clock.c revision 1.10 1 /* $NetBSD: clock.c,v 1.10 1996/03/17 01:26:44 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1988 University of Utah.
5 * Copyright (c) 1982, 1990 The Regents of the University of California.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 *
42 * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 */
44
45 #include <sys/param.h>
46 #include <sys/kernel.h>
47 #include <sys/systm.h>
48 #include <sys/device.h>
49 #include <sys/cpu.h>
50 #include <machine/psl.h>
51 #include <machine/cpu.h>
52 #include <machine/iomap.h>
53 #include <machine/mfp.h>
54 #include <atari/dev/clockreg.h>
55
56 #if defined(GPROF) && defined(PROFTIMER)
57 #include <machine/profile.h>
58 #endif
59
60 /*
61 * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
62 * of 200. Therefore the timer runs at an effective rate of:
63 * 2457600/200 = 12288Hz.
64 */
65 #define CLOCK_HZ 12288
66
67 /*
68 * Machine-dependent clock routines.
69 *
70 * Inittodr initializes the time of day hardware which provides
71 * date functions.
72 *
73 * Resettodr restores the time of day hardware after a time change.
74 */
75
76 int clockmatch __P((struct device *, void *, void *));
77 void clockattach __P((struct device *, struct device *, void *));
78
79 struct cfattach clock_ca = {
80 sizeof(struct device), clockmatch, clockattach
81 };
82
83 struct cfdriver clock_cd = {
84 NULL, "clock", DV_DULL, NULL, 0
85 };
86
87 void statintr __P((struct clockframe *));
88
89 static u_long gettod __P((void));
90 static int settod __P((u_long));
91
92 static int divisor; /* Systemclock divisor */
93
94 /*
95 * Statistics and profile clock intervals and variances. Variance must
96 * be a power of 2. Since this gives us an even number, not an odd number,
97 * we discard one case and compensate. That is, a variance of 64 would
98 * give us offsets in [0..63]. Instead, we take offsets in [1..63].
99 * This is symetric around the point 32, or statvar/2, and thus averages
100 * to that value (assuming uniform random numbers).
101 */
102 #ifdef STATCLOCK
103 static int statvar = 32; /* {stat,prof}clock variance */
104 static int statmin; /* statclock divisor - variance/2 */
105 static int profmin; /* profclock divisor - variance/2 */
106 static int clk2min; /* current, from above choises */
107 #endif
108
109 int
110 clockmatch(pdp, match, auxp)
111 struct device *pdp;
112 void *match, *auxp;
113 {
114 if(!strcmp("clock", auxp))
115 return(1);
116 return(0);
117 }
118
119 /*
120 * Start the real-time clock.
121 */
122 void clockattach(pdp, dp, auxp)
123 struct device *pdp, *dp;
124 void *auxp;
125 {
126 /*
127 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
128 * The MFP clock runs at 2457600Hz. Therefore the timer runs
129 * at an effective rate of: 2457600/200 = 12288Hz. The
130 * following expression works for 48, 64 or 96 hz.
131 */
132 divisor = CLOCK_HZ/hz;
133 MFP->mf_tacr = 0; /* Stop timer */
134 MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
135 MFP->mf_tadr = divisor; /* Set divisor */
136
137 if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
138 printf (": illegal value %d for systemclock, reset to %d\n\t",
139 hz, 64);
140 hz = 64;
141 }
142 printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
143
144 #ifdef STATCLOCK
145 if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
146 stathz = hz;
147 if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
148 profhz = hz << 1;
149
150 MFP->mf_tcdcr &= 0x7; /* Stop timer */
151 MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
152 MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
153
154 statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
155 profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
156 clk2min = statmin;
157 #endif /* STATCLOCK */
158
159 /*
160 * Initialize Timer-B in the ST-MFP. This timer is used by the 'delay'
161 * function below. This time is setup to be continueously counting from
162 * 255 back to zero at a frequency of 614400Hz.
