Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.18
      1 /*	$NetBSD: clock.c,v 1.18 1997/02/26 12:26:44 leo Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  *
     42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  */
     44 
     45 #include <sys/param.h>
     46 #include <sys/kernel.h>
     47 #include <sys/systm.h>
     48 #include <sys/device.h>
     49 #include <sys/uio.h>
     50 #include <sys/conf.h>
     51 
     52 #include <dev/clock_subr.h>
     53 
     54 #include <machine/psl.h>
     55 #include <machine/cpu.h>
     56 #include <machine/iomap.h>
     57 #include <machine/mfp.h>
     58 #include <atari/dev/clockreg.h>
     59 #include <atari/atari/device.h>
     60 
     61 #if defined(GPROF) && defined(PROFTIMER)
     62 #include <machine/profile.h>
     63 #endif
     64 
     65 /*
     66  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     67  * of 200. Therefore the timer runs at an effective rate of:
     68  * 2457600/200 = 12288Hz.
     69  */
     70 #define CLOCK_HZ	12288
     71 
     72 /*
     73  * Machine-dependent clock routines.
     74  *
     75  * Inittodr initializes the time of day hardware which provides
     76  * date functions.
     77  *
     78  * Resettodr restores the time of day hardware after a time change.
     79  */
     80 
     81 struct clock_softc {
     82 	struct device	sc_dev;
     83 	int		sc_flags;
     84 };
     85 
     86 /*
     87  *  'sc_flags' state info. Only used by the rtc-device functions.
     88  */
     89 #define	RTC_OPEN	1
     90 
     91 /* {b,c}devsw[] function prototypes for rtc functions */
     92 dev_type_open(rtcopen);
     93 dev_type_close(rtcclose);
     94 dev_type_read(rtcread);
     95 dev_type_write(rtcwrite);
     96 
     97 static void	clockattach __P((struct device *, struct device *, void *));
     98 static int	clockmatch __P((struct device *, struct cfdata *, void *));
     99 
    100 struct cfattach clock_ca = {
    101 	sizeof(struct clock_softc), clockmatch, clockattach
    102 };
    103 
    104 struct cfdriver clock_cd = {
    105 	NULL, "clock", DV_DULL, NULL, 0
    106 };
    107 
    108 void statintr __P((struct clockframe));
    109 
    110 static u_long	gettod __P((void));
    111 static int	twodigits __P((char *, int));
    112 
    113 static int	divisor;	/* Systemclock divisor	*/
    114 
    115 /*
    116  * Statistics and profile clock intervals and variances. Variance must
    117  * be a power of 2. Since this gives us an even number, not an odd number,
    118  * we discard one case and compensate. That is, a variance of 64 would
    119  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    120  * This is symetric around the point 32, or statvar/2, and thus averages
    121  * to that value (assuming uniform random numbers).
    122  */
    123 #ifdef STATCLOCK
    124 static int	statvar = 32;	/* {stat,prof}clock variance		*/
    125 static int	statmin;	/* statclock divisor - variance/2	*/
    126 static int	profmin;	/* profclock divisor - variance/2	*/
    127 static int	clk2min;	/* current, from above choises		*/
    128 #endif
    129 
    130 int
    131 clockmatch(pdp, cfp, auxp)
    132 struct device	*pdp;
    133 struct cfdata	*cfp;
    134 void		*auxp;
    135 {
    136 	if (!atari_realconfig) {
    137 	    /*
    138 	     * Initialize Timer-B in the ST-MFP. This timer is used by
    139 	     * the 'delay' function below. This timer is setup to be
    140 	     * continueously counting from 255 back to zero at a
    141 	     * frequency of 614400Hz. We do this *early* in the
    142 	     * initialisation process.
    143 	     */
    144 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
    145 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    146 	    MFP->mf_tbdr  = 0;
    147 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    148 
    149 	    /*
    150 	     * Initialize the time structure
    151 	     */
    152 	    time.tv_sec  = 0;
    153 	    time.tv_usec = 0;
    154 
    155 	    return 0;
    156 	}
    157 	if(!strcmp("clock", auxp))
    158 		return(1);
    159 	return(0);
    160 }
    161 
    162 /*
    163  * Start the real-time clock.
