clock.c revision 1.13 1 /* $NetBSD: clock.c,v 1.13 1996/10/13 04:10:51 christos Exp $ */
2
3 /*
4 * Copyright (c) 1988 University of Utah.
5 * Copyright (c) 1982, 1990 The Regents of the University of California.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 *
42 * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 */
44
45 #include <sys/param.h>
46 #include <sys/kernel.h>
47 #include <sys/systm.h>
48 #include <sys/device.h>
49 #include <machine/psl.h>
50 #include <machine/cpu.h>
51 #include <machine/iomap.h>
52 #include <machine/mfp.h>
53 #include <atari/dev/clockreg.h>
54
55 #if defined(GPROF) && defined(PROFTIMER)
56 #include <machine/profile.h>
57 #endif
58
59 /*
60 * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
61 * of 200. Therefore the timer runs at an effective rate of:
62 * 2457600/200 = 12288Hz.
63 */
64 #define CLOCK_HZ 12288
65
66 /*
67 * Machine-dependent clock routines.
68 *
69 * Inittodr initializes the time of day hardware which provides
70 * date functions.
71 *
72 * Resettodr restores the time of day hardware after a time change.
73 */
74
75 int clockmatch __P((struct device *, void *, void *));
76 void clockattach __P((struct device *, struct device *, void *));
77
78 struct cfattach clock_ca = {
79 sizeof(struct device), clockmatch, clockattach
80 };
81
82 struct cfdriver clock_cd = {
83 NULL, "clock", DV_DULL, NULL, 0
84 };
85
86 void statintr __P((struct clockframe *));
87
88 static u_long gettod __P((void));
89 static int settod __P((u_long));
90
91 static int divisor; /* Systemclock divisor */
92
93 /*
94 * Statistics and profile clock intervals and variances. Variance must
95 * be a power of 2. Since this gives us an even number, not an odd number,
96 * we discard one case and compensate. That is, a variance of 64 would
97 * give us offsets in [0..63]. Instead, we take offsets in [1..63].
98 * This is symetric around the point 32, or statvar/2, and thus averages
99 * to that value (assuming uniform random numbers).
100 */
101 #ifdef STATCLOCK
102 static int statvar = 32; /* {stat,prof}clock variance */
103 static int statmin; /* statclock divisor - variance/2 */
104 static int profmin; /* profclock divisor - variance/2 */
105 static int clk2min; /* current, from above choises */
106 #endif
107
108 int
109 clockmatch(pdp, match, auxp)
110 struct device *pdp;
111 void *match, *auxp;
112 {
113 if(!strcmp("clock", auxp))
114 return(1);
115 return(0);
116 }
117
118 /*
119 * Start the real-time clock.
120 */
121 void clockattach(pdp, dp, auxp)
122 struct device *pdp, *dp;
123 void *auxp;
124 {
125 /*
126 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
127 * The MFP clock runs at 2457600Hz. Therefore the timer runs
128 * at an effective rate of: 2457600/200 = 12288Hz. The
129 * following expression works for 48, 64 or 96 hz.
130 */
131 divisor = CLOCK_HZ/hz;
132 MFP->mf_tacr = 0; /* Stop timer */
133 MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
134 MFP->mf_tadr = divisor; /* Set divisor */
135
136 if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
137 printf (": illegal value %d for systemclock, reset to %d\n\t",
138 hz, 64);
139 hz = 64;
140 }
141 printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
142
143 #ifdef STATCLOCK
144 if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
145 stathz = hz;
146 if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
147 profhz = hz << 1;
148
149 MFP->mf_tcdcr &= 0x7; /* Stop timer */
150 MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
151 MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
152
153 statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
154 profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
155 clk2min = statmin;
156 #endif /* STATCLOCK */
157
158 /*
159 * Initialize Timer-B in the ST-MFP. This timer is used by the 'delay'
160 * function below. This time is setup to be continueously counting from
161 * 255 back to zero at a frequency of 614400Hz.
