clock.c revision 1.17 1 /* $NetBSD: clock.c,v 1.17 1996/12/20 12:49:35 leo Exp $ */
2
3 /*
4 * Copyright (c) 1988 University of Utah.
5 * Copyright (c) 1982, 1990 The Regents of the University of California.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 *
42 * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 */
44
45 #include <sys/param.h>
46 #include <sys/kernel.h>
47 #include <sys/systm.h>
48 #include <sys/device.h>
49 #include <sys/uio.h>
50 #include <sys/conf.h>
51 #include <machine/psl.h>
52 #include <machine/cpu.h>
53 #include <machine/iomap.h>
54 #include <machine/mfp.h>
55 #include <atari/dev/clockreg.h>
56 #include <atari/atari/device.h>
57
58 #if defined(GPROF) && defined(PROFTIMER)
59 #include <machine/profile.h>
60 #endif
61
62 /*
63 * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
64 * of 200. Therefore the timer runs at an effective rate of:
65 * 2457600/200 = 12288Hz.
66 */
67 #define CLOCK_HZ 12288
68
69 /*
70 * Machine-dependent clock routines.
71 *
72 * Inittodr initializes the time of day hardware which provides
73 * date functions.
74 *
75 * Resettodr restores the time of day hardware after a time change.
76 */
77
78 struct clock_softc {
79 struct device sc_dev;
80 int sc_flags;
81 };
82
83 /*
84 * 'sc_flags' state info. Only used by the rtc-device functions.
85 */
86 #define RTC_OPEN 1
87
88 /* {b,c}devsw[] function prototypes for rtc functions */
89 dev_type_open(rtcopen);
90 dev_type_close(rtcclose);
91 dev_type_read(rtcread);
92 dev_type_write(rtcwrite);
93
94 static void clockattach __P((struct device *, struct device *, void *));
95 static int clockmatch __P((struct device *, struct cfdata *, void *));
96
97 struct cfattach clock_ca = {
98 sizeof(struct clock_softc), clockmatch, clockattach
99 };
100
101 struct cfdriver clock_cd = {
102 NULL, "clock", DV_DULL, NULL, 0
103 };
104
105 void statintr __P((struct clockframe));
106
107 static u_long gettod __P((void));
108 static int twodigits __P((char *, int));
109
110 static int divisor; /* Systemclock divisor */
111
112 /*
113 * Statistics and profile clock intervals and variances. Variance must
114 * be a power of 2. Since this gives us an even number, not an odd number,
115 * we discard one case and compensate. That is, a variance of 64 would
116 * give us offsets in [0..63]. Instead, we take offsets in [1..63].
117 * This is symetric around the point 32, or statvar/2, and thus averages
118 * to that value (assuming uniform random numbers).
119 */
120 #ifdef STATCLOCK
121 static int statvar = 32; /* {stat,prof}clock variance */
122 static int statmin; /* statclock divisor - variance/2 */
123 static int profmin; /* profclock divisor - variance/2 */
124 static int clk2min; /* current, from above choises */
125 #endif
126
127 int
128 clockmatch(pdp, cfp, auxp)
129 struct device *pdp;
130 struct cfdata *cfp;
131 void *auxp;
132 {
133 if (!atari_realconfig) {
134 /*
135 * Initialize Timer-B in the ST-MFP. This timer is used by
136 * the 'delay' function below. This timer is setup to be
137 * continueously counting from 255 back to zero at a
138 * frequency of 614400Hz. We do this *early* in the
139 * initialisation process.
140 */
141 MFP->mf_tbcr = 0; /* Stop timer */
142 MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
143 MFP->mf_tbdr = 0;
144 MFP->mf_tbcr = T_Q004; /* Start timer */
145
146 /*
147 * Initialize the time structure
148 */
149 time.tv_sec = 0;
150 time.tv_usec = 0;
151
152 return 0;
153 }
154 if(!strcmp("clock", auxp))
155 return(1);
156 return(0);
157 }
158
159 /*
160 * Start the real-time clock.
