clock.c revision 1.15 1 /* $NetBSD: clock.c,v 1.15 1996/12/16 22:03:23 leo Exp $ */
2
3 /*
4 * Copyright (c) 1988 University of Utah.
5 * Copyright (c) 1982, 1990 The Regents of the University of California.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 *
42 * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 */
44
45 #include <sys/param.h>
46 #include <sys/kernel.h>
47 #include <sys/systm.h>
48 #include <sys/device.h>
49 #include <sys/uio.h>
50 #include <sys/conf.h>
51 #include <machine/psl.h>
52 #include <machine/cpu.h>
53 #include <machine/iomap.h>
54 #include <machine/mfp.h>
55 #include <atari/dev/clockreg.h>
56 #include <atari/atari/device.h>
57
58 #if defined(GPROF) && defined(PROFTIMER)
59 #include <machine/profile.h>
60 #endif
61
62 /*
63 * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
64 * of 200. Therefore the timer runs at an effective rate of:
65 * 2457600/200 = 12288Hz.
66 */
67 #define CLOCK_HZ 12288
68
69 /*
70 * Machine-dependent clock routines.
71 *
72 * Inittodr initializes the time of day hardware which provides
73 * date functions.
74 *
75 * Resettodr restores the time of day hardware after a time change.
76 */
77
78 struct clock_softc {
79 struct device sc_dev;
80 int sc_flags;
81 };
82
83 /*
84 * 'sc_flags' state info. Only used by the rtc-device functions.
85 */
86 #define RTC_OPEN 1
87
88 /* {b,c}devsw[] function prototypes for rtc functions */
89 dev_type_open(rtcopen);
90 dev_type_close(rtcclose);
91 dev_type_read(rtcread);
92 dev_type_write(rtcwrite);
93
94 static void clockattach __P((struct device *, struct device *, void *));
95 static int clockmatch __P((struct device *, void *, void *));
96
97 struct cfattach clock_ca = {
98 sizeof(struct clock_softc), clockmatch, clockattach
99 };
100
101 struct cfdriver clock_cd = {
102 NULL, "clock", DV_DULL, NULL, 0
103 };
104
105 void statintr __P((struct clockframe *));
106
107 static u_long gettod __P((void));
108 static int twodigits __P((char *, int));
109
110 static int divisor; /* Systemclock divisor */
111
112 /*
113 * Statistics and profile clock intervals and variances. Variance must
114 * be a power of 2. Since this gives us an even number, not an odd number,
115 * we discard one case and compensate. That is, a variance of 64 would
116 * give us offsets in [0..63]. Instead, we take offsets in [1..63].
117 * This is symetric around the point 32, or statvar/2, and thus averages
118 * to that value (assuming uniform random numbers).
119 */
120 #ifdef STATCLOCK
121 static int statvar = 32; /* {stat,prof}clock variance */
122 static int statmin; /* statclock divisor - variance/2 */
123 static int profmin; /* profclock divisor - variance/2 */
124 static int clk2min; /* current, from above choises */
125 #endif
126
127 int
128 clockmatch(pdp, match, auxp)
129 struct device *pdp;
130 void *match, *auxp;
131 {
132 if (!atari_realconfig) {
133 /*
134 * Initialize Timer-B in the ST-MFP. This timer is used by
135 * the 'delay' function below. This timer is setup to be
136 * continueously counting from 255 back to zero at a
137 * frequency of 614400Hz. We do this *early* in the
138 * initialisation process.
139 */
140 MFP->mf_tbcr = 0; /* Stop timer */
141 MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
142 MFP->mf_tbdr = 0;
143 MFP->mf_tbcr = T_Q004; /* Start timer */
144
145 /*
146 * Initialize the time structure
147 */
148 time.tv_sec = 0;
149 time.tv_usec = 0;
150
151 return 0;
152 }
153 if(!strcmp("clock", auxp))
154 return(1);
155 return(0);
156 }
157
158 /*
159 * Start the real-time clock.