    164  */
    165 void clockattach(pdp, dp, auxp)
    166 struct device	*pdp, *dp;
    167 void		*auxp;
    168 {
    169 	struct clock_softc *sc = (void *)dp;
    170 
    171 	sc->sc_flags = 0;
    172 
    173 	/*
    174 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    175 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    176 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    177 	 * following expression works for 48, 64 or 96 hz.
    178 	 */
    179 	divisor       = CLOCK_HZ/hz;
    180 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    181 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    182 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    183 
    184 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    185 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    186 								hz, 64);
    187 		hz = 64;
    188 	}
    189 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    190 
    191 #ifdef STATCLOCK
    192 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    193 		stathz = hz;
    194 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    195 		profhz = hz << 1;
    196 
    197 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    198 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    199 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    200 
    201 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    202 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    203 	clk2min  = statmin;
    204 #endif /* STATCLOCK */
    205 
    206 }
    207 
    208 void cpu_initclocks()
    209 {
    210 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    211 	MFP->mf_ipra &= ~IA_TIMA;	/* Clear pending interrupts	*/
    212 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    213 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    214 
    215 #ifdef STATCLOCK
    216 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    217 	MFP->mf_iprb &= ~IB_TIMC;	/* Clear pending interrupts	*/
    218 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    219 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    220 #endif /* STATCLOCK */
    221 }
    222 
    223 void
    224 setstatclockrate(newhz)
    225 	int newhz;
    226 {
    227 #ifdef STATCLOCK
    228 	if (newhz == stathz)
    229 		clk2min = statmin;
    230 	else clk2min = profmin;
    231 #endif /* STATCLOCK */
    232 }
    233 
    234 #ifdef STATCLOCK
    235 void
    236 statintr(frame)
    237 	struct clockframe frame;
    238 {
    239 	register int	var, r;
    240 
    241 	var = statvar - 1;
    242 	do {
    243 		r = random() & var;
    244 	} while(r == 0);
    245 
    246 	/*
    247 	 * Note that we are always lagging behind as the new divisor
    248 	 * value will not be loaded until the next interrupt. This
    249 	 * shouldn't disturb the median frequency (I think ;-) ) as
    250 	 * only the value used when switching frequencies is used
    251 	 * twice. This shouldn't happen very often.
    252 	 */
    253 	MFP->mf_tcdr = clk2min + r;
    254 
    255 	statclock(&frame);
    256 }
    257 #endif /* STATCLOCK */
    258 
    259 /*
    260  * Returns number of usec since last recorded clock "tick"
    261  * (i.e. clock interrupt).
    262  */
    263 long
    264 clkread()
    265 {
    266 	u_int	delta;
    267 
    268 	delta = ((divisor - MFP->mf_tadr) * tick) / divisor;
    269 	/*
    270 	 * Account for pending clock interrupts
    271 	 */
    272 	if(MFP->mf_iera & IA_TIMA)
    273 		return(delta + tick);
    274 	return(delta);
    275 }
    276 
    277 #define TIMB_FREQ	614400
    278 #define TIMB_LIMIT	256
    279 
    280 /*
    281  * Wait "n" microseconds.
    282  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    283  * Note: timer had better have been programmed before this is first used!
    284  */
    285 void
    286 delay(n)
    287 int	n;
    288 {
    289 	int	tick, otick;
    290 
    291 	/*
    292 	 * Read the counter first, so that the rest of the setup overhead is
    293 	 * counted.
    294 	 */
    295 	otick = MFP->mf_tbdr;
    296 
    297 	/*
    298 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    299 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    300 	 * loss of significance.
    301 	 */
    302 	n -= 5;
    303 	if(n < 0)
    304 		return;
    305 	{
    306 	    u_int	temp;
    307 
    308 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    309 					       : "d" (TIMB_FREQ));
    310 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    311 					       : "d"(1000000),"d"(temp),"0"(n));
    312 	}
    313 
    314 	while(n > 0) {
    315 		tick = MFP->mf_tbdr;
    316 		if(tick > otick)
    317 			n -= TIMB_LIMIT - (tick - otick);
    318 		else n -= otick - tick;
    319 		otick = tick;
    320 	}
    321 }
    322 
    323 #ifdef GPROF
    324 /*
    325  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    326  * Assumes it is called with clock interrupts blocked.
