Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.27.6.3
      1 /*	$NetBSD: clock.c,v 1.27.6.3 2002/06/24 22:04:10 nathanw Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  *
     42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  */
     44 
     45 #include <sys/param.h>
     46 #include <sys/kernel.h>
     47 #include <sys/systm.h>
     48 #include <sys/device.h>
     49 #include <sys/uio.h>
     50 #include <sys/conf.h>
     51 #include <sys/lwp.h>
     52 #include <sys/proc.h>
     53 
     54 #include <dev/clock_subr.h>
     55 
     56 #include <machine/psl.h>
     57 #include <machine/cpu.h>
     58 #include <machine/iomap.h>
     59 #include <machine/mfp.h>
     60 #include <atari/dev/clockreg.h>
     61 #include <atari/atari/device.h>
     62 
     63 #if defined(GPROF) && defined(PROFTIMER)
     64 #include <machine/profile.h>
     65 #endif
     66 
     67 /*
     68  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     69  * of 200. Therefore the timer runs at an effective rate of:
     70  * 2457600/200 = 12288Hz.
     71  */
     72 #define CLOCK_HZ	12288
     73 
     74 /*
     75  * Machine-dependent clock routines.
     76  *
     77  * Inittodr initializes the time of day hardware which provides
     78  * date functions.
     79  *
     80  * Resettodr restores the time of day hardware after a time change.
     81  */
     82 
     83 struct clock_softc {
     84 	struct device	sc_dev;
     85 	int		sc_flags;
     86 };
     87 
     88 /*
     89  *  'sc_flags' state info. Only used by the rtc-device functions.
     90  */
     91 #define	RTC_OPEN	1
     92 
     93 /* {b,c}devsw[] function prototypes for rtc functions */
     94 dev_type_open(rtcopen);
     95 dev_type_close(rtcclose);
     96 dev_type_read(rtcread);
     97 dev_type_write(rtcwrite);
     98 
     99 static void	clockattach __P((struct device *, struct device *, void *));
    100 static int	clockmatch __P((struct device *, struct cfdata *, void *));
    101 
    102 struct cfattach clock_ca = {
    103 	sizeof(struct clock_softc), clockmatch, clockattach
    104 };
    105 
    106 extern struct cfdriver clock_cd;
    107 
    108 void statintr __P((struct clockframe));
    109 
    110 static u_long	gettod __P((void));
    111 static int	twodigits __P((char *, int));
    112 
    113 static int	divisor;	/* Systemclock divisor	*/
    114 
    115 /*
    116  * Statistics and profile clock intervals and variances. Variance must
    117  * be a power of 2. Since this gives us an even number, not an odd number,
    118  * we discard one case and compensate. That is, a variance of 64 would
    119  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    120  * This is symmetric around the point 32, or statvar/2, and thus averages
    121  * to that value (assuming uniform random numbers).
    122  */
    123 #ifdef STATCLOCK
    124 static int	statvar = 32;	/* {stat,prof}clock variance		*/
    125 static int	statmin;	/* statclock divisor - variance/2	*/
    126 static int	profmin;	/* profclock divisor - variance/2	*/
    127 static int	clk2min;	/* current, from above choices		*/
    128 #endif
    129 
    130 int
    131 clockmatch(pdp, cfp, auxp)
    132 struct device	*pdp;
    133 struct cfdata	*cfp;
    134 void		*auxp;
    135 {
    136 	if (!atari_realconfig) {
    137 	    /*
    138 	     * Initialize Timer-B in the ST-MFP. This timer is used by
    139 	     * the 'delay' function below. This timer is setup to be
    140 	     * continueously counting from 255 back to zero at a
    141 	     * frequency of 614400Hz. We do this *early* in the
    142 	     * initialisation process.
    143 	     */
    144 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
    145 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    146 	    MFP->mf_tbdr  = 0;
    147 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    148 
    149 	    /*
    150 	     * Initialize the time structure
    151 	     */
    152 	    time.tv_sec  = 0;
    153 	    time.tv_usec = 0;
    154 
    155 	    return 0;
    156 	}
    157 	if(!strcmp("clock", auxp))
    158 		return(1);
    159 	return(0);
    160 }
    161 
    162 /*
    163  * Start the real-time clock.
