Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.2
      1 /*	$NetBSD: clock.c,v 1.2 1995/05/05 16:31:46 leo Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  *
     42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  */
     44 
     45 #include <sys/param.h>
     46 #include <sys/kernel.h>
     47 #include <sys/device.h>
     48 #include <machine/psl.h>
     49 #include <machine/cpu.h>
     50 #include <machine/iomap.h>
     51 #include <machine/mfp.h>
     52 #include <atari/dev/clockreg.h>
     53 
     54 #if defined(PROF) && defined(PROFTIMER)
     55 #include <sys/PROF.h>
     56 #endif
     57 
     58 
     59 /*
     60  * Machine-dependent clock routines.
     61  *
     62  * Startrtclock restarts the real-time clock, which provides
     63  * hardclock interrupts to kern_clock.c.
     64  *
     65  * Inittodr initializes the time of day hardware which provides
     66  * date functions.
     67  *
     68  * Resettodr restores the time of day hardware after a time change.
     69  *
     70  * A note on the real-time clock:
     71  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
     72  * This is because the counter decrements to zero after N+1 enabled clock
     73  * periods where N is the value loaded into the counter.
     74  */
     75 
     76 int	clockmatch __P((struct device *, struct cfdata *, void *));
     77 void	clockattach __P((struct device *, struct device *, void *));
     78 
     79 struct cfdriver clockcd = {
     80 	NULL, "clock", (cfmatch_t)clockmatch, clockattach,
     81 	DV_DULL, sizeof(struct device), NULL, 0
     82 };
     83 
     84 static u_long	gettod __P((void));
     85 static int	settod __P((u_long));
     86 
     87 static int	divisor;
     88 
     89 int
     90 clockmatch(pdp, cfp, auxp)
     91 struct device *pdp;
     92 struct cfdata *cfp;
     93 void *auxp;
     94 {
     95 	if(!strcmp("clock", auxp))
     96 		return(1);
     97 	return(0);
     98 }
     99 
    100 /*
    101  * Start the real-time clock.
    102  */
    103 void clockattach(pdp, dp, auxp)
    104 struct device	*pdp, *dp;
    105 void			*auxp;
    106 {
    107 	/*
    108 	 * Initialize Timer-A in the ST-MFP. An exact reduce to HZ is not
    109 	 * possible by hardware. We use a divisor of 64 and reduce by software
    110 	 * with a factor of 4. The MFP clock runs at 2457600Hz. Therefore the
    111 	 * timer runs at an effective rate of: 2457600/(64*4) = 9600Hz. The
    112 	 * following expression works for all 'normal' values of hz.
    113 	 */
    114 	divisor       = 9600/hz;
    115 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    116 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    117 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    118 
    119 	printf(": system hz %d timer-A divisor %d\n", hz, divisor);
    120 
    121 	/*
    122 	 * Initialize Timer-B in the ST-MFP. This timer is used by the 'delay'
    123 	 * function below. This time is setup to be continueously counting from
    124 	 * 255 back to zero at a frequency of 614400Hz.
    125 	 */
    126 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
    127 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    128 	MFP->mf_tbdr  = 0;
    129 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    130 
    131 }
    132 
    133 void cpu_initclocks()
    134 {
    135 	MFP->mf_tacr  = T_Q064;		/* Start timer			*/
    136 	MFP->mf_ipra &= ~IA_TIMA;	/* Clear pending interrupts	*/
    137 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    138 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    139 }
    140 
    141 setstatclockrate(hz)
    142 	int hz;
    143 {
    144 }
    145 
    146 /*
    147  * Returns number of usec since last recorded clock "tick"
    148  * (i.e. clock interrupt).