163 */
164 MFP->mf_tbcr = 0; /* Stop timer */
165 MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
166 MFP->mf_tbdr = 0;
167 MFP->mf_tbcr = T_Q004; /* Start timer */
168
169 }
170
171 void cpu_initclocks()
172 {
173 MFP->mf_tacr = T_Q200; /* Start timer */
174 MFP->mf_ipra &= ~IA_TIMA; /* Clear pending interrupts */
175 MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
176 MFP->mf_imra |= IA_TIMA; /* ..... */
177
178 #ifdef STATCLOCK
179 MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
180 MFP->mf_iprb &= ~IB_TIMC; /* Clear pending interrupts */
181 MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
182 MFP->mf_imrb |= IB_TIMC; /* ..... */
183 #endif /* STATCLOCK */
184 }
185
186 void
187 setstatclockrate(newhz)
188 int newhz;
189 {
190 #ifdef STATCLOCK
191 if (newhz == stathz)
192 clk2min = statmin;
193 else clk2min = profmin;
194 #endif /* STATCLOCK */
195 }
196
197 #ifdef STATCLOCK
198 void
199 statintr(frame)
200 register struct clockframe *frame;
201 {
202 register int var, r;
203
204 var = statvar - 1;
205 do {
206 r = random() & var;
207 } while(r == 0);
208
209 /*
210 * Note that we are always lagging behind as the new divisor
211 * value will not be loaded until the next interrupt. This
212 * shouldn't disturb the median frequency (I think ;-) ) as
213 * only the value used when switching frequencies is used
214 * twice. This shouldn't happen very often.
215 */
216 MFP->mf_tcdr = clk2min + r;
217
218 statclock(frame);
219 }
220 #endif /* STATCLOCK */
221
222 /*
223 * Returns number of usec since last recorded clock "tick"
224 * (i.e. clock interrupt).
225 */
226 long
227 clkread()
228 {
229 u_int delta;
230
231 delta = ((divisor - MFP->mf_tadr) * tick) / divisor;
232 /*
233 * Account for pending clock interrupts
234 */
235 if(MFP->mf_iera & IA_TIMA)
236 return(delta + tick);
237 return(delta);
238 }
239
240 #define TIMB_FREQ 614400
241 #define TIMB_LIMIT 256
242
243 /*
244 * Wait "n" microseconds.
245 * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
246 * Note: timer had better have been programmed before this is first used!
247 */
248 void delay(n)
249 int n;
250 {
251 int tick, otick;
252
253 /*
254 * Read the counter first, so that the rest of the setup overhead is
255 * counted.
256 */
257 otick = MFP->mf_tbdr;
258
259 /*
260 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
261 * we can take advantage of the intermediate 64-bit quantity to prevent
262 * loss of significance.
263 */
264 n -= 5;
265 if(n < 0)
266 return;
267 {
268 u_int temp;
269
270 __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
271 : "d" (TIMB_FREQ));
272 __asm __volatile ("divul %1,%2:%0" : "=d" (n)
273 : "d"(1000000),"d"(temp),"0"(n));
274 }
275
276 while(n > 0) {
277 tick = MFP->mf_tbdr;
278 if(tick > otick)
279 n -= TIMB_LIMIT - (tick - otick);
280 else n -= otick - tick;
281 otick = tick;
282 }
283 }
284
285 #ifdef GPROF
286 /*
287 * profclock() is expanded in line in lev6intr() unless profiling kernel.
288 * Assumes it is called with clock interrupts blocked.
289 */
290 profclock(pc, ps)
291 caddr_t pc;
292 int ps;
293 {
294 /*
295 * Came from user mode.
296 * If this process is being profiled record the tick.
297 */
298 if (USERMODE(ps)) {
299 if (p->p_stats.p_prof.pr_scale)
300 addupc(pc, &curproc->p_stats.p_prof, 1);
301 }
302 /*
303 * Came from kernel (supervisor) mode.
304 * If we are profiling the kernel, record the tick.
305 */
306 else if (profiling < 2) {
307 register int s = pc - s_lowpc;
308
309 if (s < s_textsize)
310 kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
311 }
312 /*
313 * Kernel profiling was on but has been disabled.
314 * Mark as no longer profiling kernel and if all profiling done,
315 * disable the clock.
316 */
317 if (profiling && (profon & PRF_KERNEL)) {
318 profon &= ~PRF_KERNEL;
319 if (profon == PRF_NONE)
320 stopprofclock();
321 }
322 }
323 #endif
324
325 /***********************************************************************
326 * Real Time Clock support *
327 ***********************************************************************/
328
329 u_int mc146818_read(rtc, regno)
330 void *rtc;
331 u_int regno;
332 {
333 ((struct rtc *)rtc)->rtc_regno = regno;
334 return(((struct rtc *)rtc)->rtc_data & 0377);
335 }
336
337 void mc146818_write(rtc, regno, value)
338 void *rtc;
339 u_int regno, value;
340 {
341 ((struct rtc *)rtc)->rtc_regno = regno;
342 ((struct rtc *)rtc)->rtc_data = value;
343 }
344
345 /*
346 * Initialize the time of day register, based on the time base which is, e.g.
