Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.28
      1 /*	$NetBSD: clock.c,v 1.28 2002/09/06 13:18:43 gehenna Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  *
     42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  */
     44 
     45 #include <sys/param.h>
     46 #include <sys/kernel.h>
     47 #include <sys/systm.h>
     48 #include <sys/device.h>
     49 #include <sys/uio.h>
     50 #include <sys/conf.h>
     51 
     52 #include <dev/clock_subr.h>
     53 
     54 #include <machine/psl.h>
     55 #include <machine/cpu.h>
     56 #include <machine/iomap.h>
     57 #include <machine/mfp.h>
     58 #include <atari/dev/clockreg.h>
     59 #include <atari/atari/device.h>
     60 
     61 #if defined(GPROF) && defined(PROFTIMER)
     62 #include <machine/profile.h>
     63 #endif
     64 
     65 /*
     66  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     67  * of 200. Therefore the timer runs at an effective rate of:
     68  * 2457600/200 = 12288Hz.
     69  */
     70 #define CLOCK_HZ	12288
     71 
     72 /*
     73  * Machine-dependent clock routines.
     74  *
     75  * Inittodr initializes the time of day hardware which provides
     76  * date functions.
     77  *
     78  * Resettodr restores the time of day hardware after a time change.
     79  */
     80 
     81 struct clock_softc {
     82 	struct device	sc_dev;
     83 	int		sc_flags;
     84 };
     85 
     86 /*
     87  *  'sc_flags' state info. Only used by the rtc-device functions.
     88  */
     89 #define	RTC_OPEN	1
     90 
     91 dev_type_open(rtcopen);
     92 dev_type_close(rtcclose);
     93 dev_type_read(rtcread);
     94 dev_type_write(rtcwrite);
     95 
     96 static void	clockattach __P((struct device *, struct device *, void *));
     97 static int	clockmatch __P((struct device *, struct cfdata *, void *));
     98 
     99 struct cfattach clock_ca = {
    100 	sizeof(struct clock_softc), clockmatch, clockattach
    101 };
    102 
    103 extern struct cfdriver clock_cd;
    104 
    105 const struct cdevsw rtc_cdevsw = {
    106 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    107 	nostop, notty, nopoll, nommap,
    108 };
    109 
    110 void statintr __P((struct clockframe));
    111 
    112 static u_long	gettod __P((void));
    113 static int	twodigits __P((char *, int));
    114 
    115 static int	divisor;	/* Systemclock divisor	*/
    116 
    117 /*
    118  * Statistics and profile clock intervals and variances. Variance must
    119  * be a power of 2. Since this gives us an even number, not an odd number,
    120  * we discard one case and compensate. That is, a variance of 64 would
    121  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    122  * This is symmetric around the point 32, or statvar/2, and thus averages
    123  * to that value (assuming uniform random numbers).
    124  */
    125 #ifdef STATCLOCK
    126 static int	statvar = 32;	/* {stat,prof}clock variance		*/
    127 static int	statmin;	/* statclock divisor - variance/2	*/
    128 static int	profmin;	/* profclock divisor - variance/2	*/
    129 static int	clk2min;	/* current, from above choices		*/
    130 #endif
    131 
    132 int
    133 clockmatch(pdp, cfp, auxp)
    134 struct device	*pdp;
    135 struct cfdata	*cfp;
    136 void		*auxp;
    137 {
    138 	if (!atari_realconfig) {
    139 	    /*
    140 	     * Initialize Timer-B in the ST-MFP. This timer is used by
    141 	     * the 'delay' function below. This timer is setup to be
    142 	     * continueously counting from 255 back to zero at a
    143 	     * frequency of 614400Hz. We do this *early* in the
    144 	     * initialisation process.
    145 	     */
    146 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
    147 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    148 	    MFP->mf_tbdr  = 0;
    149 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    150 
    151 	    /*
    152 	     * Initialize the time structure
    153 	     */
    154 	    time.tv_sec  = 0;
    155 	    time.tv_usec = 0;
    156 
    157 	    return 0;
    158 	}
    159 	if(!strcmp("clock", auxp))
    160 		return(1);
    161 	return(0);
    162 }
    163 
    164 /*
    165  * Start the real-time clock.
    166  */
    167 void clockattach(pdp, dp, auxp)
    168 struct device	*pdp, *dp;
    169 void		*auxp;
    170 {
    171 	struct clock_softc *sc = (void *)dp;
    172 
    173 	sc->sc_flags = 0;
    174 
    175 	/*
    176 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    177 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    178 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    179 	 * following expression works for 48, 64 or 96 hz.
