Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.27
      1 /*	$NetBSD: clock.c,v 1.27 2001/07/26 15:05:09 wiz Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  *
     42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  */
     44 
     45 #include <sys/param.h>
     46 #include <sys/kernel.h>
     47 #include <sys/systm.h>
     48 #include <sys/device.h>
     49 #include <sys/uio.h>
     50 #include <sys/conf.h>
     51 
     52 #include <dev/clock_subr.h>
     53 
     54 #include <machine/psl.h>
     55 #include <machine/cpu.h>
     56 #include <machine/iomap.h>
     57 #include <machine/mfp.h>
     58 #include <atari/dev/clockreg.h>
     59 #include <atari/atari/device.h>
     60 
     61 #if defined(GPROF) && defined(PROFTIMER)
     62 #include <machine/profile.h>
     63 #endif
     64 
     65 /*
     66  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     67  * of 200. Therefore the timer runs at an effective rate of:
     68  * 2457600/200 = 12288Hz.
     69  */
     70 #define CLOCK_HZ	12288
     71 
     72 /*
     73  * Machine-dependent clock routines.
     74  *
     75  * Inittodr initializes the time of day hardware which provides
     76  * date functions.
     77  *
     78  * Resettodr restores the time of day hardware after a time change.
     79  */
     80 
     81 struct clock_softc {
     82 	struct device	sc_dev;
     83 	int		sc_flags;
     84 };
     85 
     86 /*
     87  *  'sc_flags' state info. Only used by the rtc-device functions.
     88  */
     89 #define	RTC_OPEN	1
     90 
     91 /* {b,c}devsw[] function prototypes for rtc functions */
     92 dev_type_open(rtcopen);
     93 dev_type_close(rtcclose);
     94 dev_type_read(rtcread);
     95 dev_type_write(rtcwrite);
     96 
     97 static void	clockattach __P((struct device *, struct device *, void *));
     98 static int	clockmatch __P((struct device *, struct cfdata *, void *));
     99 
    100 struct cfattach clock_ca = {
    101 	sizeof(struct clock_softc), clockmatch, clockattach
    102 };
    103 
    104 extern struct cfdriver clock_cd;
    105 
    106 void statintr __P((struct clockframe));
    107 
    108 static u_long	gettod __P((void));
    109 static int	twodigits __P((char *, int));
    110 
    111 static int	divisor;	/* Systemclock divisor	*/
    112 
    113 /*
    114  * Statistics and profile clock intervals and variances. Variance must
    115  * be a power of 2. Since this gives us an even number, not an odd number,
    116  * we discard one case and compensate. That is, a variance of 64 would
    117  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    118  * This is symmetric around the point 32, or statvar/2, and thus averages
    119  * to that value (assuming uniform random numbers).
    120  */
    121 #ifdef STATCLOCK
    122 static int	statvar = 32;	/* {stat,prof}clock variance		*/
    123 static int	statmin;	/* statclock divisor - variance/2	*/
    124 static int	profmin;	/* profclock divisor - variance/2	*/
    125 static int	clk2min;	/* current, from above choices		*/
    126 #endif
    127 
    128 int
    129 clockmatch(pdp, cfp, auxp)
    130 struct device	*pdp;
    131 struct cfdata	*cfp;
    132 void		*auxp;
    133 {
    134 	if (!atari_realconfig) {
    135 	    /*
    136 	     * Initialize Timer-B in the ST-MFP. This timer is used by
    137 	     * the 'delay' function below. This timer is setup to be
    138 	     * continueously counting from 255 back to zero at a
    139 	     * frequency of 614400Hz. We do this *early* in the
    140 	     * initialisation process.
    141 	     */
    142 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
    143 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    144 	    MFP->mf_tbdr  = 0;
    145 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    146 
    147 	    /*
    148 	     * Initialize the time structure
    149 	     */
    150 	    time.tv_sec  = 0;
    151 	    time.tv_usec = 0;
    152 
    153 	    return 0;
    154 	}
    155 	if(!strcmp("clock", auxp))
    156 		return(1);
    157 	return(0);
    158 }
    159 
    160 /*
    161  * Start the real-time clock.
