clock.c revision 1.18 1 /* $NetBSD: clock.c,v 1.18 1997/02/26 12:26:44 leo Exp $ */
2
3 /*
4 * Copyright (c) 1988 University of Utah.
5 * Copyright (c) 1982, 1990 The Regents of the University of California.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 *
42 * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 */
44
45 #include <sys/param.h>
46 #include <sys/kernel.h>
47 #include <sys/systm.h>
48 #include <sys/device.h>
49 #include <sys/uio.h>
50 #include <sys/conf.h>
51
52 #include <dev/clock_subr.h>
53
54 #include <machine/psl.h>
55 #include <machine/cpu.h>
56 #include <machine/iomap.h>
57 #include <machine/mfp.h>
58 #include <atari/dev/clockreg.h>
59 #include <atari/atari/device.h>
60
61 #if defined(GPROF) && defined(PROFTIMER)
62 #include <machine/profile.h>
63 #endif
64
65 /*
66 * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
67 * of 200. Therefore the timer runs at an effective rate of:
68 * 2457600/200 = 12288Hz.
69 */
70 #define CLOCK_HZ 12288
71
72 /*
73 * Machine-dependent clock routines.
74 *
75 * Inittodr initializes the time of day hardware which provides
76 * date functions.
77 *
78 * Resettodr restores the time of day hardware after a time change.
79 */
80
81 struct clock_softc {
82 struct device sc_dev;
83 int sc_flags;
84 };
85
86 /*
87 * 'sc_flags' state info. Only used by the rtc-device functions.
88 */
89 #define RTC_OPEN 1
90
91 /* {b,c}devsw[] function prototypes for rtc functions */
92 dev_type_open(rtcopen);
93 dev_type_close(rtcclose);
94 dev_type_read(rtcread);
95 dev_type_write(rtcwrite);
96
97 static void clockattach __P((struct device *, struct device *, void *));
98 static int clockmatch __P((struct device *, struct cfdata *, void *));
99
100 struct cfattach clock_ca = {
101 sizeof(struct clock_softc), clockmatch, clockattach
102 };
103
104 struct cfdriver clock_cd = {
105 NULL, "clock", DV_DULL, NULL, 0
106 };
107
108 void statintr __P((struct clockframe));
109
110 static u_long gettod __P((void));
111 static int twodigits __P((char *, int));
112
113 static int divisor; /* Systemclock divisor */
114
115 /*
116 * Statistics and profile clock intervals and variances. Variance must
117 * be a power of 2. Since this gives us an even number, not an odd number,
118 * we discard one case and compensate. That is, a variance of 64 would
119 * give us offsets in [0..63]. Instead, we take offsets in [1..63].
120 * This is symetric around the point 32, or statvar/2, and thus averages
121 * to that value (assuming uniform random numbers).
122 */
123 #ifdef STATCLOCK
124 static int statvar = 32; /* {stat,prof}clock variance */
125 static int statmin; /* statclock divisor - variance/2 */
126 static int profmin; /* profclock divisor - variance/2 */
127 static int clk2min; /* current, from above choises */
128 #endif
129
130 int
131 clockmatch(pdp, cfp, auxp)
132 struct device *pdp;
133 struct cfdata *cfp;
134 void *auxp;
135 {
136 if (!atari_realconfig) {
137 /*
138 * Initialize Timer-B in the ST-MFP. This timer is used by
139 * the 'delay' function below. This timer is setup to be
140 * continueously counting from 255 back to zero at a
141 * frequency of 614400Hz. We do this *early* in the
142 * initialisation process.
143 */
144 MFP->mf_tbcr = 0; /* Stop timer */
145 MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
146 MFP->mf_tbdr = 0;
147 MFP->mf_tbcr = T_Q004; /* Start timer */
148
149 /*
150 * Initialize the time structure
151 */
152 time.tv_sec = 0;
153 time.tv_usec = 0;
154
155 return 0;
156 }
157 if(!strcmp("clock", auxp))
158 return(1);
159 return(0);
160 }
161
162 /*
163 * Start the real-time clock.
