clock.c revision 1.14 1 /* $NetBSD: clock.c,v 1.14 1996/12/16 21:24:32 leo Exp $ */
2
3 /*
4 * Copyright (c) 1988 University of Utah.
5 * Copyright (c) 1982, 1990 The Regents of the University of California.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 *
42 * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 */
44
45 #include <sys/param.h>
46 #include <sys/kernel.h>
47 #include <sys/systm.h>
48 #include <sys/device.h>
49 #include <sys/uio.h>
50 #include <sys/conf.h>
51 #include <machine/psl.h>
52 #include <machine/cpu.h>
53 #include <machine/iomap.h>
54 #include <machine/mfp.h>
55 #include <atari/dev/clockreg.h>
56 #include <atari/atari/device.h>
57
58 #if defined(GPROF) && defined(PROFTIMER)
59 #include <machine/profile.h>
60 #endif
61
62 /*
63 * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
64 * of 200. Therefore the timer runs at an effective rate of:
65 * 2457600/200 = 12288Hz.
66 */
67 #define CLOCK_HZ 12288
68
69 /*
70 * Machine-dependent clock routines.
71 *
72 * Inittodr initializes the time of day hardware which provides
73 * date functions.
74 *
75 * Resettodr restores the time of day hardware after a time change.
76 */
77
78 struct clock_softc {
79 struct device sc_dev;
80 int sc_flags;
81 };
82
83 /*
84 * 'sc_flags' state info. Only used by the rtc-device functions.
85 */
86 #define RTC_OPEN 1
87
88 /* {b,c}devsw[] function prototypes for rtc functions */
89 dev_type_open(rtcopen);
90 dev_type_close(rtcclose);
91 dev_type_read(rtcread);
92 dev_type_write(rtcwrite);
93
94 static void clockattach __P((struct device *, struct device *, void *));
95 static int clockmatch __P((struct device *, void *, void *));
96
97 struct cfattach clock_ca = {
98 sizeof(struct clock_softc), clockmatch, clockattach
99 };
100
101 struct cfdriver clock_cd = {
102 NULL, "clock", DV_DULL, NULL, 0
103 };
104
105 void statintr __P((struct clockframe *));
106
107 static u_long gettod __P((void));
108 static int twodigits __P((char *, int));
109
110 static int divisor; /* Systemclock divisor */
111
112 /*
113 * Statistics and profile clock intervals and variances. Variance must
114 * be a power of 2. Since this gives us an even number, not an odd number,
115 * we discard one case and compensate. That is, a variance of 64 would
116 * give us offsets in [0..63]. Instead, we take offsets in [1..63].
117 * This is symetric around the point 32, or statvar/2, and thus averages
118 * to that value (assuming uniform random numbers).
119 */
120 #ifdef STATCLOCK
121 static int statvar = 32; /* {stat,prof}clock variance */
122 static int statmin; /* statclock divisor - variance/2 */
123 static int profmin; /* profclock divisor - variance/2 */
124 static int clk2min; /* current, from above choises */
125 #endif
126
127 int
128 clockmatch(pdp, match, auxp)
129 struct device *pdp;
130 void *match, *auxp;
131 {
132 if(!strcmp("clock", auxp))
133 return(1);
134 return(0);
135 }
136
137 /*
138 * Start the real-time clock.
139 */
140 void clockattach(pdp, dp, auxp)
141 struct device *pdp, *dp;
142 void *auxp;
143 {
144 struct clock_softc *sc = (void *)dp;
145
146 sc->sc_flags = 0;
147
148 /*
149 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
150 * The MFP clock runs at 2457600Hz. Therefore the timer runs
151 * at an effective rate of: 2457600/200 = 12288Hz. The
152 * following expression works for 48, 64 or 96 hz.