    180 	 */
    181 	divisor       = CLOCK_HZ/hz;
    182 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    183 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    184 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    185 
    186 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    187 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    188 								hz, 64);
    189 		hz = 64;
    190 	}
    191 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    192 
    193 #ifdef STATCLOCK
    194 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    195 		stathz = hz;
    196 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    197 		profhz = hz << 1;
    198 
    199 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    200 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    201 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    202 
    203 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    204 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    205 	clk2min  = statmin;
    206 #endif /* STATCLOCK */
    207 
    208 }
    209 
    210 void cpu_initclocks()
    211 {
    212 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    213 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    214 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    215 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    216 
    217 #ifdef STATCLOCK
    218 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    219 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    220 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    221 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    222 #endif /* STATCLOCK */
    223 }
    224 
    225 void
    226 setstatclockrate(newhz)
    227 	int newhz;
    228 {
    229 #ifdef STATCLOCK
    230 	if (newhz == stathz)
    231 		clk2min = statmin;
    232 	else clk2min = profmin;
    233 #endif /* STATCLOCK */
    234 }
    235 
    236 #ifdef STATCLOCK
    237 void
    238 statintr(frame)
    239 	struct clockframe frame;
    240 {
    241 	register int	var, r;
    242 
    243 	var = statvar - 1;
    244 	do {
    245 		r = random() & var;
    246 	} while(r == 0);
    247 
    248 	/*
    249 	 * Note that we are always lagging behind as the new divisor
    250 	 * value will not be loaded until the next interrupt. This
    251 	 * shouldn't disturb the median frequency (I think ;-) ) as
    252 	 * only the value used when switching frequencies is used
    253 	 * twice. This shouldn't happen very often.
    254 	 */
    255 	MFP->mf_tcdr = clk2min + r;
    256 
    257 	statclock(&frame);
    258 }
    259 #endif /* STATCLOCK */
    260 
    261 /*
    262  * Returns number of usec since last recorded clock "tick"
    263  * (i.e. clock interrupt).
    264  */
    265 long
    266 clkread()
    267 {
    268 	u_int	delta;
    269 	u_char	ipra, tadr;
    270 
    271 	/*
    272 	 * Note: Order is important!
    273 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
    274 	 * the situation that very low value in 'tadr' is read (== a big delta)
    275 	 * while also acccounting for a full 'tick' because the counter went
    276 	 * through zero during the calculations.
    277 	 */
    278 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
    279 
    280 	delta = ((divisor - tadr) * tick) / divisor;
    281 	/*
    282 	 * Account for pending clock interrupts
    283 	 */
    284 	if(ipra & IA_TIMA)
    285 		return(delta + tick);
    286 	return(delta);
    287 }
    288 
    289 #define TIMB_FREQ	614400
    290 #define TIMB_LIMIT	256
    291 
    292 /*
    293  * Wait "n" microseconds.
    294  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    295  * Note: timer had better have been programmed before this is first used!
    296  */
    297 void
    298 delay(n)
    299 int	n;
    300 {
    301 	int	tick, otick;
    302 
    303 	/*
    304 	 * Read the counter first, so that the rest of the setup overhead is
    305 	 * counted.
    306 	 */
    307 	otick = MFP->mf_tbdr;
    308 
    309 	/*
    310 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    311 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    312 	 * loss of significance.
    313 	 */
    314 	n -= 5;
    315 	if(n < 0)
    316 		return;
    317 	{
    318 	    u_int	temp;
    319 
    320 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    321 					       : "d" (TIMB_FREQ), "d" (n));
    322 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    323 					       : "d"(1000000),"d"(temp),"0"(n));
    324 	}
    325 
    326 	while(n > 0) {
    327 		tick = MFP->mf_tbdr;
    328 		if(tick > otick)
    329 			n -= TIMB_LIMIT - (tick - otick);
    330 		else n -= otick - tick;
    331 		otick = tick;
    332 	}
    333 }
    334 
    335 #ifdef GPROF
    336 /*
    337  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    338  * Assumes it is called with clock interrupts blocked.
    339  */
    340 profclock(pc, ps)
    341 	caddr_t pc;
    342 	int ps;
    343 {
    344 	/*
    345 	 * Came from user mode.
    346 	 * If this process is being profiled record the tick.
    347 	 */
    348 	if (USERMODE(ps)) {
    349 		if (p->p_stats.p_prof.pr_scale)
    350 			addupc(pc, &curproc->p_stats.p_prof, 1);
    351 	}
    352 	/*
    353 	 * Came from kernel (supervisor) mode.