162 */
163 MFP->mf_tbcr = 0; /* Stop timer */
164 MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
165 MFP->mf_tbdr = 0;
166 MFP->mf_tbcr = T_Q004; /* Start timer */
167
168 }
169
170 void cpu_initclocks()
171 {
172 MFP->mf_tacr = T_Q200; /* Start timer */
173 MFP->mf_ipra &= ~IA_TIMA; /* Clear pending interrupts */
174 MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
175 MFP->mf_imra |= IA_TIMA; /* ..... */
176
177 #ifdef STATCLOCK
178 MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
179 MFP->mf_iprb &= ~IB_TIMC; /* Clear pending interrupts */
180 MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
181 MFP->mf_imrb |= IB_TIMC; /* ..... */
182 #endif /* STATCLOCK */
183 }
184
185 void
186 setstatclockrate(newhz)
187 int newhz;
188 {
189 #ifdef STATCLOCK
190 if (newhz == stathz)
191 clk2min = statmin;
192 else clk2min = profmin;
193 #endif /* STATCLOCK */
194 }
195
196 #ifdef STATCLOCK
197 void
198 statintr(frame)
199 register struct clockframe *frame;
200 {
201 register int var, r;
202
203 var = statvar - 1;
204 do {
205 r = random() & var;
206 } while(r == 0);
207
208 /*
209 * Note that we are always lagging behind as the new divisor
210 * value will not be loaded until the next interrupt. This
211 * shouldn't disturb the median frequency (I think ;-) ) as
212 * only the value used when switching frequencies is used
213 * twice. This shouldn't happen very often.
214 */
215 MFP->mf_tcdr = clk2min + r;
216
217 statclock(frame);
218 }
219 #endif /* STATCLOCK */
220
221 /*
222 * Returns number of usec since last recorded clock "tick"
223 * (i.e. clock interrupt).
224 */
225 long
226 clkread()
227 {
228 u_int delta;
229
230 delta = ((divisor - MFP->mf_tadr) * tick) / divisor;
231 /*
232 * Account for pending clock interrupts
233 */
234 if(MFP->mf_iera & IA_TIMA)
235 return(delta + tick);
236 return(delta);
237 }
238
239 #define TIMB_FREQ 614400
240 #define TIMB_LIMIT 256
241
242 /*
243 * Wait "n" microseconds.
244 * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
245 * Note: timer had better have been programmed before this is first used!
246 */
247 void delay(n)
248 int n;
249 {
250 int tick, otick;
251
252 /*
253 * Read the counter first, so that the rest of the setup overhead is
254 * counted.
255 */
256 otick = MFP->mf_tbdr;
257
258 /*
259 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
260 * we can take advantage of the intermediate 64-bit quantity to prevent
261 * loss of significance.
262 */
263 n -= 5;
264 if(n < 0)
265 return;
266 {
267 u_int temp;
268
269 __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
270 : "d" (TIMB_FREQ));
271 __asm __volatile ("divul %1,%2:%0" : "=d" (n)
272 : "d"(1000000),"d"(temp),"0"(n));
273 }
274
275 while(n > 0) {
276 tick = MFP->mf_tbdr;
277 if(tick > otick)
278 n -= TIMB_LIMIT - (tick - otick);
279 else n -= otick - tick;
280 otick = tick;
281 }
282 }
283
284 #ifdef GPROF
285 /*
286 * profclock() is expanded in line in lev6intr() unless profiling kernel.
287 * Assumes it is called with clock interrupts blocked.
288 */
289 profclock(pc, ps)
290 caddr_t pc;
291 int ps;
292 {
293 /*
294 * Came from user mode.
295 * If this process is being profiled record the tick.
296 */
297 if (USERMODE(ps)) {
298 if (p->p_stats.p_prof.pr_scale)
299 addupc(pc, &curproc->p_stats.p_prof, 1);
300 }
301 /*
302 * Came from kernel (supervisor) mode.
303 * If we are profiling the kernel, record the tick.
304 */
305 else if (profiling < 2) {
306 register int s = pc - s_lowpc;
307
308 if (s < s_textsize)
309 kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
310 }
311 /*
312 * Kernel profiling was on but has been disabled.
313 * Mark as no longer profiling kernel and if all profiling done,
314 * disable the clock.
315 */
316 if (profiling && (profon & PRF_KERNEL)) {
317 profon &= ~PRF_KERNEL;
318 if (profon == PRF_NONE)
319 stopprofclock();
320 }
321 }
322 #endif
323
324 /***********************************************************************
325 * Real Time Clock support *
326 ***********************************************************************/
327
328 u_int mc146818_read(rtc, regno)
329 void *rtc;
330 u_int regno;
331 {
332 ((struct rtc *)rtc)->rtc_regno = regno;
333 return(((struct rtc *)rtc)->rtc_data & 0377);
334 }
335
336 void mc146818_write(rtc, regno, value)
337 void *rtc;
338 u_int regno, value;
339 {
340 ((struct rtc *)rtc)->rtc_regno = regno;
341 ((struct rtc *)rtc)->rtc_data = value;
342 }
343
344 /*
345 * Initialize the time of day register, based on the time base which is, e.g.