164 */
165 void clockattach(pdp, dp, auxp)
166 struct device *pdp, *dp;
167 void *auxp;
168 {
169 struct clock_softc *sc = (void *)dp;
170
171 sc->sc_flags = 0;
172
173 /*
174 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
175 * The MFP clock runs at 2457600Hz. Therefore the timer runs
176 * at an effective rate of: 2457600/200 = 12288Hz. The
177 * following expression works for 48, 64 or 96 hz.
178 */
179 divisor = CLOCK_HZ/hz;
180 MFP->mf_tacr = 0; /* Stop timer */
181 MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
182 MFP->mf_tadr = divisor; /* Set divisor */
183
184 if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
185 printf (": illegal value %d for systemclock, reset to %d\n\t",
186 hz, 64);
187 hz = 64;
188 }
189 printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
190
191 #ifdef STATCLOCK
192 if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
193 stathz = hz;
194 if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
195 profhz = hz << 1;
196
197 MFP->mf_tcdcr &= 0x7; /* Stop timer */
198 MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
199 MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
200
201 statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
202 profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
203 clk2min = statmin;
204 #endif /* STATCLOCK */
205
206 }
207
208 void cpu_initclocks()
209 {
210 MFP->mf_tacr = T_Q200; /* Start timer */
211 MFP->mf_ipra &= ~IA_TIMA; /* Clear pending interrupts */
212 MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
213 MFP->mf_imra |= IA_TIMA; /* ..... */
214
215 #ifdef STATCLOCK
216 MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
217 MFP->mf_iprb &= ~IB_TIMC; /* Clear pending interrupts */
218 MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
219 MFP->mf_imrb |= IB_TIMC; /* ..... */
220 #endif /* STATCLOCK */
221 }
222
223 void
224 setstatclockrate(newhz)
225 int newhz;
226 {
227 #ifdef STATCLOCK
228 if (newhz == stathz)
229 clk2min = statmin;
230 else clk2min = profmin;
231 #endif /* STATCLOCK */
232 }
233
234 #ifdef STATCLOCK
235 void
236 statintr(frame)
237 struct clockframe frame;
238 {
239 register int var, r;
240
241 var = statvar - 1;
242 do {
243 r = random() & var;
244 } while(r == 0);
245
246 /*
247 * Note that we are always lagging behind as the new divisor
248 * value will not be loaded until the next interrupt. This
249 * shouldn't disturb the median frequency (I think ;-) ) as
250 * only the value used when switching frequencies is used
251 * twice. This shouldn't happen very often.
252 */
253 MFP->mf_tcdr = clk2min + r;
254
255 statclock(&frame);
256 }
257 #endif /* STATCLOCK */
258
259 /*
260 * Returns number of usec since last recorded clock "tick"
261 * (i.e. clock interrupt).
262 */
263 long
264 clkread()
265 {
266 u_int delta;
267
268 delta = ((divisor - MFP->mf_tadr) * tick) / divisor;
269 /*
270 * Account for pending clock interrupts
271 */
272 if(MFP->mf_iera & IA_TIMA)
273 return(delta + tick);
274 return(delta);
275 }
276
277 #define TIMB_FREQ 614400
278 #define TIMB_LIMIT 256
279
280 /*
281 * Wait "n" microseconds.
282 * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
283 * Note: timer had better have been programmed before this is first used!
284 */
285 void
286 delay(n)
287 int n;
288 {
289 int tick, otick;
290
291 /*
292 * Read the counter first, so that the rest of the setup overhead is
293 * counted.
294 */
295 otick = MFP->mf_tbdr;
296
297 /*
298 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
299 * we can take advantage of the intermediate 64-bit quantity to prevent
300 * loss of significance.