161 */
162 void clockattach(pdp, dp, auxp)
163 struct device *pdp, *dp;
164 void *auxp;
165 {
166 struct clock_softc *sc = (void *)dp;
167
168 sc->sc_flags = 0;
169
170 /*
171 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
172 * The MFP clock runs at 2457600Hz. Therefore the timer runs
173 * at an effective rate of: 2457600/200 = 12288Hz. The
174 * following expression works for 48, 64 or 96 hz.
175 */
176 divisor = CLOCK_HZ/hz;
177 MFP->mf_tacr = 0; /* Stop timer */
178 MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
179 MFP->mf_tadr = divisor; /* Set divisor */
180
181 if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
182 printf (": illegal value %d for systemclock, reset to %d\n\t",
183 hz, 64);
184 hz = 64;
185 }
186 printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
187
188 #ifdef STATCLOCK
189 if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
190 stathz = hz;
191 if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
192 profhz = hz << 1;
193
194 MFP->mf_tcdcr &= 0x7; /* Stop timer */
195 MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
196 MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
197
198 statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
199 profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
200 clk2min = statmin;
201 #endif /* STATCLOCK */
202
203 }
204
205 void cpu_initclocks()
206 {
207 MFP->mf_tacr = T_Q200; /* Start timer */
208 MFP->mf_ipra &= ~IA_TIMA; /* Clear pending interrupts */
209 MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
210 MFP->mf_imra |= IA_TIMA; /* ..... */
211
212 #ifdef STATCLOCK
213 MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
214 MFP->mf_iprb &= ~IB_TIMC; /* Clear pending interrupts */
215 MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
216 MFP->mf_imrb |= IB_TIMC; /* ..... */
217 #endif /* STATCLOCK */
218 }
219
220 void
221 setstatclockrate(newhz)
222 int newhz;
223 {
224 #ifdef STATCLOCK
225 if (newhz == stathz)
226 clk2min = statmin;
227 else clk2min = profmin;
228 #endif /* STATCLOCK */
229 }
230
231 #ifdef STATCLOCK
232 void
233 statintr(frame)
234 struct clockframe frame;
235 {
236 register int var, r;
237
238 var = statvar - 1;
239 do {
240 r = random() & var;
241 } while(r == 0);
242
243 /*
244 * Note that we are always lagging behind as the new divisor
245 * value will not be loaded until the next interrupt. This
246 * shouldn't disturb the median frequency (I think ;-) ) as
247 * only the value used when switching frequencies is used
248 * twice. This shouldn't happen very often.
249 */
250 MFP->mf_tcdr = clk2min + r;
251
252 statclock(&frame);
253 }
254 #endif /* STATCLOCK */
255
256 /*
257 * Returns number of usec since last recorded clock "tick"
258 * (i.e. clock interrupt).
259 */
260 long
261 clkread()
262 {
263 u_int delta;
264
265 delta = ((divisor - MFP->mf_tadr) * tick) / divisor;
266 /*
267 * Account for pending clock interrupts
268 */
269 if(MFP->mf_iera & IA_TIMA)
270 return(delta + tick);
271 return(delta);
272 }
273
274 #define TIMB_FREQ 614400
275 #define TIMB_LIMIT 256
276
277 /*
278 * Wait "n" microseconds.
279 * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
280 * Note: timer had better have been programmed before this is first used!
281 */
282 void
283 delay(n)
284 int n;
285 {
286 int tick, otick;
287
288 /*
289 * Read the counter first, so that the rest of the setup overhead is
290 * counted.
291 */
292 otick = MFP->mf_tbdr;
293
294 /*
295 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
296 * we can take advantage of the intermediate 64-bit quantity to prevent
297 * loss of significance.
298 */
299 n -= 5;
300 if(n < 0)
301 return;
302 {
303 u_int temp;
304
305 __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
306 : "d" (TIMB_FREQ));
307 __asm __volatile ("divul %1,%2:%0" : "=d" (n)
308 : "d"(1000000),"d"(temp),"0"(n));
309 }
310
311 while(n > 0) {
312 tick = MFP->mf_tbdr;
313 if(tick > otick)
314 n -= TIMB_LIMIT - (tick - otick);
315 else n -= otick - tick;
316 otick = tick;
317 }
318 }
319
320 #ifdef GPROF
321 /*
322 * profclock() is expanded in line in lev6intr() unless profiling kernel.