153 */
154 divisor = CLOCK_HZ/hz;
155 MFP->mf_tacr = 0; /* Stop timer */
156 MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
157 MFP->mf_tadr = divisor; /* Set divisor */
158
159 if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
160 printf (": illegal value %d for systemclock, reset to %d\n\t",
161 hz, 64);
162 hz = 64;
163 }
164 printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
165
166 #ifdef STATCLOCK
167 if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
168 stathz = hz;
169 if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
170 profhz = hz << 1;
171
172 MFP->mf_tcdcr &= 0x7; /* Stop timer */
173 MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
174 MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
175
176 statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
177 profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
178 clk2min = statmin;
179 #endif /* STATCLOCK */
180
181 /*
182 * Initialize Timer-B in the ST-MFP. This timer is used by
183 * the 'delay' function below. This timer is setup to be
184 * continueously counting from 255 back to zero at a
185 * frequency of 614400Hz. We do this *early* in the
186 * initialisation process.
187 */
188 MFP->mf_tbcr = 0; /* Stop timer */
189 MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
190 MFP->mf_tbdr = 0;
191 MFP->mf_tbcr = T_Q004; /* Start timer */
192
193 }
194
195 void cpu_initclocks()
196 {
197 MFP->mf_tacr = T_Q200; /* Start timer */
198 MFP->mf_ipra &= ~IA_TIMA; /* Clear pending interrupts */
199 MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
200 MFP->mf_imra |= IA_TIMA; /* ..... */
201
202 #ifdef STATCLOCK
203 MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
204 MFP->mf_iprb &= ~IB_TIMC; /* Clear pending interrupts */
205 MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
206 MFP->mf_imrb |= IB_TIMC; /* ..... */
207 #endif /* STATCLOCK */
208 }
209
210 void
211 setstatclockrate(newhz)
212 int newhz;
213 {
214 #ifdef STATCLOCK
215 if (newhz == stathz)
216 clk2min = statmin;
217 else clk2min = profmin;
218 #endif /* STATCLOCK */
219 }
220
221 #ifdef STATCLOCK
222 void
223 statintr(frame)
224 register struct clockframe *frame;
225 {
226 register int var, r;
227
228 var = statvar - 1;
229 do {
230 r = random() & var;
231 } while(r == 0);
232
233 /*
234 * Note that we are always lagging behind as the new divisor
235 * value will not be loaded until the next interrupt. This
236 * shouldn't disturb the median frequency (I think ;-) ) as
237 * only the value used when switching frequencies is used
238 * twice. This shouldn't happen very often.
239 */
240 MFP->mf_tcdr = clk2min + r;
241
242 statclock(frame);
243 }
244 #endif /* STATCLOCK */
245
246 /*
247 * Returns number of usec since last recorded clock "tick"
248 * (i.e. clock interrupt).
249 */
250 long
251 clkread()
252 {
253 u_int delta;
254
255 delta = ((divisor - MFP->mf_tadr) * tick) / divisor;
256 /*
257 * Account for pending clock interrupts
258 */
259 if(MFP->mf_iera & IA_TIMA)
260 return(delta + tick);
261 return(delta);
262 }
263
264 #define TIMB_FREQ 614400
265 #define TIMB_LIMIT 256
266
267 /*
268 * Wait "n" microseconds.
269 * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
270 * Note: timer had better have been programmed before this is first used!
271 */
272 void
273 delay(n)
274 int n;
275 {
276 int tick, otick;
277
278 /*
279 * Read the counter first, so that the rest of the setup overhead is
280 * counted.
281 */
282 otick = MFP->mf_tbdr;
283
284 /*
285 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
286 * we can take advantage of the intermediate 64-bit quantity to prevent
287 * loss of significance.
288 */
289 n -= 5;
290 if(n < 0)
291 return;
292 {
293 u_int temp;
294
295 __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
296 : "d" (TIMB_FREQ));
297 __asm __volatile ("divul %1,%2:%0" : "=d" (n)
298 : "d"(1000000),"d"(temp),"0"(n));
299 }
300
301 while(n > 0) {
302 tick = MFP->mf_tbdr;
303 if(tick > otick)
304 n -= TIMB_LIMIT - (tick - otick);
305 else n -= otick - tick;
306 otick = tick;
307 }
308 }
309
310 #ifdef GPROF
311 /*
312 * profclock() is expanded in line in lev6intr() unless profiling kernel.