    149  */
    150 clkread()
    151 {
    152 	extern	short	clk_div;
    153 			u_int	delta, elapsed;
    154 
    155 	elapsed = (divisor - MFP->mf_tadr) + ((4 - clk_div) * divisor);
    156 	delta   = (elapsed * tick) / (divisor << 2);
    157 
    158 	/*
    159 	 * Account for pending clock interrupts
    160 	 */
    161 	if(MFP->mf_iera & IA_TIMA)
    162 		return(delta + tick);
    163 	return(delta);
    164 }
    165 
    166 #define TIMB_FREQ	614400
    167 #define TIMB_LIMIT	256
    168 
    169 /*
    170  * Wait "n" microseconds.
    171  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    172  * Note: timer had better have been programmed before this is first used!
    173  */
    174 void delay(n)
    175 int	n;
    176 {
    177 	int	tick, otick;
    178 
    179 	/*
    180 	 * Read the counter first, so that the rest of the setup overhead is
    181 	 * counted.
    182 	 */
    183 	otick = MFP->mf_tbdr;
    184 
    185 	/*
    186 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    187 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    188 	 * loss of significance.
    189 	 */
    190 	n -= 5;
    191 	if(n < 0)
    192 		return;
    193 	{
    194 	    u_int	temp;
    195 
    196 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    197 					       : "d" (TIMB_FREQ));
    198 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    199 					       : "d"(1000000),"d"(temp),"0"(n));
    200 	}
    201 
    202 	while(n > 0) {
    203 		tick = MFP->mf_tbdr;
    204 		if(tick > otick)
    205 			n -= TIMB_LIMIT - (tick - otick);
    206 		else n -= otick - tick;
    207 		otick = tick;
    208 	}
    209 }
    210 
    211 #ifdef PROFTIMER
    212 /*
    213  * This code allows the amiga kernel to use one of the extra timers on
    214  * the clock chip for profiling, instead of the regular system timer.
    215  * The advantage of this is that the profiling timer can be turned up to
    216  * a higher interrupt rate, giving finer resolution timing. The profclock
    217  * routine is called from the lev6intr in locore, and is a specialized
    218  * routine that calls addupc. The overhead then is far less than if
    219  * hardclock/softclock was called. Further, the context switch code in
    220  * locore has been changed to turn the profile clock on/off when switching
    221  * into/out of a process that is profiling (startprofclock/stopprofclock).
    222  * This reduces the impact of the profiling clock on other users, and might
    223  * possibly increase the accuracy of the profiling.
    224  */
    225 int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
    226 int  profscale = 0;		/* Scale factor from sys clock to prof clock */
    227 char profon    = 0;		/* Is profiling clock on? */
    228 
    229 /* profon values - do not change, locore.s assumes these values */
    230 #define PRF_NONE	0x00
    231 #define	PRF_USER	0x01
    232 #define	PRF_KERNEL	0x80
    233 
    234 initprofclock()
    235 {
    236 #if NCLOCK > 0
    237 	struct proc *p = curproc;		/* XXX */
    238 
    239 	/*
    240 	 * If the high-res timer is running, force profiling off.
    241 	 * Unfortunately, this gets reflected back to the user not as
    242 	 * an error but as a lack of results.
    243 	 */
    244 	if (clockon) {
    245 		p->p_stats->p_prof.pr_scale = 0;
    246 		return;
    247 	}
    248 	/*
    249 	 * Keep track of the number of user processes that are profiling
    250 	 * by checking the scale value.
    251 	 *
    252 	 * XXX: this all assumes that the profiling code is well behaved;
    253 	 * i.e. profil() is called once per process with pcscale non-zero
    254 	 * to turn it on, and once with pcscale zero to turn it off.
    255 	 * Also assumes you don't do any forks or execs.  Oh well, there
    256 	 * is always adb...
    257 	 */
    258 	if (p->p_stats->p_prof.pr_scale)
    259 		profprocs++;
    260 	else
    261 		profprocs--;
    262 #endif
    263 	/*
    264 	 * The profile interrupt interval must be an even divisor
    265 	 * of the CLK_INTERVAL so that scaling from a system clock
    266 	 * tick to a profile clock tick is possible using integer math.
