Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.27.6.5
      1 /*	$NetBSD: clock.c,v 1.27.6.5 2002/09/17 21:13:42 nathanw Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  *
     42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  */
     44 
     45 #include <sys/param.h>
     46 #include <sys/kernel.h>
     47 #include <sys/systm.h>
     48 #include <sys/device.h>
     49 #include <sys/uio.h>
     50 #include <sys/conf.h>
     51 #include <sys/proc.h>
     52 
     53 #include <dev/clock_subr.h>
     54 
     55 #include <machine/psl.h>
     56 #include <machine/cpu.h>
     57 #include <machine/iomap.h>
     58 #include <machine/mfp.h>
     59 #include <atari/dev/clockreg.h>
     60 #include <atari/atari/device.h>
     61 
     62 #if defined(GPROF) && defined(PROFTIMER)
     63 #include <machine/profile.h>
     64 #endif
     65 
     66 /*
     67  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     68  * of 200. Therefore the timer runs at an effective rate of:
     69  * 2457600/200 = 12288Hz.
     70  */
     71 #define CLOCK_HZ	12288
     72 
     73 /*
     74  * Machine-dependent clock routines.
     75  *
     76  * Inittodr initializes the time of day hardware which provides
     77  * date functions.
     78  *
     79  * Resettodr restores the time of day hardware after a time change.
     80  */
     81 
     82 struct clock_softc {
     83 	struct device	sc_dev;
     84 	int		sc_flags;
     85 };
     86 
     87 /*
     88  *  'sc_flags' state info. Only used by the rtc-device functions.
     89  */
     90 #define	RTC_OPEN	1
     91 
     92 dev_type_open(rtcopen);
     93 dev_type_close(rtcclose);
     94 dev_type_read(rtcread);
     95 dev_type_write(rtcwrite);
     96 
     97 static void	clockattach __P((struct device *, struct device *, void *));
     98 static int	clockmatch __P((struct device *, struct cfdata *, void *));
     99 
    100 struct cfattach clock_ca = {
    101 	sizeof(struct clock_softc), clockmatch, clockattach
    102 };
    103 
    104 extern struct cfdriver clock_cd;
    105 
    106 const struct cdevsw rtc_cdevsw = {
    107 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    108 	nostop, notty, nopoll, nommap,
    109 };
    110 
    111 void statintr __P((struct clockframe));
    112 
    113 static u_long	gettod __P((void));
    114 static int	twodigits __P((char *, int));
    115 
    116 static int	divisor;	/* Systemclock divisor	*/
    117 
    118 /*
    119  * Statistics and profile clock intervals and variances. Variance must
    120  * be a power of 2. Since this gives us an even number, not an odd number,
    121  * we discard one case and compensate. That is, a variance of 64 would
    122  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    123  * This is symmetric around the point 32, or statvar/2, and thus averages
    124  * to that value (assuming uniform random numbers).
    125  */
    126 #ifdef STATCLOCK
    127 static int	statvar = 32;	/* {stat,prof}clock variance		*/
    128 static int	statmin;	/* statclock divisor - variance/2	*/
    129 static int	profmin;	/* profclock divisor - variance/2	*/
    130 static int	clk2min;	/* current, from above choices		*/
    131 #endif
    132 
    133 int
    134 clockmatch(pdp, cfp, auxp)
    135 struct device	*pdp;
    136 struct cfdata	*cfp;
    137 void		*auxp;
    138 {
    139 	if (!atari_realconfig) {
    140 	    /*
    141 	     * Initialize Timer-B in the ST-MFP. This timer is used by
    142 	     * the 'delay' function below. This timer is setup to be
    143 	     * continueously counting from 255 back to zero at a
    144 	     * frequency of 614400Hz. We do this *early* in the
    145 	     * initialisation process.
    146 	     */
    147 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
    148 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    149 	    MFP->mf_tbdr  = 0;
    150 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    151 
    152 	    /*
    153 	     * Initialize the time structure
    154 	     */
    155 	    time.tv_sec  = 0;
    156 	    time.tv_usec = 0;
    157 
    158 	    return 0;
    159 	}
    160 	if(!strcmp("clock", auxp))
    161 		return(1);
    162 	return(0);
    163 }
    164 
    165 /*
    166  * Start the real-time clock.
