  1.1  leo 	else if (profiling < 2) {
    299  1.1  leo 		register int s = pc - s_lowpc;
    300  1.1  leo 
    301  1.1  leo 		if (s < s_textsize)
    302  1.1  leo 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    303  1.1  leo 	}
    304  1.1  leo 	/*
    305  1.1  leo 	 * Kernel profiling was on but has been disabled.
    306  1.1  leo 	 * Mark as no longer profiling kernel and if all profiling done,
    307  1.1  leo 	 * disable the clock.
    308  1.1  leo 	 */
    309  1.1  leo 	if (profiling && (profon & PRF_KERNEL)) {
    310  1.1  leo 		profon &= ~PRF_KERNEL;
    311  1.1  leo 		if (profon == PRF_NONE)
    312  1.1  leo 			stopprofclock();
    313  1.1  leo 	}
    314  1.1  leo }
    315  1.1  leo #endif
    316  1.7  leo 
    317  1.7  leo /***********************************************************************
    318  1.7  leo  *                   Real Time Clock support                           *
    319  1.7  leo  ***********************************************************************/
    320  1.7  leo 
    321  1.7  leo u_int mc146818_read(rtc, regno)
    322  1.7  leo void	*rtc;
    323  1.7  leo u_int	regno;
    324  1.7  leo {
    325  1.7  leo 	((struct rtc *)rtc)->rtc_regno = regno;
    326  1.7  leo 	return(((struct rtc *)rtc)->rtc_data & 0377);
    327  1.7  leo }
    328  1.7  leo 
    329  1.7  leo void mc146818_write(rtc, regno, value)
    330  1.7  leo void	*rtc;
    331  1.7  leo u_int	regno, value;
    332  1.7  leo {
    333  1.7  leo 	((struct rtc *)rtc)->rtc_regno = regno;
    334  1.7  leo 	((struct rtc *)rtc)->rtc_data  = value;
    335  1.7  leo }
    336  1.1  leo 
    337  1.1  leo /*
    338  1.1  leo  * Initialize the time of day register, based on the time base which is, e.g.
    339  1.1  leo  * from a filesystem.
    340  1.1  leo  */
    341  1.1  leo inittodr(base)
    342  1.1  leo time_t base;
    343  1.1  leo {
    344  1.1  leo 	u_long timbuf = base;	/* assume no battery clock exists */
    345  1.1  leo 
    346  1.1  leo 	timbuf = gettod();
    347  1.1  leo 
    348  1.1  leo 	if(timbuf < base) {
    349  1.1  leo 		printf("WARNING: bad date in battery clock\n");
    350  1.1  leo 		timbuf = base;
    351  1.1  leo 	}
    352  1.1  leo 
    353  1.1  leo 	/* Battery clock does not store usec's, so forget about it. */
    354  1.1  leo 	time.tv_sec = timbuf;
    355  1.1  leo }
    356  1.1  leo 
    357  1.1  leo resettodr()
    358  1.1  leo {
    359  1.1  leo 	if(settod(time.tv_sec) == 1)
    360  1.1  leo 		return;
    361  1.1  leo 	printf("Cannot set battery backed clock\n");
    362  1.1  leo }
    363  1.1  leo 
    364  1.1  leo static	char	dmsize[12] =
    365  1.1  leo {
    366  1.1  leo 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    367  1.1  leo };
    368  1.1  leo 
    369  1.1  leo static	char	ldmsize[12] =
    370  1.1  leo {
    371  1.1  leo 	31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    372  1.1  leo };
    373  1.1  leo 
    374  1.1  leo static u_long
    375  1.1  leo gettod()
    376  1.1  leo {
    377  1.3  leo 	int		i, sps;
    378  1.3  leo 	u_long		new_time = 0;
    379  1.3  leo 	char		*msize;
    380  1.3  leo 	mc_todregs	clkregs;
    381  1.3  leo 
    382  1.3  leo 	sps = splhigh();
    383  1.3  leo 	MC146818_GETTOD(RTC, &clkregs);
    384  1.3  leo 	splx(sps);
    385  1.1  leo 
    386  1.8  leo 	if(range_test(clkregs[MC_SEC], 0, 59))