    267 	 */
    268 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
    269 		profint = CLK_INTERVAL;
    270 	profscale = CLK_INTERVAL / profint;
    271 }
    272 
    273 startprofclock()
    274 {
    275   unsigned short interval;
    276 
    277   /* stop timer B */
    278   ciab.crb = ciab.crb & 0xc0;
    279 
    280   /* load interval into registers.
    281      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
    282 
    283   interval = profint - 1;
    284 
    285   /* order of setting is important ! */
    286   ciab.tblo = interval & 0xff;
    287   ciab.tbhi = interval >> 8;
    288 
    289   /* enable interrupts for timer B */
    290   ciab.icr = (1<<7) | (1<<1);
    291 
    292   /* start timer B in continuous shot mode */
    293   ciab.crb = (ciab.crb & 0xc0) | 1;
    294 }
    295 
    296 stopprofclock()
    297 {
    298   /* stop timer B */
    299   ciab.crb = ciab.crb & 0xc0;
    300 }
    301 
    302 #ifdef PROF
    303 /*
    304  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    305  * Assumes it is called with clock interrupts blocked.
    306  */
    307 profclock(pc, ps)
    308 	caddr_t pc;
    309 	int ps;
    310 {
    311 	/*
    312 	 * Came from user mode.
    313 	 * If this process is being profiled record the tick.
    314 	 */
    315 	if (USERMODE(ps)) {
    316 		if (p->p_stats.p_prof.pr_scale)
    317 			addupc(pc, &curproc->p_stats.p_prof, 1);
    318 	}
    319 	/*
    320 	 * Came from kernel (supervisor) mode.
    321 	 * If we are profiling the kernel, record the tick.
    322 	 */
    323 	else if (profiling < 2) {
    324 		register int s = pc - s_lowpc;
    325 
    326 		if (s < s_textsize)
    327 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    328 	}
    329 	/*
    330 	 * Kernel profiling was on but has been disabled.
    331 	 * Mark as no longer profiling kernel and if all profiling done,
    332 	 * disable the clock.
    333 	 */
    334 	if (profiling && (profon & PRF_KERNEL)) {
    335 		profon &= ~PRF_KERNEL;
    336 		if (profon == PRF_NONE)
    337 			stopprofclock();
    338 	}
    339 }
    340 #endif
    341 #endif
    342 
    343 /*
    344  * Initialize the time of day register, based on the time base which is, e.g.
    345  * from a filesystem.
    346  */
    347 inittodr(base)
    348 time_t base;
    349 {
    350 	u_long timbuf = base;	/* assume no battery clock exists */
    351 
    352 	timbuf = gettod();
    353 
    354 	if(timbuf < base) {
    355 		printf("WARNING: bad date in battery clock\n");
    356 		timbuf = base;
    357 	}
    358 
    359 	/* Battery clock does not store usec's, so forget about it. */
    360 	time.tv_sec = timbuf;
    361 }
    362 
    363 resettodr()
    364 {
    365 	if(settod(time.tv_sec) == 1)
    366 		return;
    367 	printf("Cannot set battery backed clock\n");
    368 }
    369 
    370 static	char	dmsize[12] =
    371 {
    372 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    373 };
    374 
    375 static	char	ldmsize[12] =
    376 {
    377 	31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    378 };
    379 
    380 static __inline__ int rtc_getclkreg(regno)
    381 int	regno;
    382 {
    383 	RTC->rtc_regno = RTC_REGA;
    384 	RTC->rtc_regno = regno;
    385 	return(RTC->rtc_data & 0377);
    386 }
    387 
    388 static __inline__ void rtc_setclkreg(regno, value)
    389 int	regno, value;
    390 {
    391 	RTC->rtc_regno = regno;
    392 	RTC->rtc_data  = value;
    393 }
    394 
    395 static u_long
    396 gettod()
    397 {
    398 	int	i, year, mon, day, hour, min, sec;
    399 	u_long	new_time = 0;
    400 	char	*msize;
    401 
    402 	/*
    403 	 * Hold clock
    404 	 */
    405 	rtc_setclkreg(RTC_REGB, rtc_getclkreg(RTC_REGB) | RTC_B_SET);
    406 
    407 	/*
    408 	 * Read clock
    409 	 */
    410 	sec  = rtc_getclkreg(RTC_SEC);
    411 	min  = rtc_getclkreg(RTC_MIN);
    412 	hour = rtc_getclkreg(RTC_HOUR);
    413 	day  = rtc_getclkreg(RTC_DAY) - 1;
    414 	mon  = rtc_getclkreg(RTC_MONTH) - 1;
    415 	year = rtc_getclkreg(RTC_YEAR) + STARTOFTIME;
    416 
    417 	/*
    418 	 * Let it run again..