    167  */
    168 void clockattach(pdp, dp, auxp)
    169 struct device	*pdp, *dp;
    170 void		*auxp;
    171 {
    172 	struct clock_softc *sc = (void *)dp;
    173 
    174 	sc->sc_flags = 0;
    175 
    176 	/*
    177 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    178 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    179 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    180 	 * following expression works for 48, 64 or 96 hz.
    181 	 */
    182 	divisor       = CLOCK_HZ/hz;
    183 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    184 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    185 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    186 
    187 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    188 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    189 								hz, 64);
    190 		hz = 64;
    191 	}
    192 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    193 
    194 #ifdef STATCLOCK
    195 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    196 		stathz = hz;
    197 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    198 		profhz = hz << 1;
    199 
    200 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    201 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    202 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    203 
    204 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    205 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    206 	clk2min  = statmin;
    207 #endif /* STATCLOCK */
    208 
    209 }
    210 
    211 void cpu_initclocks()
    212 {
    213 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    214 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    215 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    216 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    217 
    218 #ifdef STATCLOCK
    219 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    220 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    221 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    222 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    223 #endif /* STATCLOCK */
    224 }
    225 
    226 void
    227 setstatclockrate(newhz)
    228 	int newhz;
    229 {
    230 #ifdef STATCLOCK
    231 	if (newhz == stathz)
    232 		clk2min = statmin;
    233 	else clk2min = profmin;
    234 #endif /* STATCLOCK */
    235 }
    236 
    237 #ifdef STATCLOCK
    238 void
    239 statintr(frame)
    240 	struct clockframe frame;
    241 {
    242 	register int	var, r;
    243 
    244 	var = statvar - 1;
    245 	do {
    246 		r = random() & var;
    247 	} while(r == 0);
    248 
    249 	/*
    250 	 * Note that we are always lagging behind as the new divisor
    251 	 * value will not be loaded until the next interrupt. This
    252 	 * shouldn't disturb the median frequency (I think ;-) ) as
    253 	 * only the value used when switching frequencies is used
    254 	 * twice. This shouldn't happen very often.
    255 	 */
    256 	MFP->mf_tcdr = clk2min + r;
    257 
    258 	statclock(&frame);
    259 }
    260 #endif /* STATCLOCK */
    261 
    262 /*
    263  * Returns number of usec since last recorded clock "tick"
    264  * (i.e. clock interrupt).
    265  */
    266 long
    267 clkread()
    268 {
    269 	u_int	delta;
    270 	u_char	ipra, tadr;
    271 
    272 	/*
    273 	 * Note: Order is important!
    274 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
    275 	 * the situation that very low value in 'tadr' is read (== a big delta)
    276 	 * while also acccounting for a full 'tick' because the counter went
    277 	 * through zero during the calculations.
    278 	 */
    279 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
    280 
    281 	delta = ((divisor - tadr) * tick) / divisor;
    282 	/*
    283 	 * Account for pending clock interrupts
    284 	 */
    285 	if(ipra & IA_TIMA)
    286 		return(delta + tick);
    287 	return(delta);
    288 }
    289 
    290 #define TIMB_FREQ	614400
    291 #define TIMB_LIMIT	256
    292 
    293 /*
    294  * Wait "n" microseconds.
    295  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    296  * Note: timer had better have been programmed before this is first used!
    297  */
    298 void
    299 delay(n)
    300 int	n;
    301 {
    302 	int	tick, otick;
    303 
    304 	/*
    305 	 * Read the counter first, so that the rest of the setup overhead is
    306 	 * counted.
    307 	 */
    308 	otick = MFP->mf_tbdr;
    309 
    310 	/*
    311 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    312 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    313 	 * loss of significance.