    164  */
    165 void clockattach(pdp, dp, auxp)
    166 struct device	*pdp, *dp;
    167 void		*auxp;
    168 {
    169 	struct clock_softc *sc = (void *)dp;
    170 
    171 	sc->sc_flags = 0;
    172 
    173 	/*
    174 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    175 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    176 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    177 	 * following expression works for 48, 64 or 96 hz.
    178 	 */
    179 	divisor       = CLOCK_HZ/hz;
    180 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    181 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    182 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    183 
    184 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    185 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    186 								hz, 64);
    187 		hz = 64;
    188 	}
    189 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    190 
    191 #ifdef STATCLOCK
    192 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    193 		stathz = hz;
    194 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    195 		profhz = hz << 1;
    196 
    197 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    198 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    199 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    200 
    201 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    202 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    203 	clk2min  = statmin;
    204 #endif /* STATCLOCK */
    205 
    206 }
    207 
    208 void cpu_initclocks()
    209 {
    210 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    211 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    212 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    213 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    214 
    215 #ifdef STATCLOCK
    216 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    217 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    218 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    219 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    220 #endif /* STATCLOCK */
    221 }
    222 
    223 void
    224 setstatclockrate(newhz)
    225 	int newhz;
    226 {
    227 #ifdef STATCLOCK
    228 	if (newhz == stathz)
    229 		clk2min = statmin;
    230 	else clk2min = profmin;
    231 #endif /* STATCLOCK */
    232 }
    233 
    234 #ifdef STATCLOCK
    235 void
    236 statintr(frame)
    237 	struct clockframe frame;
    238 {
    239 	register int	var, r;
    240 
    241 	var = statvar - 1;
    242 	do {
    243 		r = random() & var;
    244 	} while(r == 0);
    245 
    246 	/*
    247 	 * Note that we are always lagging behind as the new divisor
    248 	 * value will not be loaded until the next interrupt. This
    249 	 * shouldn't disturb the median frequency (I think ;-) ) as
    250 	 * only the value used when switching frequencies is used
    251 	 * twice. This shouldn't happen very often.
    252 	 */
    253 	MFP->mf_tcdr = clk2min + r;
    254 
    255 	statclock(&frame);
    256 }
    257 #endif /* STATCLOCK */
    258 
    259 /*
    260  * Returns number of usec since last recorded clock "tick"
    261  * (i.e. clock interrupt).
    262  */
    263 long
    264 clkread()
    265 {
    266 	u_int	delta;
    267 	u_char	ipra, tadr;
    268 
    269 	/*
    270 	 * Note: Order is important!
    271 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
    272 	 * the situation that very low value in 'tadr' is read (== a big delta)
    273 	 * while also acccounting for a full 'tick' because the counter went
    274 	 * through zero during the calculations.
    275 	 */
    276 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
    277 
    278 	delta = ((divisor - tadr) * tick) / divisor;
    279 	/*
    280 	 * Account for pending clock interrupts
    281 	 */
    282 	if(ipra & IA_TIMA)
    283 		return(delta + tick);
    284 	return(delta);
    285 }
    286 
    287 #define TIMB_FREQ	614400
    288 #define TIMB_LIMIT	256
    289 
    290 /*
    291  * Wait "n" microseconds.
    292  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    293  * Note: timer had better have been programmed before this is first used!
    294  */
    295 void
    296 delay(n)
    297 int	n;
    298 {
    299 	int	tick, otick;
    300 
    301 	/*
    302 	 * Read the counter first, so that the rest of the setup overhead is
    303 	 * counted.
    304 	 */
    305 	otick = MFP->mf_tbdr;
    306 
    307 	/*
    308 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    309 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    310 	 * loss of significance.