347 * from a filesystem.
348 */
349 void
350 inittodr(base)
351 time_t base;
352 {
353 u_long timbuf = base; /* assume no battery clock exists */
354
355 timbuf = gettod();
356
357 if(timbuf < base) {
358 printf("WARNING: bad date in battery clock\n");
359 timbuf = base;
360 }
361
362 /* Battery clock does not store usec's, so forget about it. */
363 time.tv_sec = timbuf;
364 }
365
366 void
367 resettodr()
368 {
369 if(settod(time.tv_sec) == 1)
370 return;
371 printf("Cannot set battery backed clock\n");
372 }
373
374 static char dmsize[12] =
375 {
376 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
377 };
378
379 static char ldmsize[12] =
380 {
381 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
382 };
383
384 static u_long
385 gettod()
386 {
387 int i, sps;
388 u_long new_time = 0;
389 char *msize;
390 mc_todregs clkregs;
391
392 sps = splhigh();
393 MC146818_GETTOD(RTC, &clkregs);
394 splx(sps);
395
396 if(clkregs[MC_SEC] > 59)
397 return(0);
398 if(clkregs[MC_MIN] > 59)
399 return(0);
400 if(clkregs[MC_HOUR] > 23)
401 return(0);
402 if(range_test(clkregs[MC_DOM], 1, 31))
403 return(0);
404 if (range_test(clkregs[MC_MONTH], 1, 12))
405 return(0);
406 if(clkregs[MC_YEAR] > (2000 - GEMSTARTOFTIME))
407 return(0);
408 clkregs[MC_YEAR] += GEMSTARTOFTIME;
409
410 for(i = BSDSTARTOFTIME; i < clkregs[MC_YEAR]; i++) {
411 if(is_leap(i))
412 new_time += 366;
413 else new_time += 365;
414 }
415
416 msize = is_leap(clkregs[MC_YEAR]) ? ldmsize : dmsize;
417 for(i = 0; i < (clkregs[MC_MONTH] - 1); i++)
418 new_time += msize[i];
419 new_time += clkregs[MC_DOM] - 1;
420 new_time *= SECS_DAY;
421 new_time += (clkregs[MC_HOUR] * 3600) + (clkregs[MC_MIN] * 60);
422 return(new_time + clkregs[MC_SEC]);
423 }
424
425 static int
426 settod(newtime)
427 u_long newtime;
428 {
429 register long days, rem, year;
430 register char *ml;
431 int sps, sec, min, hour, month;
432 mc_todregs clkregs;
433
434 /* Number of days since Jan. 1 'BSDSTARTOFTIME' */
435 days = newtime / SECS_DAY;
436 rem = newtime % SECS_DAY;
437
438 /*
439 * Calculate sec, min, hour
440 */
441 hour = rem / SECS_HOUR;
442 rem %= SECS_HOUR;
443 min = rem / 60;
444 sec = rem % 60;
445
446 /*
447 * Figure out the year. Day in year is left in 'days'.
448 */
449 year = BSDSTARTOFTIME;
450 while(days >= (rem = is_leap(year) ? 366 : 365)) {
451 ++year;
452 days -= rem;
453 }
454
455 /*
456 * Determine the month
457 */
458 ml = is_leap(year) ? ldmsize : dmsize;
459 for(month = 0; days >= ml[month]; ++month)
460 days -= ml[month];
461
462 /*
463 * Now that everything is calculated, program the RTC
464 */
465 mc146818_write(RTC, MC_REGA, MC_BASE_32_KHz);
466 mc146818_write(RTC, MC_REGB, MC_REGB_24HR | MC_REGB_BINARY);
467 sps = splhigh();
468 MC146818_GETTOD(RTC, &clkregs);
469 clkregs[MC_SEC] = sec;
470 clkregs[MC_MIN] = min;
471 clkregs[MC_HOUR] = hour;
472 clkregs[MC_DOM] = days+1;
473 clkregs[MC_MONTH] = month+1;
474 clkregs[MC_YEAR] = year - GEMSTARTOFTIME;
475 MC146818_PUTTOD(RTC, &clkregs);
476 splx(sps);
477
478 return(1);
479 }
480