    314 	 */
    315 	n -= 5;
    316 	if(n < 0)
    317 		return;
    318 	{
    319 	    u_int	temp;
    320 
    321 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    322 					       : "d" (TIMB_FREQ), "d" (n));
    323 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    324 					       : "d"(1000000),"d"(temp),"0"(n));
    325 	}
    326 
    327 	while(n > 0) {
    328 		tick = MFP->mf_tbdr;
    329 		if(tick > otick)
    330 			n -= TIMB_LIMIT - (tick - otick);
    331 		else n -= otick - tick;
    332 		otick = tick;
    333 	}
    334 }
    335 
    336 #ifdef GPROF
    337 /*
    338  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    339  * Assumes it is called with clock interrupts blocked.
    340  */
    341 profclock(pc, ps)
    342 	caddr_t pc;
    343 	int ps;
    344 {
    345 	/*
    346 	 * Came from user mode.
    347 	 * If this process is being profiled record the tick.
    348 	 */
    349 	if (USERMODE(ps)) {
    350 		if (p->p_stats.p_prof.pr_scale)
    351 			addupc(pc, &curproc->p_stats.p_prof, 1);
    352 	}
    353 	/*
    354 	 * Came from kernel (supervisor) mode.
    355 	 * If we are profiling the kernel, record the tick.
    356 	 */
    357 	else if (profiling < 2) {
    358 		register int s = pc - s_lowpc;
    359 
    360 		if (s < s_textsize)
    361 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    362 	}
    363 	/*
    364 	 * Kernel profiling was on but has been disabled.
    365 	 * Mark as no longer profiling kernel and if all profiling done,
    366 	 * disable the clock.
    367 	 */
    368 	if (profiling && (profon & PRF_KERNEL)) {
    369 		profon &= ~PRF_KERNEL;
    370 		if (profon == PRF_NONE)
    371 			stopprofclock();
    372 	}
    373 }
    374 #endif
    375 
    376 /***********************************************************************
    377  *                   Real Time Clock support                           *
    378  ***********************************************************************/
    379 
    380 u_int mc146818_read(rtc, regno)
    381 void	*rtc;
    382 u_int	regno;
    383 {
    384 	((struct rtc *)rtc)->rtc_regno = regno;
    385 	return(((struct rtc *)rtc)->rtc_data & 0377);
    386 }
    387 
    388 void mc146818_write(rtc, regno, value)
    389 void	*rtc;
    390 u_int	regno, value;
    391 {
    392 	((struct rtc *)rtc)->rtc_regno = regno;
    393 	((struct rtc *)rtc)->rtc_data  = value;
    394 }
    395 
    396 /*
    397  * Initialize the time of day register, assuming the RTC runs in UTC.
    398  * Since we've got the 'rtc' device, this functionality should be removed
    399  * from the kernel. The only problem to be solved before that can happen
    400  * is the possibility of init(1) providing a way (rc.boot?) to set
    401  * the RTC before single-user mode is entered.
    402  */
    403 void
    404 inittodr(base)
    405 time_t base;
    406 {
    407 	/* Battery clock does not store usec's, so forget about it. */
    408 	time.tv_sec  = gettod();
    409 	time.tv_usec = 0;
    410 }
    411 
    412 /*
    413  * Function turned into a No-op. Use /dev/rtc to update the RTC.