346 * from a filesystem.
347 */
348 void
349 inittodr(base)
350 time_t base;
351 {
352 u_long timbuf = base; /* assume no battery clock exists */
353
354 timbuf = gettod();
355
356 if(timbuf < base) {
357 printf("WARNING: bad date in battery clock\n");
358 timbuf = base;
359 }
360
361 /* Battery clock does not store usec's, so forget about it. */
362 time.tv_sec = timbuf;
363 time.tv_usec = 0;
364 }
365
366 void
367 resettodr()
368 {
369 if(settod(time.tv_sec) == 1)
370 return;
371 printf("Cannot set battery backed clock\n");
372 }
373
374 static char dmsize[12] =
375 {
376 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
377 };
378
379 static char ldmsize[12] =
380 {
381 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
382 };
383
384 static u_long
385 gettod()
386 {
387 int i, sps;
388 u_long new_time = 0;
389 char *msize;
390 mc_todregs clkregs;
391
392 sps = splhigh();
393 MC146818_GETTOD(RTC, &clkregs);
394 splx(sps);
395
396 if(clkregs[MC_SEC] > 59)
397 return(0);
398 if(clkregs[MC_MIN] > 59)
399 return(0);
400 if(clkregs[MC_HOUR] > 23)
401 return(0);
402 if(range_test(clkregs[MC_DOM], 1, 31))
403 return(0);
404 if (range_test(clkregs[MC_MONTH], 1, 12))
405 return(0);
406 if(clkregs[MC_YEAR] > (2000 - GEMSTARTOFTIME))
407 return(0);
408 clkregs[MC_YEAR] += GEMSTARTOFTIME;
409
410 for(i = BSDSTARTOFTIME; i < clkregs[MC_YEAR]; i++) {
411 if(is_leap(i))
412 new_time += 366;
413 else new_time += 365;
414 }
415
416 msize = is_leap(clkregs[MC_YEAR]) ? ldmsize : dmsize;
417 for(i = 0; i < (clkregs[MC_MONTH] - 1); i++)
418 new_time += msize[i];
419 new_time += clkregs[MC_DOM] - 1;
420 new_time *= SECS_DAY;
421 new_time += (clkregs[MC_HOUR] * 3600) + (clkregs[MC_MIN] * 60);
422 return(new_time + clkregs[MC_SEC]);
423 }
424
425 static int
426 settod(newtime)
427 u_long newtime;
428 {
429 register long days, rem, year;
430 register char *ml;
431 int sps, sec, min, hour, month;
432 mc_todregs clkregs;
433
434 /* Number of days since Jan. 1 'BSDSTARTOFTIME' */
435 days = newtime / SECS_DAY;
436 rem = newtime % SECS_DAY;
437
438 /*
439 * Calculate sec, min, hour
440 */
441 hour = rem / SECS_HOUR;
442 rem %= SECS_HOUR;
443 min = rem / 60;
444 sec = rem % 60;
445
446 /*
447 * Figure out the year. Day in year is left in 'days'.
448 */
449 year = BSDSTARTOFTIME;
450 while(days >= (rem = is_leap(year) ? 366 : 365)) {
451 ++year;
452 days -= rem;
453 }
454
455 /*
456 * Determine the month
457 */
458 ml = is_leap(year) ? ldmsize : dmsize;
459 for(month = 0; days >= ml[month]; ++month)
460 days -= ml[month];
461
462 /*
463 * Now that everything is calculated, program the RTC
464 */
465 mc146818_write(RTC, MC_REGA, MC_BASE_32_KHz);
466 mc146818_write(RTC, MC_REGB, MC_REGB_24HR | MC_REGB_BINARY);
467 sps = splhigh();
468 MC146818_GETTOD(RTC, &clkregs);
469 clkregs[MC_SEC] = sec;
470 clkregs[MC_MIN] = min;
471 clkregs[MC_HOUR] = hour;
472 clkregs[MC_DOM] = days+1;
473 clkregs[MC_MONTH] = month+1;
474 clkregs[MC_YEAR] = year - GEMSTARTOFTIME;
475 MC146818_PUTTOD(RTC, &clkregs);
476 splx(sps);
477
478 return(1);
479 }
480