    311 	 */
    312 	n -= 5;
    313 	if(n < 0)
    314 		return;
    315 	{
    316 	    u_int	temp;
    317 
    318 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    319 					       : "d" (TIMB_FREQ), "d" (n));
    320 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    321 					       : "d"(1000000),"d"(temp),"0"(n));
    322 	}
    323 
    324 	while(n > 0) {
    325 		tick = MFP->mf_tbdr;
    326 		if(tick > otick)
    327 			n -= TIMB_LIMIT - (tick - otick);
    328 		else n -= otick - tick;
    329 		otick = tick;
    330 	}
    331 }
    332 
    333 #ifdef GPROF
    334 /*
    335  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    336  * Assumes it is called with clock interrupts blocked.
    337  */
    338 profclock(pc, ps)
    339 	caddr_t pc;
    340 	int ps;
    341 {
    342 	/*
    343 	 * Came from user mode.
    344 	 * If this process is being profiled record the tick.
    345 	 */
    346 	if (USERMODE(ps)) {
    347 		if (p->p_stats.p_prof.pr_scale)
    348 			addupc(pc, &curproc->p_stats.p_prof, 1);
    349 	}
    350 	/*
    351 	 * Came from kernel (supervisor) mode.
    352 	 * If we are profiling the kernel, record the tick.
    353 	 */
    354 	else if (profiling < 2) {
    355 		register int s = pc - s_lowpc;
    356 
    357 		if (s < s_textsize)
    358 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    359 	}
    360 	/*
    361 	 * Kernel profiling was on but has been disabled.
    362 	 * Mark as no longer profiling kernel and if all profiling done,
    363 	 * disable the clock.
    364 	 */
    365 	if (profiling && (profon & PRF_KERNEL)) {
    366 		profon &= ~PRF_KERNEL;
    367 		if (profon == PRF_NONE)
    368 			stopprofclock();
    369 	}
    370 }
    371 #endif
    372 
    373 /***********************************************************************
    374  *                   Real Time Clock support                           *
    375  ***********************************************************************/
    376 
    377 u_int mc146818_read(rtc, regno)
    378 void	*rtc;
    379 u_int	regno;
    380 {
    381 	((struct rtc *)rtc)->rtc_regno = regno;
    382 	return(((struct rtc *)rtc)->rtc_data & 0377);
    383 }
    384 
    385 void mc146818_write(rtc, regno, value)
    386 void	*rtc;
    387 u_int	regno, value;
    388 {
    389 	((struct rtc *)rtc)->rtc_regno = regno;
    390 	((struct rtc *)rtc)->rtc_data  = value;
    391 }
    392 
    393 /*
    394  * Initialize the time of day register, assuming the RTC runs in UTC.
    395  * Since we've got the 'rtc' device, this functionality should be removed
    396  * from the kernel. The only problem to be solved before that can happen
    397  * is the possibility of init(1) providing a way (rc.boot?) to set
    398  * the RTC before single-user mode is entered.
    399  */
    400 void
    401 inittodr(base)
    402 time_t base;
    403 {
    404 	/* Battery clock does not store usec's, so forget about it. */
    405 	time.tv_sec  = gettod();
    406 	time.tv_usec = 0;
    407 }
    408 
    409 /*
    410  * Function turned into a No-op. Use /dev/rtc to update the RTC.