301 */
302 n -= 5;
303 if(n < 0)
304 return;
305 {
306 u_int temp;
307
308 __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
309 : "d" (TIMB_FREQ));
310 __asm __volatile ("divul %1,%2:%0" : "=d" (n)
311 : "d"(1000000),"d"(temp),"0"(n));
312 }
313
314 while(n > 0) {
315 tick = MFP->mf_tbdr;
316 if(tick > otick)
317 n -= TIMB_LIMIT - (tick - otick);
318 else n -= otick - tick;
319 otick = tick;
320 }
321 }
322
323 #ifdef GPROF
324 /*
325 * profclock() is expanded in line in lev6intr() unless profiling kernel.
326 * Assumes it is called with clock interrupts blocked.
327 */
328 profclock(pc, ps)
329 caddr_t pc;
330 int ps;
331 {
332 /*
333 * Came from user mode.
334 * If this process is being profiled record the tick.
335 */
336 if (USERMODE(ps)) {
337 if (p->p_stats.p_prof.pr_scale)
338 addupc(pc, &curproc->p_stats.p_prof, 1);
339 }
340 /*
341 * Came from kernel (supervisor) mode.
342 * If we are profiling the kernel, record the tick.
343 */
344 else if (profiling < 2) {
345 register int s = pc - s_lowpc;
346
347 if (s < s_textsize)
348 kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
349 }
350 /*
351 * Kernel profiling was on but has been disabled.
352 * Mark as no longer profiling kernel and if all profiling done,
353 * disable the clock.
354 */
355 if (profiling && (profon & PRF_KERNEL)) {
356 profon &= ~PRF_KERNEL;
357 if (profon == PRF_NONE)
358 stopprofclock();
359 }
360 }
361 #endif
362
363 /***********************************************************************
364 * Real Time Clock support *
365 ***********************************************************************/
366
367 u_int mc146818_read(rtc, regno)
368 void *rtc;
369 u_int regno;
370 {
371 ((struct rtc *)rtc)->rtc_regno = regno;
372 return(((struct rtc *)rtc)->rtc_data & 0377);
373 }
374
375 void mc146818_write(rtc, regno, value)
376 void *rtc;
377 u_int regno, value;
378 {
379 ((struct rtc *)rtc)->rtc_regno = regno;
380 ((struct rtc *)rtc)->rtc_data = value;
381 }
382
383 /*
384 * Initialize the time of day register, assuming the RTC runs in UTC.
385 * Since we've got the 'rtc' device, this functionality should be removed
386 * from the kernel. The only problem to be solved before that can happen
387 * is the possibility of init(1) providing a way (rc.boot?) to set
388 * the RTC before single-user mode is entered.
389 */
390 void
391 inittodr(base)
392 time_t base;
393 {
394 /* Battery clock does not store usec's, so forget about it. */
395 time.tv_sec = gettod();
396 time.tv_usec = 0;
397 }
398
399 /*
400 * Function turned into a No-op. Use /dev/rtc to update the RTC.