    162  */
    163 void clockattach(pdp, dp, auxp)
    164 struct device	*pdp, *dp;
    165 void		*auxp;
    166 {
    167 	struct clock_softc *sc = (void *)dp;
    168 
    169 	sc->sc_flags = 0;
    170 
    171 	/*
    172 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    173 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    174 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    175 	 * following expression works for 48, 64 or 96 hz.
    176 	 */
    177 	divisor       = CLOCK_HZ/hz;
    178 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    179 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    180 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    181 
    182 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    183 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    184 								hz, 64);
    185 		hz = 64;
    186 	}
    187 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    188 
    189 #ifdef STATCLOCK
    190 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    191 		stathz = hz;
    192 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    193 		profhz = hz << 1;
    194 
    195 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    196 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    197 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    198 
    199 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    200 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    201 	clk2min  = statmin;
    202 #endif /* STATCLOCK */
    203 
    204 }
    205 
    206 void cpu_initclocks()
    207 {
    208 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    209 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    210 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    211 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    212 
    213 #ifdef STATCLOCK
    214 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    215 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    216 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    217 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    218 #endif /* STATCLOCK */
    219 }
    220 
    221 void
    222 setstatclockrate(newhz)
    223 	int newhz;
    224 {
    225 #ifdef STATCLOCK
    226 	if (newhz == stathz)
    227 		clk2min = statmin;
    228 	else clk2min = profmin;
    229 #endif /* STATCLOCK */
    230 }
    231 
    232 #ifdef STATCLOCK
    233 void
    234 statintr(frame)
    235 	struct clockframe frame;
    236 {
    237 	register int	var, r;
    238 
    239 	var = statvar - 1;
    240 	do {
    241 		r = random() & var;
    242 	} while(r == 0);
    243 
    244 	/*
    245 	 * Note that we are always lagging behind as the new divisor
    246 	 * value will not be loaded until the next interrupt. This
    247 	 * shouldn't disturb the median frequency (I think ;-) ) as
    248 	 * only the value used when switching frequencies is used
    249 	 * twice. This shouldn't happen very often.
    250 	 */
    251 	MFP->mf_tcdr = clk2min + r;
    252 
    253 	statclock(&frame);
    254 }
    255 #endif /* STATCLOCK */
    256 
    257 /*
    258  * Returns number of usec since last recorded clock "tick"
    259  * (i.e. clock interrupt).
    260  */
    261 long
    262 clkread()
    263 {
    264 	u_int	delta;
    265 	u_char	ipra, tadr;
    266 
    267 	/*
    268 	 * Note: Order is important!
    269 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
    270 	 * the situation that very low value in 'tadr' is read (== a big delta)
    271 	 * while also acccounting for a full 'tick' because the counter went
    272 	 * through zero during the calculations.
    273 	 */
    274 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
    275 
    276 	delta = ((divisor - tadr) * tick) / divisor;
    277 	/*
    278 	 * Account for pending clock interrupts
    279 	 */
    280 	if(ipra & IA_TIMA)
    281 		return(delta + tick);
    282 	return(delta);
    283 }
    284 
    285 #define TIMB_FREQ	614400
    286 #define TIMB_LIMIT	256
    287 
    288 /*
    289  * Wait "n" microseconds.
    290  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    291  * Note: timer had better have been programmed before this is first used!
    292  */
    293 void
    294 delay(n)
    295 int	n;
    296 {
    297 	int	tick, otick;
    298 
    299 	/*
    300 	 * Read the counter first, so that the rest of the setup overhead is
    301 	 * counted.
    302 	 */
    303 	otick = MFP->mf_tbdr;
    304 
    305 	/*
    306 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    307 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    308 	 * loss of significance.