313 * Assumes it is called with clock interrupts blocked.
314 */
315 profclock(pc, ps)
316 caddr_t pc;
317 int ps;
318 {
319 /*
320 * Came from user mode.
321 * If this process is being profiled record the tick.
322 */
323 if (USERMODE(ps)) {
324 if (p->p_stats.p_prof.pr_scale)
325 addupc(pc, &curproc->p_stats.p_prof, 1);
326 }
327 /*
328 * Came from kernel (supervisor) mode.
329 * If we are profiling the kernel, record the tick.
330 */
331 else if (profiling < 2) {
332 register int s = pc - s_lowpc;
333
334 if (s < s_textsize)
335 kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
336 }
337 /*
338 * Kernel profiling was on but has been disabled.
339 * Mark as no longer profiling kernel and if all profiling done,
340 * disable the clock.
341 */
342 if (profiling && (profon & PRF_KERNEL)) {
343 profon &= ~PRF_KERNEL;
344 if (profon == PRF_NONE)
345 stopprofclock();
346 }
347 }
348 #endif
349
350 /***********************************************************************
351 * Real Time Clock support *
352 ***********************************************************************/
353
354 u_int mc146818_read(rtc, regno)
355 void *rtc;
356 u_int regno;
357 {
358 ((struct rtc *)rtc)->rtc_regno = regno;
359 return(((struct rtc *)rtc)->rtc_data & 0377);
360 }
361
362 void mc146818_write(rtc, regno, value)
363 void *rtc;
364 u_int regno, value;
365 {
366 ((struct rtc *)rtc)->rtc_regno = regno;
367 ((struct rtc *)rtc)->rtc_data = value;
368 }
369
370 /*
371 * Initialize the time of day register, assuming the RTC runs in UTC.
372 * Since we've got the 'rtc' device, this functionality should be removed
373 * from the kernel. The only problem to be solved before that can happen
374 * is the possibility of init(1) providing a way (rc.boot?) to set
375 * the RTC before single-user mode is entered.
376 */
377 void
378 inittodr(base)
379 time_t base;
380 {
381 /* Battery clock does not store usec's, so forget about it. */
382 time.tv_sec = gettod();
383 time.tv_usec = 0;
384 }
385
386 /*
387 * Function turned into a No-op. Use /dev/rtc to update the RTC.
388 */
389 void
390 resettodr()
391 {
392 return;
393 }
394
395 static char dmsize[12] =
396 {
397 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
398 };
399
400 static char ldmsize[12] =
401 {
402 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
403 };
404
405 static u_long
406 gettod()
407 {
408 int i, sps;
409 u_long new_time = 0;
410 char *msize;
411 mc_todregs clkregs;
412
413 sps = splhigh();
414 MC146818_GETTOD(RTC, &clkregs);
415 splx(sps);
416
417 if(clkregs[MC_SEC] > 59)
418 return(0);
419 if(clkregs[MC_MIN] > 59)
420 return(0);
421 if(clkregs[MC_HOUR] > 23)
422 return(0);
423 if(range_test(clkregs[MC_DOM], 1, 31))
424 return(0);
425 if (range_test(clkregs[MC_MONTH], 1, 12))
426 return(0);
427 if(clkregs[MC_YEAR] > (2000 - GEMSTARTOFTIME))
428 return(0);
429 clkregs[MC_YEAR] += GEMSTARTOFTIME;
430
431 for(i = BSDSTARTOFTIME; i < clkregs[MC_YEAR]; i++) {
432 if(is_leap(i))
433 new_time += 366;
434 else new_time += 365;
435 }
436
437 msize = is_leap(clkregs[MC_YEAR]) ? ldmsize : dmsize;
438 for(i = 0; i < (clkregs[MC_MONTH] - 1); i++)