401 */
402 void
403 resettodr()
404 {
405 return;
406 }
407
408 static u_long
409 gettod()
410 {
411 int sps;
412 mc_todregs clkregs;
413 struct clock_ymdhms dt;
414
415 sps = splhigh();
416 MC146818_GETTOD(RTC, &clkregs);
417 splx(sps);
418
419 if(clkregs[MC_SEC] > 59)
420 return(0);
421 if(clkregs[MC_MIN] > 59)
422 return(0);
423 if(clkregs[MC_HOUR] > 23)
424 return(0);
425 if(range_test(clkregs[MC_DOM], 1, 31))
426 return(0);
427 if (range_test(clkregs[MC_MONTH], 1, 12))
428 return(0);
429 if(clkregs[MC_YEAR] > (2000 - GEMSTARTOFTIME))
430 return(0);
431
432 dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
433 dt.dt_mon = clkregs[MC_MONTH];
434 dt.dt_day = clkregs[MC_DOM];
435 dt.dt_hour = clkregs[MC_HOUR];
436 dt.dt_min = clkregs[MC_MIN];
437 dt.dt_sec = clkregs[MC_SEC];
438
439 return(clock_ymdhms_to_secs(&dt));
440 }
441 /***********************************************************************
442 * RTC-device support *
443 ***********************************************************************/
444 int
445 rtcopen(dev, flag, mode, p)
446 dev_t dev;
447 int flag, mode;
448 struct proc *p;
449 {
450 int unit = minor(dev);
451 struct clock_softc *sc;
452
453 if (unit >= clock_cd.cd_ndevs)
454 return ENXIO;
455 sc = clock_cd.cd_devs[unit];
456 if (!sc)
457 return ENXIO;
458 if (sc->sc_flags & RTC_OPEN)
459 return EBUSY;
460
461 sc->sc_flags = RTC_OPEN;
462 return 0;
463 }
464
465 int
466 rtcclose(dev, flag, mode, p)
467 dev_t dev;
468 int flag;
469 int mode;
470 struct proc *p;
471 {
472 int unit = minor(dev);
473 struct clock_softc *sc = clock_cd.cd_devs[unit];
474
475 sc->sc_flags = 0;
476 return 0;
477 }
478
479 int
480 rtcread(dev, uio, flags)
481 dev_t dev;
482 struct uio *uio;
483 int flags;
484 {
485 struct clock_softc *sc;
486 mc_todregs clkregs;
487 int s, length;
488 char buffer[16];
489
490 sc = clock_cd.cd_devs[minor(dev)];
491
492 s = splhigh();
493 MC146818_GETTOD(RTC, &clkregs);
494 splx(s);
495
496 sprintf(buffer, "%02d%02d%02d%02d%02d.%02d\n",
497 clkregs[MC_YEAR] + GEMSTARTOFTIME - 1900,
498 clkregs[MC_MONTH], clkregs[MC_DOM],
499 clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
500
501 if (uio->uio_offset > strlen(buffer))
502 return 0;
503
504 length = strlen(buffer) - uio->uio_offset;
505 if (length > uio->uio_resid)
506 length = uio->uio_resid;
507
508 return(uiomove((caddr_t)buffer, length, uio));
509 }
510
511 static int
512 twodigits(buffer, pos)
513 char *buffer;
514 int pos;
515 {
516 int result = 0;
517
518 if (buffer[pos] >= '0' && buffer[pos] <= '9')
519 result = (buffer[pos] - '0') * 10;
520 if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
521 result += (buffer[pos+1] - '0');
522 return(result);
523 }
524
525 int
526 rtcwrite(dev, uio, flags)
527 dev_t dev;
528 struct uio *uio;
529 int flags;
530 {
531 mc_todregs clkregs;
532 int s, length, error;
533 char buffer[14];
534
535 /*
536 * We require atomic updates!
537 */
538 length = uio->uio_resid;
539 if (uio->uio_offset || (length != sizeof(buffer)
540 && length != sizeof(buffer - 1)))
541 return(EINVAL);
542
543 if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
544 return(error);
545
546 if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
547 return(EINVAL);
548
549 s = splclock();
550 MC146818_GETTOD(RTC, &clkregs);
551 splx(s);
552
553 clkregs[MC_SEC] = twodigits(buffer, 11);
554 clkregs[MC_MIN] = twodigits(buffer, 8);
555 clkregs[MC_HOUR] = twodigits(buffer, 6);
556 clkregs[MC_DOM] = twodigits(buffer, 4);
557 clkregs[MC_MONTH] = twodigits(buffer, 2);
558 s = twodigits(buffer, 0);
559 s = (s < 70) ? s + 2000 : s + 1900;
560 clkregs[MC_YEAR] = s - GEMSTARTOFTIME;
561
562 s = splclock();
563 MC146818_PUTTOD(RTC, &clkregs);
564 splx(s);
565
566 return(0);
567 }
568