160 */
161 void clockattach(pdp, dp, auxp)
162 struct device *pdp, *dp;
163 void *auxp;
164 {
165 struct clock_softc *sc = (void *)dp;
166
167 sc->sc_flags = 0;
168
169 /*
170 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
171 * The MFP clock runs at 2457600Hz. Therefore the timer runs
172 * at an effective rate of: 2457600/200 = 12288Hz. The
173 * following expression works for 48, 64 or 96 hz.
174 */
175 divisor = CLOCK_HZ/hz;
176 MFP->mf_tacr = 0; /* Stop timer */
177 MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
178 MFP->mf_tadr = divisor; /* Set divisor */
179
180 if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
181 printf (": illegal value %d for systemclock, reset to %d\n\t",
182 hz, 64);
183 hz = 64;
184 }
185 printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
186
187 #ifdef STATCLOCK
188 if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
189 stathz = hz;
190 if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
191 profhz = hz << 1;
192
193 MFP->mf_tcdcr &= 0x7; /* Stop timer */
194 MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
195 MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
196
197 statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
198 profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
199 clk2min = statmin;
200 #endif /* STATCLOCK */
201
202 }
203
204 void cpu_initclocks()
205 {
206 MFP->mf_tacr = T_Q200; /* Start timer */
207 MFP->mf_ipra &= ~IA_TIMA; /* Clear pending interrupts */
208 MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
209 MFP->mf_imra |= IA_TIMA; /* ..... */
210
211 #ifdef STATCLOCK
212 MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
213 MFP->mf_iprb &= ~IB_TIMC; /* Clear pending interrupts */
214 MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
215 MFP->mf_imrb |= IB_TIMC; /* ..... */
216 #endif /* STATCLOCK */
217 }
218
219 void
220 setstatclockrate(newhz)
221 int newhz;
222 {
223 #ifdef STATCLOCK
224 if (newhz == stathz)
225 clk2min = statmin;
226 else clk2min = profmin;
227 #endif /* STATCLOCK */
228 }
229
230 #ifdef STATCLOCK
231 void
232 statintr(frame)
233 register struct clockframe *frame;
234 {
235 register int var, r;
236
237 var = statvar - 1;
238 do {
239 r = random() & var;
240 } while(r == 0);
241
242 /*
243 * Note that we are always lagging behind as the new divisor
244 * value will not be loaded until the next interrupt. This
245 * shouldn't disturb the median frequency (I think ;-) ) as
246 * only the value used when switching frequencies is used
247 * twice. This shouldn't happen very often.
248 */
249 MFP->mf_tcdr = clk2min + r;
250
251 statclock(frame);
252 }
253 #endif /* STATCLOCK */
254
255 /*
256 * Returns number of usec since last recorded clock "tick"
257 * (i.e. clock interrupt).
258 */
259 long
260 clkread()
261 {
262 u_int delta;
263
264 delta = ((divisor - MFP->mf_tadr) * tick) / divisor;
265 /*
266 * Account for pending clock interrupts
267 */
268 if(MFP->mf_iera & IA_TIMA)
269 return(delta + tick);
270 return(delta);
271 }
272
273 #define TIMB_FREQ 614400
274 #define TIMB_LIMIT 256
275
276 /*
277 * Wait "n" microseconds.
278 * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
279 * Note: timer had better have been programmed before this is first used!
280 */
281 void
282 delay(n)
283 int n;
284 {
285 int tick, otick;
286
287 /*
288 * Read the counter first, so that the rest of the setup overhead is
289 * counted.
290 */
291 otick = MFP->mf_tbdr;
292
293 /*
294 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
295 * we can take advantage of the intermediate 64-bit quantity to prevent
296 * loss of significance.
297 */
298 n -= 5;
299 if(n < 0)
300 return;
301 {
302 u_int temp;
303
304 __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
305 : "d" (TIMB_FREQ));
306 __asm __volatile ("divul %1,%2:%0" : "=d" (n)
307 : "d"(1000000),"d"(temp),"0"(n));
308 }
309
310 while(n > 0) {
311 tick = MFP->mf_tbdr;
312 if(tick > otick)
313 n -= TIMB_LIMIT - (tick - otick);
314 else n -= otick - tick;
315 otick = tick;
316 }
317 }
318
319 #ifdef GPROF
320 /*
321 * profclock() is expanded in line in lev6intr() unless profiling kernel.