    309 	 */
    310 	n -= 5;
    311 	if(n < 0)
    312 		return;
    313 	{
    314 	    u_int	temp;
    315 
    316 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    317 					       : "d" (TIMB_FREQ), "d" (n));
    318 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    319 					       : "d"(1000000),"d"(temp),"0"(n));
    320 	}
    321 
    322 	while(n > 0) {
    323 		tick = MFP->mf_tbdr;
    324 		if(tick > otick)
    325 			n -= TIMB_LIMIT - (tick - otick);
    326 		else n -= otick - tick;
    327 		otick = tick;
    328 	}
    329 }
    330 
    331 #ifdef GPROF
    332 /*
    333  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    334  * Assumes it is called with clock interrupts blocked.
    335  */
    336 profclock(pc, ps)
    337 	caddr_t pc;
    338 	int ps;
    339 {
    340 	/*
    341 	 * Came from user mode.
    342 	 * If this process is being profiled record the tick.
    343 	 */
    344 	if (USERMODE(ps)) {
    345 		if (p->p_stats.p_prof.pr_scale)
    346 			addupc(pc, &curproc->p_stats.p_prof, 1);
    347 	}
    348 	/*
    349 	 * Came from kernel (supervisor) mode.
    350 	 * If we are profiling the kernel, record the tick.
    351 	 */
    352 	else if (profiling < 2) {
    353 		register int s = pc - s_lowpc;
    354 
    355 		if (s < s_textsize)
    356 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    357 	}
    358 	/*
    359 	 * Kernel profiling was on but has been disabled.
    360 	 * Mark as no longer profiling kernel and if all profiling done,
    361 	 * disable the clock.
    362 	 */
    363 	if (profiling && (profon & PRF_KERNEL)) {
    364 		profon &= ~PRF_KERNEL;
    365 		if (profon == PRF_NONE)
    366 			stopprofclock();
    367 	}
    368 }
    369 #endif
    370 
    371 /***********************************************************************
    372  *                   Real Time Clock support                           *
    373  ***********************************************************************/
    374 
    375 u_int mc146818_read(rtc, regno)
    376 void	*rtc;
    377 u_int	regno;
    378 {
    379 	((struct rtc *)rtc)->rtc_regno = regno;
    380 	return(((struct rtc *)rtc)->rtc_data & 0377);
    381 }
    382 
    383 void mc146818_write(rtc, regno, value)
    384 void	*rtc;
    385 u_int	regno, value;
    386 {
    387 	((struct rtc *)rtc)->rtc_regno = regno;
    388 	((struct rtc *)rtc)->rtc_data  = value;
    389 }
    390 
    391 /*
    392  * Initialize the time of day register, assuming the RTC runs in UTC.
    393  * Since we've got the 'rtc' device, this functionality should be removed
    394  * from the kernel. The only problem to be solved before that can happen
    395  * is the possibility of init(1) providing a way (rc.boot?) to set
    396  * the RTC before single-user mode is entered.
    397  */
    398 void
    399 inittodr(base)
    400 time_t base;
    401 {
    402 	/* Battery clock does not store usec's, so forget about it. */
    403 	time.tv_sec  = gettod();
    404 	time.tv_usec = 0;
    405 }
    406 
    407 /*
    408  * Function turned into a No-op. Use /dev/rtc to update the RTC.