    327  */
    328 profclock(pc, ps)
    329 	caddr_t pc;
    330 	int ps;
    331 {
    332 	/*
    333 	 * Came from user mode.
    334 	 * If this process is being profiled record the tick.
    335 	 */
    336 	if (USERMODE(ps)) {
    337 		if (p->p_stats.p_prof.pr_scale)
    338 			addupc(pc, &curproc->p_stats.p_prof, 1);
    339 	}
    340 	/*
    341 	 * Came from kernel (supervisor) mode.
    342 	 * If we are profiling the kernel, record the tick.
    343 	 */
    344 	else if (profiling < 2) {
    345 		register int s = pc - s_lowpc;
    346 
    347 		if (s < s_textsize)
    348 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    349 	}
    350 	/*
    351 	 * Kernel profiling was on but has been disabled.
    352 	 * Mark as no longer profiling kernel and if all profiling done,
    353 	 * disable the clock.
    354 	 */
    355 	if (profiling && (profon & PRF_KERNEL)) {
    356 		profon &= ~PRF_KERNEL;
    357 		if (profon == PRF_NONE)
    358 			stopprofclock();
    359 	}
    360 }
    361 #endif
    362 
    363 /***********************************************************************
    364  *                   Real Time Clock support                           *
    365  ***********************************************************************/
    366 
    367 u_int mc146818_read(rtc, regno)
    368 void	*rtc;
    369 u_int	regno;
    370 {
    371 	((struct rtc *)rtc)->rtc_regno = regno;
    372 	return(((struct rtc *)rtc)->rtc_data & 0377);
    373 }
    374 
    375 void mc146818_write(rtc, regno, value)
    376 void	*rtc;
    377 u_int	regno, value;
    378 {
    379 	((struct rtc *)rtc)->rtc_regno = regno;
    380 	((struct rtc *)rtc)->rtc_data  = value;
    381 }
    382 
    383 /*
    384  * Initialize the time of day register, assuming the RTC runs in UTC.
    385  * Since we've got the 'rtc' device, this functionality should be removed
    386  * from the kernel. The only problem to be solved before that can happen
    387  * is the possibility of init(1) providing a way (rc.boot?) to set
    388  * the RTC before single-user mode is entered.
    389  */
    390 void
    391 inittodr(base)
    392 time_t base;
    393 {
    394 	/* Battery clock does not store usec's, so forget about it. */
    395 	time.tv_sec  = gettod();
    396 	time.tv_usec = 0;
    397 }
    398 
    399 /*
    400  * Function turned into a No-op. Use /dev/rtc to update the RTC.
    401  */
    402 void
    403 resettodr()
    404 {
    405 	return;
    406 }
    407 
    408 static u_long
    409 gettod()
    410 {
    411 	int			sps;
    412 	mc_todregs		clkregs;
    413 	struct clock_ymdhms	dt;
    414 
    415 	sps = splhigh();
    416 	MC146818_GETTOD(RTC, &clkregs);
    417 	splx(sps);
    418 
    419 	if(clkregs[MC_SEC] > 59)
    420 		return(0);
    421 	if(clkregs[MC_MIN] > 59)
    422 		return(0);
    423 	if(clkregs[MC_HOUR] > 23)
    424 		return(0);
    425 	if(range_test(clkregs[MC_DOM], 1, 31))
    426 		return(0);
    427 	if (range_test(clkregs[MC_MONTH], 1, 12))
    428 		return(0);
    429 	if(clkregs[MC_YEAR] > (2000 - GEMSTARTOFTIME))
    430 		return(0);
    431 
    432 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    433 	dt.dt_mon  = clkregs[MC_MONTH];
    434 	dt.dt_day  = clkregs[MC_DOM];
    435 	dt.dt_hour = clkregs[MC_HOUR];
    436 	dt.dt_min  = clkregs[MC_MIN];
    437 	dt.dt_sec  = clkregs[MC_SEC];
    438 
    439 	return(clock_ymdhms_to_secs(&dt));
    440 }
    441 /***********************************************************************