322 * Assumes it is called with clock interrupts blocked.
323 */
324 profclock(pc, ps)
325 caddr_t pc;
326 int ps;
327 {
328 /*
329 * Came from user mode.
330 * If this process is being profiled record the tick.
331 */
332 if (USERMODE(ps)) {
333 if (p->p_stats.p_prof.pr_scale)
334 addupc(pc, &curproc->p_stats.p_prof, 1);
335 }
336 /*
337 * Came from kernel (supervisor) mode.
338 * If we are profiling the kernel, record the tick.
339 */
340 else if (profiling < 2) {
341 register int s = pc - s_lowpc;
342
343 if (s < s_textsize)
344 kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
345 }
346 /*
347 * Kernel profiling was on but has been disabled.
348 * Mark as no longer profiling kernel and if all profiling done,
349 * disable the clock.
350 */
351 if (profiling && (profon & PRF_KERNEL)) {
352 profon &= ~PRF_KERNEL;
353 if (profon == PRF_NONE)
354 stopprofclock();
355 }
356 }
357 #endif
358
359 /***********************************************************************
360 * Real Time Clock support *
361 ***********************************************************************/
362
363 u_int mc146818_read(rtc, regno)
364 void *rtc;
365 u_int regno;
366 {
367 ((struct rtc *)rtc)->rtc_regno = regno;
368 return(((struct rtc *)rtc)->rtc_data & 0377);
369 }
370
371 void mc146818_write(rtc, regno, value)
372 void *rtc;
373 u_int regno, value;
374 {
375 ((struct rtc *)rtc)->rtc_regno = regno;
376 ((struct rtc *)rtc)->rtc_data = value;
377 }
378
379 /*
380 * Initialize the time of day register, assuming the RTC runs in UTC.
381 * Since we've got the 'rtc' device, this functionality should be removed
382 * from the kernel. The only problem to be solved before that can happen
383 * is the possibility of init(1) providing a way (rc.boot?) to set
384 * the RTC before single-user mode is entered.
385 */
386 void
387 inittodr(base)
388 time_t base;
389 {
390 /* Battery clock does not store usec's, so forget about it. */
391 time.tv_sec = gettod();
392 time.tv_usec = 0;
393 }
394
395 /*
396 * Function turned into a No-op. Use /dev/rtc to update the RTC.
397 */
398 void
399 resettodr()
400 {
401 return;
402 }
403
404 static char dmsize[12] =
405 {
406 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
407 };
408
409 static char ldmsize[12] =
410 {
411 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
412 };
413
414 static u_long
415 gettod()
416 {
417 int i, sps;
418 u_long new_time = 0;
419 char *msize;
420 mc_todregs clkregs;
421
422 sps = splhigh();
423 MC146818_GETTOD(RTC, &clkregs);
424 splx(sps);
425
426 if(clkregs[MC_SEC] > 59)
427 return(0);
428 if(clkregs[MC_MIN] > 59)
429 return(0);
430 if(clkregs[MC_HOUR] > 23)
431 return(0);
432 if(range_test(clkregs[MC_DOM], 1, 31))
433 return(0);
434 if (range_test(clkregs[MC_MONTH], 1, 12))
435 return(0);
436 if(clkregs[MC_YEAR] > (2000 - GEMSTARTOFTIME))
437 return(0);
438 clkregs[MC_YEAR] += GEMSTARTOFTIME;
439
440 for(i = BSDSTARTOFTIME; i < clkregs[MC_YEAR]; i++) {
441 if(is_leap(i))
442 new_time += 366;
443 else new_time += 365;
444 }
445
446 msize = is_leap(clkregs[MC_YEAR]) ? ldmsize : dmsize;
447 for(i = 0; i < (clkregs[MC_MONTH] - 1); i++)