    409  */
    410 void
    411 resettodr()
    412 {
    413 	return;
    414 }
    415 
    416 static u_long
    417 gettod()
    418 {
    419 	int			sps;
    420 	mc_todregs		clkregs;
    421 	u_int			regb;
    422 	struct clock_ymdhms	dt;
    423 
    424 	sps = splhigh();
    425 	regb = mc146818_read(RTC, MC_REGB);
    426 	MC146818_GETTOD(RTC, &clkregs);
    427 	splx(sps);
    428 
    429 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    430 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    431 		printf("Error: Nonstandard RealTimeClock Configuration -"
    432 			" value ignored\n"
    433 			"       A write to /dev/rtc will correct this.\n");
    434 			return(0);
    435 	}
    436 	if(clkregs[MC_SEC] > 59)
    437 		return(0);
    438 	if(clkregs[MC_MIN] > 59)
    439 		return(0);
    440 	if(clkregs[MC_HOUR] > 23)
    441 		return(0);
    442 	if(range_test(clkregs[MC_DOM], 1, 31))
    443 		return(0);
    444 	if (range_test(clkregs[MC_MONTH], 1, 12))
    445 		return(0);
    446 	if(clkregs[MC_YEAR] > 99)
    447 		return(0);
    448 
    449 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    450 	dt.dt_mon  = clkregs[MC_MONTH];
    451 	dt.dt_day  = clkregs[MC_DOM];
    452 	dt.dt_hour = clkregs[MC_HOUR];
    453 	dt.dt_min  = clkregs[MC_MIN];
    454 	dt.dt_sec  = clkregs[MC_SEC];
    455 
    456 	return(clock_ymdhms_to_secs(&dt));
    457 }
    458 /***********************************************************************
    459  *                   RTC-device support				       *
    460  ***********************************************************************/
    461 int
    462 rtcopen(dev, flag, mode, p)
    463 	dev_t		dev;
    464 	int		flag, mode;
    465 	struct proc	*p;
    466 {
    467 	int			unit = minor(dev);
    468 	struct clock_softc	*sc;
    469 
    470 	if (unit >= clock_cd.cd_ndevs)
    471 		return ENXIO;
    472 	sc = clock_cd.cd_devs[unit];
    473 	if (!sc)
    474 		return ENXIO;
    475 	if (sc->sc_flags & RTC_OPEN)
    476 		return EBUSY;
    477 
    478 	sc->sc_flags = RTC_OPEN;
    479 	return 0;
    480 }
    481 
    482 int
    483 rtcclose(dev, flag, mode, p)
    484 	dev_t		dev;
    485 	int		flag;
    486 	int		mode;
    487 	struct proc	*p;
    488 {
    489 	int			unit = minor(dev);
    490 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
    491 
    492 	sc->sc_flags = 0;
    493 	return 0;
    494 }
    495 
    496 int
    497 rtcread(dev, uio, flags)
    498 	dev_t		dev;
    499 	struct uio	*uio;
    500 	int		flags;
    501 {
    502 	struct clock_softc	*sc;
    503 	mc_todregs		clkregs;
    504 	int			s, length;
    505 	char			buffer[16];
    506 
    507 	sc = clock_cd.cd_devs[minor(dev)];
    508 
    509 	s = splhigh();
    510 	MC146818_GETTOD(RTC, &clkregs);
    511 	splx(s);
    512 
    513 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    514 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    515 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    516 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    517 
    518 	if (uio->uio_offset > strlen(buffer))
    519 		return 0;
    520 
    521 	length = strlen(buffer) - uio->uio_offset;
    522 	if (length > uio->uio_resid)
    523 		length = uio->uio_resid;
    524 
    525 	return(uiomove((caddr_t)buffer, length, uio));
    526 }
    527 
    528 static int
    529 twodigits(buffer, pos)
    530 	char *buffer;
    531 	int pos;
    532 {
    533 	int result = 0;
    534 
    535 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    536 		result = (buffer[pos] - '0') * 10;
    537 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    538 		result += (buffer[pos+1] - '0');
    539 	return(result);
    540 }
    541 
    542 int
    543 rtcwrite(dev, uio, flags)
    544 	dev_t		dev;
    545 	struct uio	*uio;
    546 	int		flags;
    547 {
    548 	mc_todregs		clkregs;
    549 	int			s, length, error;
    550 	char			buffer[16];
    551 
    552 	/*
    553 	 * We require atomic updates!
    554 	 */
    555 	length = uio->uio_resid;
    556 	if (uio->uio_offset || (length != sizeof(buffer)
    557 	  && length != sizeof(buffer - 1)))
    558 		return(EINVAL);
    559 
    560 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
    561 		return(error);
    562 
    563 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    564 		return(EINVAL);
    565 
    566 	s = splclock();
    567 	mc146818_write(RTC, MC_REGB,
    568 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    569 	MC146818_GETTOD(RTC, &clkregs);
    570 	splx(s);
    571 
    572 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    573 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    574 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    575 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    576 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    577 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    578 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    579 
    580 	s = splclock();
    581 	MC146818_PUTTOD(RTC, &clkregs);
    582 	splx(s);
    583 
    584 	return(0);
    585 }
    586