439 new_time += msize[i];
440 new_time += clkregs[MC_DOM] - 1;
441 new_time *= SECS_DAY;
442 new_time += (clkregs[MC_HOUR] * 3600) + (clkregs[MC_MIN] * 60);
443 return(new_time + clkregs[MC_SEC]);
444 }
445 /***********************************************************************
446 * RTC-device support *
447 ***********************************************************************/
448 int
449 rtcopen(dev, flag, mode, p)
450 dev_t dev;
451 int flag, mode;
452 struct proc *p;
453 {
454 int unit = minor(dev);
455 struct clock_softc *sc;
456
457 if (unit >= clock_cd.cd_ndevs)
458 return ENXIO;
459 sc = clock_cd.cd_devs[unit];
460 if (!sc)
461 return ENXIO;
462 if (sc->sc_flags & RTC_OPEN)
463 return EBUSY;
464
465 sc->sc_flags = RTC_OPEN;
466 return 0;
467 }
468
469 int
470 rtcclose(dev, flag, mode, p)
471 dev_t dev;
472 int flag;
473 int mode;
474 struct proc *p;
475 {
476 int unit = minor(dev);
477 struct clock_softc *sc = clock_cd.cd_devs[unit];
478
479 sc->sc_flags = 0;
480 return 0;
481 }
482
483 int
484 rtcread(dev, uio, flags)
485 dev_t dev;
486 struct uio *uio;
487 int flags;
488 {
489 struct clock_softc *sc;
490 mc_todregs clkregs;
491 int s, length;
492 char buffer[16];
493
494 sc = clock_cd.cd_devs[minor(dev)];
495
496 s = splhigh();
497 MC146818_GETTOD(RTC, &clkregs);
498 splx(s);
499
500 sprintf(buffer, "%02d%02d%02d%02d%02d.%02d\n",
501 clkregs[MC_YEAR] + GEMSTARTOFTIME - 1900,
502 clkregs[MC_MONTH], clkregs[MC_DOM],
503 clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
504
505 if (uio->uio_offset > strlen(buffer))
506 return 0;
507
508 length = strlen(buffer) - uio->uio_offset;
509 if (length > uio->uio_resid)
510 length = uio->uio_resid;
511
512 return(uiomove((caddr_t)buffer, length, uio));
513 }
514
515 static int
516 twodigits(buffer, pos)
517 char *buffer;
518 int pos;
519 {
520 int result = 0;
521
522 if (buffer[pos] >= '0' && buffer[pos] <= '9')
523 result = (buffer[pos] - '0') * 10;
524 if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
525 result += (buffer[pos+1] - '0');
526 return(result);
527 }
528
529 int
530 rtcwrite(dev, uio, flags)
531 dev_t dev;
532 struct uio *uio;
533 int flags;
534 {
535 mc_todregs clkregs;
536 int s, length, error;
537 char buffer[14];
538
539 /*
540 * We require atomic updates!
541 */
542 length = uio->uio_resid;
543 if (uio->uio_offset || (length != sizeof(buffer)
544 && length != sizeof(buffer - 1)))
545 return(EINVAL);
546
547 if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
548 return(error);
549
550 if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
551 return(EINVAL);
552
553 s = splclock();
554 MC146818_GETTOD(RTC, &clkregs);
555 splx(s);
556
557 clkregs[MC_SEC] = twodigits(buffer, 11);
558 clkregs[MC_MIN] = twodigits(buffer, 8);
559 clkregs[MC_HOUR] = twodigits(buffer, 6);
560 clkregs[MC_DOM] = twodigits(buffer, 4);
561 clkregs[MC_MONTH] = twodigits(buffer, 2);
562 s = twodigits(buffer, 0);
563 s = (s < 70) ? s + 2000 : s + 1900;
564 clkregs[MC_YEAR] = s - GEMSTARTOFTIME;
565
566 s = splclock();
567 MC146818_PUTTOD(RTC, &clkregs);
568 splx(s);
569
570 return(0);
571 }
572