448 new_time += msize[i];
449 new_time += clkregs[MC_DOM] - 1;
450 new_time *= SECS_DAY;
451 new_time += (clkregs[MC_HOUR] * 3600) + (clkregs[MC_MIN] * 60);
452 return(new_time + clkregs[MC_SEC]);
453 }
454 /***********************************************************************
455 * RTC-device support *
456 ***********************************************************************/
457 int
458 rtcopen(dev, flag, mode, p)
459 dev_t dev;
460 int flag, mode;
461 struct proc *p;
462 {
463 int unit = minor(dev);
464 struct clock_softc *sc;
465
466 if (unit >= clock_cd.cd_ndevs)
467 return ENXIO;
468 sc = clock_cd.cd_devs[unit];
469 if (!sc)
470 return ENXIO;
471 if (sc->sc_flags & RTC_OPEN)
472 return EBUSY;
473
474 sc->sc_flags = RTC_OPEN;
475 return 0;
476 }
477
478 int
479 rtcclose(dev, flag, mode, p)
480 dev_t dev;
481 int flag;
482 int mode;
483 struct proc *p;
484 {
485 int unit = minor(dev);
486 struct clock_softc *sc = clock_cd.cd_devs[unit];
487
488 sc->sc_flags = 0;
489 return 0;
490 }
491
492 int
493 rtcread(dev, uio, flags)
494 dev_t dev;
495 struct uio *uio;
496 int flags;
497 {
498 struct clock_softc *sc;
499 mc_todregs clkregs;
500 int s, length;
501 char buffer[16];
502
503 sc = clock_cd.cd_devs[minor(dev)];
504
505 s = splhigh();
506 MC146818_GETTOD(RTC, &clkregs);
507 splx(s);
508
509 sprintf(buffer, "%02d%02d%02d%02d%02d.%02d\n",
510 clkregs[MC_YEAR] + GEMSTARTOFTIME - 1900,
511 clkregs[MC_MONTH], clkregs[MC_DOM],
512 clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
513
514 if (uio->uio_offset > strlen(buffer))
515 return 0;
516
517 length = strlen(buffer) - uio->uio_offset;
518 if (length > uio->uio_resid)
519 length = uio->uio_resid;
520
521 return(uiomove((caddr_t)buffer, length, uio));
522 }
523
524 static int
525 twodigits(buffer, pos)
526 char *buffer;
527 int pos;
528 {
529 int result = 0;
530
531 if (buffer[pos] >= '0' && buffer[pos] <= '9')
532 result = (buffer[pos] - '0') * 10;
533 if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
534 result += (buffer[pos+1] - '0');
535 return(result);
536 }
537
538 int
539 rtcwrite(dev, uio, flags)
540 dev_t dev;
541 struct uio *uio;
542 int flags;
543 {
544 mc_todregs clkregs;
545 int s, length, error;
546 char buffer[14];
547
548 /*
549 * We require atomic updates!
550 */
551 length = uio->uio_resid;
552 if (uio->uio_offset || (length != sizeof(buffer)
553 && length != sizeof(buffer - 1)))
554 return(EINVAL);
555
556 if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
557 return(error);
558
559 if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
560 return(EINVAL);
561
562 s = splclock();
563 MC146818_GETTOD(RTC, &clkregs);
564 splx(s);
565
566 clkregs[MC_SEC] = twodigits(buffer, 11);
567 clkregs[MC_MIN] = twodigits(buffer, 8);
568 clkregs[MC_HOUR] = twodigits(buffer, 6);
569 clkregs[MC_DOM] = twodigits(buffer, 4);
570 clkregs[MC_MONTH] = twodigits(buffer, 2);
571 s = twodigits(buffer, 0);
572 s = (s < 70) ? s + 2000 : s + 1900;
573 clkregs[MC_YEAR] = s - GEMSTARTOFTIME;
574
575 s = splclock();
576 MC146818_PUTTOD(RTC, &clkregs);
577 splx(s);
578
579 return(0);
580 }
581