323 * Assumes it is called with clock interrupts blocked.
324 */
325 profclock(pc, ps)
326 caddr_t pc;
327 int ps;
328 {
329 /*
330 * Came from user mode.
331 * If this process is being profiled record the tick.
332 */
333 if (USERMODE(ps)) {
334 if (p->p_stats.p_prof.pr_scale)
335 addupc(pc, &curproc->p_stats.p_prof, 1);
336 }
337 /*
338 * Came from kernel (supervisor) mode.
339 * If we are profiling the kernel, record the tick.
340 */
341 else if (profiling < 2) {
342 register int s = pc - s_lowpc;
343
344 if (s < s_textsize)
345 kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
346 }
347 /*
348 * Kernel profiling was on but has been disabled.
349 * Mark as no longer profiling kernel and if all profiling done,
350 * disable the clock.
351 */
352 if (profiling && (profon & PRF_KERNEL)) {
353 profon &= ~PRF_KERNEL;
354 if (profon == PRF_NONE)
355 stopprofclock();
356 }
357 }
358 #endif
359
360 /***********************************************************************
361 * Real Time Clock support *
362 ***********************************************************************/
363
364 u_int mc146818_read(rtc, regno)
365 void *rtc;
366 u_int regno;
367 {
368 ((struct rtc *)rtc)->rtc_regno = regno;
369 return(((struct rtc *)rtc)->rtc_data & 0377);
370 }
371
372 void mc146818_write(rtc, regno, value)
373 void *rtc;
374 u_int regno, value;
375 {
376 ((struct rtc *)rtc)->rtc_regno = regno;
377 ((struct rtc *)rtc)->rtc_data = value;
378 }
379
380 /*
381 * Initialize the time of day register, assuming the RTC runs in UTC.
382 * Since we've got the 'rtc' device, this functionality should be removed
383 * from the kernel. The only problem to be solved before that can happen
384 * is the possibility of init(1) providing a way (rc.boot?) to set
385 * the RTC before single-user mode is entered.
386 */
387 void
388 inittodr(base)
389 time_t base;
390 {
391 /* Battery clock does not store usec's, so forget about it. */
392 time.tv_sec = gettod();
393 time.tv_usec = 0;
394 }
395
396 /*
397 * Function turned into a No-op. Use /dev/rtc to update the RTC.
398 */
399 void
400 resettodr()
401 {
402 return;
403 }
404
405 static char dmsize[12] =
406 {
407 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
408 };
409
410 static char ldmsize[12] =
411 {
412 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
413 };
414
415 static u_long
416 gettod()
417 {
418 int i, sps;
419 u_long new_time = 0;
420 char *msize;
421 mc_todregs clkregs;
422
423 sps = splhigh();
424 MC146818_GETTOD(RTC, &clkregs);
425 splx(sps);
426
427 if(clkregs[MC_SEC] > 59)
428 return(0);
429 if(clkregs[MC_MIN] > 59)
430 return(0);
431 if(clkregs[MC_HOUR] > 23)
432 return(0);
433 if(range_test(clkregs[MC_DOM], 1, 31))
434 return(0);
435 if (range_test(clkregs[MC_MONTH], 1, 12))
436 return(0);
437 if(clkregs[MC_YEAR] > (2000 - GEMSTARTOFTIME))
438 return(0);
439 clkregs[MC_YEAR] += GEMSTARTOFTIME;
440
441 for(i = BSDSTARTOFTIME; i < clkregs[MC_YEAR]; i++) {
442 if(is_leap(i))
443 new_time += 366;
444 else new_time += 365;
445 }
446
447 msize = is_leap(clkregs[MC_YEAR]) ? ldmsize : dmsize;
448 for(i = 0; i < (clkregs[MC_MONTH] - 1); i++)