    442  *                   RTC-device support				       *
    443  ***********************************************************************/
    444 int
    445 rtcopen(dev, flag, mode, p)
    446 	dev_t		dev;
    447 	int		flag, mode;
    448 	struct proc	*p;
    449 {
    450 	int			unit = minor(dev);
    451 	struct clock_softc	*sc;
    452 
    453 	if (unit >= clock_cd.cd_ndevs)
    454 		return ENXIO;
    455 	sc = clock_cd.cd_devs[unit];
    456 	if (!sc)
    457 		return ENXIO;
    458 	if (sc->sc_flags & RTC_OPEN)
    459 		return EBUSY;
    460 
    461 	sc->sc_flags = RTC_OPEN;
    462 	return 0;
    463 }
    464 
    465 int
    466 rtcclose(dev, flag, mode, p)
    467 	dev_t		dev;
    468 	int		flag;
    469 	int		mode;
    470 	struct proc	*p;
    471 {
    472 	int			unit = minor(dev);
    473 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
    474 
    475 	sc->sc_flags = 0;
    476 	return 0;
    477 }
    478 
    479 int
    480 rtcread(dev, uio, flags)
    481 	dev_t		dev;
    482 	struct uio	*uio;
    483 	int		flags;
    484 {
    485 	struct clock_softc	*sc;
    486 	mc_todregs		clkregs;
    487 	int			s, length;
    488 	char			buffer[16];
    489 
    490 	sc = clock_cd.cd_devs[minor(dev)];
    491 
    492 	s = splhigh();
    493 	MC146818_GETTOD(RTC, &clkregs);
    494 	splx(s);
    495 
    496 	sprintf(buffer, "%02d%02d%02d%02d%02d.%02d\n",
    497 	    clkregs[MC_YEAR] + GEMSTARTOFTIME - 1900,
    498 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    499 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    500 
    501 	if (uio->uio_offset > strlen(buffer))
    502 		return 0;
    503 
    504 	length = strlen(buffer) - uio->uio_offset;
    505 	if (length > uio->uio_resid)
    506 		length = uio->uio_resid;
    507 
    508 	return(uiomove((caddr_t)buffer, length, uio));
    509 }
    510 
    511 static int
    512 twodigits(buffer, pos)
    513 	char *buffer;
    514 	int pos;
    515 {
    516 	int result = 0;
    517 
    518 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    519 		result = (buffer[pos] - '0') * 10;
    520 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    521 		result += (buffer[pos+1] - '0');
    522 	return(result);
    523 }
    524 
    525 int
    526 rtcwrite(dev, uio, flags)
    527 	dev_t		dev;
    528 	struct uio	*uio;
    529 	int		flags;
    530 {
    531 	mc_todregs		clkregs;
    532 	int			s, length, error;
    533 	char			buffer[14];
    534 
    535 	/*
    536 	 * We require atomic updates!
    537 	 */
    538 	length = uio->uio_resid;
    539 	if (uio->uio_offset || (length != sizeof(buffer)
    540 	  && length != sizeof(buffer - 1)))
    541 		return(EINVAL);
    542 
    543 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
    544 		return(error);
    545 
    546 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    547 		return(EINVAL);
    548 
    549 	s = splclock();
    550 	MC146818_GETTOD(RTC, &clkregs);
    551 	splx(s);
    552 
    553 	clkregs[MC_SEC]   = twodigits(buffer, 11);
    554 	clkregs[MC_MIN]   = twodigits(buffer, 8);
    555 	clkregs[MC_HOUR]  = twodigits(buffer, 6);
    556 	clkregs[MC_DOM]   = twodigits(buffer, 4);
    557 	clkregs[MC_MONTH] = twodigits(buffer, 2);
    558 	s = twodigits(buffer, 0);
    559 	s = (s < 70) ? s + 2000 : s + 1900;
    560 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    561 
    562 	s = splclock();
    563 	MC146818_PUTTOD(RTC, &clkregs);
    564 	splx(s);
    565 
    566 	return(0);
    567 }
    568