    414  */
    415 void
    416 resettodr()
    417 {
    418 	return;
    419 }
    420 
    421 static u_long
    422 gettod()
    423 {
    424 	int			sps;
    425 	mc_todregs		clkregs;
    426 	u_int			regb;
    427 	struct clock_ymdhms	dt;
    428 
    429 	sps = splhigh();
    430 	regb = mc146818_read(RTC, MC_REGB);
    431 	MC146818_GETTOD(RTC, &clkregs);
    432 	splx(sps);
    433 
    434 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    435 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    436 		printf("Error: Nonstandard RealTimeClock Configuration -"
    437 			" value ignored\n"
    438 			"       A write to /dev/rtc will correct this.\n");
    439 			return(0);
    440 	}
    441 	if(clkregs[MC_SEC] > 59)
    442 		return(0);
    443 	if(clkregs[MC_MIN] > 59)
    444 		return(0);
    445 	if(clkregs[MC_HOUR] > 23)
    446 		return(0);
    447 	if(range_test(clkregs[MC_DOM], 1, 31))
    448 		return(0);
    449 	if (range_test(clkregs[MC_MONTH], 1, 12))
    450 		return(0);
    451 	if(clkregs[MC_YEAR] > 99)
    452 		return(0);
    453 
    454 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    455 	dt.dt_mon  = clkregs[MC_MONTH];
    456 	dt.dt_day  = clkregs[MC_DOM];
    457 	dt.dt_hour = clkregs[MC_HOUR];
    458 	dt.dt_min  = clkregs[MC_MIN];
    459 	dt.dt_sec  = clkregs[MC_SEC];
    460 
    461 	return(clock_ymdhms_to_secs(&dt));
    462 }
    463 /***********************************************************************
    464  *                   RTC-device support				       *
    465  ***********************************************************************/
    466 int
    467 rtcopen(dev, flag, mode, p)
    468 	dev_t		dev;
    469 	int		flag, mode;
    470 	struct proc	*p;
    471 {
    472 	int			unit = minor(dev);
    473 	struct clock_softc	*sc;
    474 
    475 	if (unit >= clock_cd.cd_ndevs)
    476 		return ENXIO;
    477 	sc = clock_cd.cd_devs[unit];
    478 	if (!sc)
    479 		return ENXIO;
    480 	if (sc->sc_flags & RTC_OPEN)
    481 		return EBUSY;
    482 
    483 	sc->sc_flags = RTC_OPEN;
    484 	return 0;
    485 }
    486 
    487 int
    488 rtcclose(dev, flag, mode, p)
    489 	dev_t		dev;
    490 	int		flag;
    491 	int		mode;
    492 	struct proc	*p;
    493 {
    494 	int			unit = minor(dev);
    495 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
    496 
    497 	sc->sc_flags = 0;
    498 	return 0;
    499 }
    500 
    501 int
    502 rtcread(dev, uio, flags)
    503 	dev_t		dev;
    504 	struct uio	*uio;
    505 	int		flags;
    506 {
    507 	struct clock_softc	*sc;
    508 	mc_todregs		clkregs;
    509 	int			s, length;
    510 	char			buffer[16];
    511 
    512 	sc = clock_cd.cd_devs[minor(dev)];
    513 
    514 	s = splhigh();
    515 	MC146818_GETTOD(RTC, &clkregs);
    516 	splx(s);
    517 
    518 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    519 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    520 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    521 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    522 
    523 	if (uio->uio_offset > strlen(buffer))
    524 		return 0;
    525 
    526 	length = strlen(buffer) - uio->uio_offset;
    527 	if (length > uio->uio_resid)
    528 		length = uio->uio_resid;
    529 
    530 	return(uiomove((caddr_t)buffer, length, uio));
    531 }
    532 
    533 static int
    534 twodigits(buffer, pos)
    535 	char *buffer;
    536 	int pos;
    537 {
    538 	int result = 0;
    539 
    540 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    541 		result = (buffer[pos] - '0') * 10;
    542 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    543 		result += (buffer[pos+1] - '0');
    544 	return(result);
    545 }
    546 
    547 int
    548 rtcwrite(dev, uio, flags)
    549 	dev_t		dev;
    550 	struct uio	*uio;
    551 	int		flags;
    552 {
    553 	mc_todregs		clkregs;
    554 	int			s, length, error;
    555 	char			buffer[16];
    556 
    557 	/*
    558 	 * We require atomic updates!
    559 	 */
    560 	length = uio->uio_resid;
    561 	if (uio->uio_offset || (length != sizeof(buffer)
    562 	  && length != sizeof(buffer - 1)))
    563 		return(EINVAL);
    564 
    565 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
    566 		return(error);
    567 
    568 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    569 		return(EINVAL);
    570 
    571 	s = splclock();
    572 	mc146818_write(RTC, MC_REGB,
    573 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    574 	MC146818_GETTOD(RTC, &clkregs);
    575 	splx(s);
    576 
    577 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    578 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    579 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    580 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    581 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    582 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    583 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    584 
    585 	s = splclock();
    586 	MC146818_PUTTOD(RTC, &clkregs);
    587 	splx(s);
    588 
    589 	return(0);
    590 }
    591