    411  */
    412 void
    413 resettodr()
    414 {
    415 	return;
    416 }
    417 
    418 static u_long
    419 gettod()
    420 {
    421 	int			sps;
    422 	mc_todregs		clkregs;
    423 	u_int			regb;
    424 	struct clock_ymdhms	dt;
    425 
    426 	sps = splhigh();
    427 	regb = mc146818_read(RTC, MC_REGB);
    428 	MC146818_GETTOD(RTC, &clkregs);
    429 	splx(sps);
    430 
    431 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    432 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    433 		printf("Error: Nonstandard RealTimeClock Configuration -"
    434 			" value ignored\n"
    435 			"       A write to /dev/rtc will correct this.\n");
    436 			return(0);
    437 	}
    438 	if(clkregs[MC_SEC] > 59)
    439 		return(0);
    440 	if(clkregs[MC_MIN] > 59)
    441 		return(0);
    442 	if(clkregs[MC_HOUR] > 23)
    443 		return(0);
    444 	if(range_test(clkregs[MC_DOM], 1, 31))
    445 		return(0);
    446 	if (range_test(clkregs[MC_MONTH], 1, 12))
    447 		return(0);
    448 	if(clkregs[MC_YEAR] > 99)
    449 		return(0);
    450 
    451 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    452 	dt.dt_mon  = clkregs[MC_MONTH];
    453 	dt.dt_day  = clkregs[MC_DOM];
    454 	dt.dt_hour = clkregs[MC_HOUR];
    455 	dt.dt_min  = clkregs[MC_MIN];
    456 	dt.dt_sec  = clkregs[MC_SEC];
    457 
    458 	return(clock_ymdhms_to_secs(&dt));
    459 }
    460 /***********************************************************************
    461  *                   RTC-device support				       *
    462  ***********************************************************************/
    463 int
    464 rtcopen(dev, flag, mode, p)
    465 	dev_t		dev;
    466 	int		flag, mode;
    467 	struct proc	*p;
    468 {
    469 	int			unit = minor(dev);
    470 	struct clock_softc	*sc;
    471 
    472 	if (unit >= clock_cd.cd_ndevs)
    473 		return ENXIO;
    474 	sc = clock_cd.cd_devs[unit];
    475 	if (!sc)
    476 		return ENXIO;
    477 	if (sc->sc_flags & RTC_OPEN)
    478 		return EBUSY;
    479 
    480 	sc->sc_flags = RTC_OPEN;
    481 	return 0;
    482 }
    483 
    484 int
    485 rtcclose(dev, flag, mode, p)
    486 	dev_t		dev;
    487 	int		flag;
    488 	int		mode;
    489 	struct proc	*p;
    490 {
    491 	int			unit = minor(dev);
    492 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
    493 
    494 	sc->sc_flags = 0;
    495 	return 0;
    496 }
    497 
    498 int
    499 rtcread(dev, uio, flags)
    500 	dev_t		dev;
    501 	struct uio	*uio;
    502 	int		flags;
    503 {
    504 	struct clock_softc	*sc;
    505 	mc_todregs		clkregs;
    506 	int			s, length;
    507 	char			buffer[16];
    508 
    509 	sc = clock_cd.cd_devs[minor(dev)];
    510 
    511 	s = splhigh();
    512 	MC146818_GETTOD(RTC, &clkregs);
    513 	splx(s);
    514 
    515 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    516 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    517 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    518 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    519 
    520 	if (uio->uio_offset > strlen(buffer))
    521 		return 0;
    522 
    523 	length = strlen(buffer) - uio->uio_offset;
    524 	if (length > uio->uio_resid)
    525 		length = uio->uio_resid;
    526 
    527 	return(uiomove((caddr_t)buffer, length, uio));
    528 }
    529 
    530 static int
    531 twodigits(buffer, pos)
    532 	char *buffer;
    533 	int pos;
    534 {
    535 	int result = 0;
    536 
    537 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    538 		result = (buffer[pos] - '0') * 10;
    539 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    540 		result += (buffer[pos+1] - '0');
    541 	return(result);
    542 }
    543 
    544 int
    545 rtcwrite(dev, uio, flags)
    546 	dev_t		dev;
    547 	struct uio	*uio;
    548 	int		flags;
    549 {
    550 	mc_todregs		clkregs;
    551 	int			s, length, error;
    552 	char			buffer[16];
    553 
    554 	/*
    555 	 * We require atomic updates!
    556 	 */
    557 	length = uio->uio_resid;
    558 	if (uio->uio_offset || (length != sizeof(buffer)
    559 	  && length != sizeof(buffer - 1)))
    560 		return(EINVAL);
    561 
    562 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
    563 		return(error);
    564 
    565 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    566 		return(EINVAL);
    567 
    568 	s = splclock();
    569 	mc146818_write(RTC, MC_REGB,
    570 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    571 	MC146818_GETTOD(RTC, &clkregs);
    572 	splx(s);
    573 
    574 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    575 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    576 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    577 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    578 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    579 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    580 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    581 
    582 	s = splclock();
    583 	MC146818_PUTTOD(RTC, &clkregs);
    584 	splx(s);
    585 
    586 	return(0);
    587 }
    588