    419 	 */
    420 	rtc_setclkreg(RTC_REGB, rtc_getclkreg(RTC_REGB) & ~RTC_B_SET);
    421 
    422 	if(range_test(hour, 0, 23))
    423 		return(0);
    424 	if(range_test(day, 0, 30))
    425 		return(0);
    426 	if (range_test(mon, 0, 11))
    427 		return(0);
    428 	if(range_test(year, STARTOFTIME, 2000))
    429 		return(0);
    430 
    431 	for(i = STARTOFTIME; i < year; i++) {
    432 		if(is_leap(i))
    433 			new_time += 366;
    434 		else new_time += 365;
    435 	}
    436 
    437 	msize = is_leap(year) ? ldmsize : dmsize;
    438 	for(i = 0; i < mon; i++)
    439 		new_time += msize[i];
    440 	new_time += day;
    441 	return((new_time * SECS_DAY) + (hour * 3600) + (min * 60) + sec);
    442 }
    443 
    444 static int
    445 settod(newtime)
    446 u_long	newtime;
    447 {
    448 	register long	days, rem, year;
    449 	register char	*ml;
    450 			 int	sec, min, hour, month;
    451 
    452 	/* Number of days since Jan. 1 1970	*/
    453 	days = newtime / SECS_DAY;
    454 	rem  = newtime % SECS_DAY;
    455 
    456 	/*
    457 	 * Calculate sec, min, hour
    458 	 */
    459 	hour = rem / SECS_HOUR;
    460 	rem %= SECS_HOUR;
    461 	min  = rem / 60;
    462 	sec  = rem % 60;
    463 
    464 	/*
    465 	 * Figure out the year. Day in year is left in 'days'.
    466 	 */
    467 	year = STARTOFTIME;
    468 	while(days >= (rem = is_leap(year) ? 366 : 365)) {
    469 	  ++year;
    470 	  days -= rem;
    471 	}
    472 	while(days < 0) {
    473 	  --year;
    474 	  days += is_leap(year) ? 366 : 365;
    475 	}
    476 
    477 	/*
    478 	 * Determine the month
    479 	 */
    480 	ml = is_leap(year) ? ldmsize : dmsize;
    481 	for(month = 0; days >= ml[month]; ++month)
    482 		days -= ml[month];
    483 
    484 	/*
    485 	 * Now that everything is calculated, program the RTC
    486 	 */
    487 	rtc_setclkreg(RTC_REGB, RTC_B_SET);
    488 	rtc_setclkreg(RTC_REGA, RTC_A_DV1|RTC_A_RS2|RTC_A_RS3);
    489 	rtc_setclkreg(RTC_REGB, RTC_B_SET|RTC_B_SQWE|RTC_B_DM|RTC_B_24_12);
    490 	rtc_setclkreg(RTC_SEC, sec);
    491 	rtc_setclkreg(RTC_MIN, min);
    492 	rtc_setclkreg(RTC_HOUR, hour);
    493 	rtc_setclkreg(RTC_DAY, days+1);
    494 	rtc_setclkreg(RTC_MONTH, month+1);
    495 	rtc_setclkreg(RTC_YEAR, year-1970);
    496 	rtc_setclkreg(RTC_REGB, RTC_B_SQWE|RTC_B_DM|RTC_B_24_12);
    497 
    498 	return(1);
    499 }
    500