449 new_time += msize[i];
450 new_time += clkregs[MC_DOM] - 1;
451 new_time *= SECS_DAY;
452 new_time += (clkregs[MC_HOUR] * 3600) + (clkregs[MC_MIN] * 60);
453 return(new_time + clkregs[MC_SEC]);
454 }
455 /***********************************************************************
456 * RTC-device support *
457 ***********************************************************************/
458 int
459 rtcopen(dev, flag, mode, p)
460 dev_t dev;
461 int flag, mode;
462 struct proc *p;
463 {
464 int unit = minor(dev);
465 struct clock_softc *sc;
466
467 if (unit >= clock_cd.cd_ndevs)
468 return ENXIO;
469 sc = clock_cd.cd_devs[unit];
470 if (!sc)
471 return ENXIO;
472 if (sc->sc_flags & RTC_OPEN)
473 return EBUSY;
474
475 sc->sc_flags = RTC_OPEN;
476 return 0;
477 }
478
479 int
480 rtcclose(dev, flag, mode, p)
481 dev_t dev;
482 int flag;
483 int mode;
484 struct proc *p;
485 {
486 int unit = minor(dev);
487 struct clock_softc *sc = clock_cd.cd_devs[unit];
488
489 sc->sc_flags = 0;
490 return 0;
491 }
492
493 int
494 rtcread(dev, uio, flags)
495 dev_t dev;
496 struct uio *uio;
497 int flags;
498 {
499 struct clock_softc *sc;
500 mc_todregs clkregs;
501 int s, length;
502 char buffer[16];
503
504 sc = clock_cd.cd_devs[minor(dev)];
505
506 s = splhigh();
507 MC146818_GETTOD(RTC, &clkregs);
508 splx(s);
509
510 sprintf(buffer, "%02d%02d%02d%02d%02d.%02d\n",
511 clkregs[MC_YEAR] + GEMSTARTOFTIME - 1900,
512 clkregs[MC_MONTH], clkregs[MC_DOM],
513 clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
514
515 if (uio->uio_offset > strlen(buffer))
516 return 0;
517
518 length = strlen(buffer) - uio->uio_offset;
519 if (length > uio->uio_resid)
520 length = uio->uio_resid;
521
522 return(uiomove((caddr_t)buffer, length, uio));
523 }
524
525 static int
526 twodigits(buffer, pos)
527 char *buffer;
528 int pos;
529 {
530 int result = 0;
531
532 if (buffer[pos] >= '0' && buffer[pos] <= '9')
533 result = (buffer[pos] - '0') * 10;
534 if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
535 result += (buffer[pos+1] - '0');
536 return(result);
537 }
538
539 int
540 rtcwrite(dev, uio, flags)
541 dev_t dev;
542 struct uio *uio;
543 int flags;
544 {
545 mc_todregs clkregs;
546 int s, length, error;
547 char buffer[14];
548
549 /*
550 * We require atomic updates!
551 */
552 length = uio->uio_resid;
553 if (uio->uio_offset || (length != sizeof(buffer)
554 && length != sizeof(buffer - 1)))
555 return(EINVAL);
556
557 if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
558 return(error);
559
560 if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
561 return(EINVAL);
562
563 s = splclock();
564 MC146818_GETTOD(RTC, &clkregs);
565 splx(s);
566
567 clkregs[MC_SEC] = twodigits(buffer, 11);
568 clkregs[MC_MIN] = twodigits(buffer, 8);
569 clkregs[MC_HOUR] = twodigits(buffer, 6);
570 clkregs[MC_DOM] = twodigits(buffer, 4);
571 clkregs[MC_MONTH] = twodigits(buffer, 2);
572 s = twodigits(buffer, 0);
573 s = (s < 70) ? s + 2000 : s + 1900;
574 clkregs[MC_YEAR] = s - GEMSTARTOFTIME;
575
576 s = splclock();
577 MC146818_PUTTOD(RTC, &clkregs);
578 splx(s);
579
580 return(0);
581 }
582