    387  1.8  leo 		return(0);
    388  1.8  leo 	if(range_test(clkregs[MC_MIN], 0, 59))
    389  1.8  leo 		return(0);
    390  1.3  leo 	if(range_test(clkregs[MC_HOUR], 0, 23))
    391  1.1  leo 		return(0);
    392  1.3  leo 	if(range_test(clkregs[MC_DOM], 1, 31))
    393  1.1  leo 		return(0);
    394  1.3  leo 	if (range_test(clkregs[MC_MONTH], 1, 12))
    395  1.1  leo 		return(0);
    396  1.3  leo 	if(range_test(clkregs[MC_YEAR], 0, 2000 - GEMSTARTOFTIME))
    397  1.1  leo 		return(0);
    398  1.3  leo 	clkregs[MC_YEAR] += GEMSTARTOFTIME;
    399  1.1  leo 
    400  1.3  leo 	for(i = BSDSTARTOFTIME; i < clkregs[MC_YEAR]; i++) {
    401  1.1  leo 		if(is_leap(i))
    402  1.1  leo 			new_time += 366;
    403  1.1  leo 		else new_time += 365;
    404  1.1  leo 	}
    405  1.1  leo 
    406  1.3  leo 	msize = is_leap(clkregs[MC_YEAR]) ? ldmsize : dmsize;
    407  1.3  leo 	for(i = 0; i < (clkregs[MC_MONTH] - 1); i++)
    408  1.1  leo 		new_time += msize[i];
    409  1.3  leo 	new_time += clkregs[MC_DOM] - 1;
    410  1.3  leo 	new_time *= SECS_DAY;
    411  1.3  leo 	new_time += (clkregs[MC_HOUR] * 3600) + (clkregs[MC_MIN] * 60);
    412  1.3  leo 	return(new_time + clkregs[MC_SEC]);
    413  1.1  leo }
    414  1.1  leo 
    415  1.1  leo static int
    416  1.1  leo settod(newtime)
    417  1.1  leo u_long	newtime;
    418  1.1  leo {
    419  1.1  leo 	register long	days, rem, year;
    420  1.1  leo 	register char	*ml;
    421  1.3  leo 		 int	sps, sec, min, hour, month;
    422  1.3  leo 	mc_todregs	clkregs;
    423  1.1  leo 
    424  1.3  leo 	/* Number of days since Jan. 1 'BSDSTARTOFTIME'	*/
    425  1.1  leo 	days = newtime / SECS_DAY;
    426  1.1  leo 	rem  = newtime % SECS_DAY;
    427  1.1  leo 
    428  1.1  leo 	/*
    429  1.1  leo 	 * Calculate sec, min, hour
    430  1.1  leo 	 */
    431  1.1  leo 	hour = rem / SECS_HOUR;
    432  1.1  leo 	rem %= SECS_HOUR;
    433  1.1  leo 	min  = rem / 60;
    434  1.1  leo 	sec  = rem % 60;
    435  1.1  leo 
    436  1.1  leo 	/*
    437  1.1  leo 	 * Figure out the year. Day in year is left in 'days'.
    438  1.1  leo 	 */
    439  1.3  leo 	year = BSDSTARTOFTIME;
    440  1.1  leo 	while(days >= (rem = is_leap(year) ? 366 : 365)) {
    441  1.3  leo 		++year;
    442  1.3  leo 		days -= rem;
    443  1.1  leo 	}
    444  1.1  leo 
    445  1.1  leo 	/*
    446  1.1  leo 	 * Determine the month
    447  1.1  leo 	 */
    448  1.1  leo 	ml = is_leap(year) ? ldmsize : dmsize;
    449  1.1  leo 	for(month = 0; days >= ml[month]; ++month)
    450  1.1  leo 		days -= ml[month];
    451  1.1  leo 
    452  1.1  leo 	/*
    453  1.1  leo 	 * Now that everything is calculated, program the RTC
    454  1.1  leo 	 */
    455  1.3  leo 	mc146818_write(RTC, MC_REGA, MC_BASE_32_KHz);
    456  1.3  leo 	mc146818_write(RTC, MC_REGB, MC_REGB_24HR | MC_REGB_BINARY);
    457  1.3  leo 	sps = splhigh();
    458  1.3  leo 	MC146818_GETTOD(RTC, &clkregs);
    459  1.3  leo 	clkregs[MC_SEC]   = sec;
    460  1.3  leo 	clkregs[MC_MIN]   = min;
    461  1.3  leo 	clkregs[MC_HOUR]  = hour;
    462  1.3  leo 	clkregs[MC_DOM]   = days+1;
    463  1.3  leo 	clkregs[MC_MONTH] = month+1;
    464  1.3  leo 	clkregs[MC_YEAR]  = year - GEMSTARTOFTIME;
    465  1.3  leo 	MC146818_PUTTOD(RTC, &clkregs);
    466  1.3  leo 	splx(sps);
    467  1.1  leo 
    468  1.1  leo 	return(1);
    469  1.1  leo }
    470