    354 	 * If we are profiling the kernel, record the tick.
    355 	 */
    356 	else if (profiling < 2) {
    357 		register int s = pc - s_lowpc;
    358 
    359 		if (s < s_textsize)
    360 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    361 	}
    362 	/*
    363 	 * Kernel profiling was on but has been disabled.
    364 	 * Mark as no longer profiling kernel and if all profiling done,
    365 	 * disable the clock.
    366 	 */
    367 	if (profiling && (profon & PRF_KERNEL)) {
    368 		profon &= ~PRF_KERNEL;
    369 		if (profon == PRF_NONE)
    370 			stopprofclock();
    371 	}
    372 }
    373 #endif
    374 
    375 /***********************************************************************
    376  *                   Real Time Clock support                           *
    377  ***********************************************************************/
    378 
    379 u_int mc146818_read(rtc, regno)
    380 void	*rtc;
    381 u_int	regno;
    382 {
    383 	((struct rtc *)rtc)->rtc_regno = regno;
    384 	return(((struct rtc *)rtc)->rtc_data & 0377);
    385 }
    386 
    387 void mc146818_write(rtc, regno, value)
    388 void	*rtc;
    389 u_int	regno, value;
    390 {
    391 	((struct rtc *)rtc)->rtc_regno = regno;
    392 	((struct rtc *)rtc)->rtc_data  = value;
    393 }
    394 
    395 /*
    396  * Initialize the time of day register, assuming the RTC runs in UTC.
    397  * Since we've got the 'rtc' device, this functionality should be removed
    398  * from the kernel. The only problem to be solved before that can happen
    399  * is the possibility of init(1) providing a way (rc.boot?) to set
    400  * the RTC before single-user mode is entered.
    401  */
    402 void
    403 inittodr(base)
    404 time_t base;
    405 {
    406 	/* Battery clock does not store usec's, so forget about it. */
    407 	time.tv_sec  = gettod();
    408 	time.tv_usec = 0;
    409 }
    410 
    411 /*
    412  * Function turned into a No-op. Use /dev/rtc to update the RTC.
    413  */
    414 void
    415 resettodr()
    416 {
    417 	return;
    418 }
    419 
    420 static u_long
    421 gettod()
    422 {
    423 	int			sps;
    424 	mc_todregs		clkregs;
    425 	u_int			regb;
    426 	struct clock_ymdhms	dt;
    427 
    428 	sps = splhigh();
    429 	regb = mc146818_read(RTC, MC_REGB);
    430 	MC146818_GETTOD(RTC, &clkregs);
    431 	splx(sps);
    432 
    433 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    434 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    435 		printf("Error: Nonstandard RealTimeClock Configuration -"
    436 			" value ignored\n"
    437 			"       A write to /dev/rtc will correct this.\n");
    438 			return(0);
    439 	}
    440 	if(clkregs[MC_SEC] > 59)
    441 		return(0);
    442 	if(clkregs[MC_MIN] > 59)
    443 		return(0);
    444 	if(clkregs[MC_HOUR] > 23)
    445 		return(0);
    446 	if(range_test(clkregs[MC_DOM], 1, 31))
    447 		return(0);
    448 	if (range_test(clkregs[MC_MONTH], 1, 12))
    449 		return(0);
    450 	if(clkregs[MC_YEAR] > 99)
    451 		return(0);
    452 
    453 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    454 	dt.dt_mon  = clkregs[MC_MONTH];
    455 	dt.dt_day  = clkregs[MC_DOM];
    456 	dt.dt_hour = clkregs[MC_HOUR];
    457 	dt.dt_min  = clkregs[MC_MIN];
    458 	dt.dt_sec  = clkregs[MC_SEC];
    459 
    460 	return(clock_ymdhms_to_secs(&dt));
    461 }
    462 /***********************************************************************
    463  *                   RTC-device support				       *
    464  ***********************************************************************/
    465 int
    466 rtcopen(dev, flag, mode, p)
    467 	dev_t		dev;
    468 	int		flag, mode;
    469 	struct proc	*p;
    470 {
    471 	int			unit = minor(dev);
    472 	struct clock_softc	*sc;
    473 
    474 	if (unit >= clock_cd.cd_ndevs)
    475 		return ENXIO;
    476 	sc = clock_cd.cd_devs[unit];
    477 	if (!sc)
    478 		return ENXIO;
    479 	if (sc->sc_flags & RTC_OPEN)
    480 		return EBUSY;
    481 
    482 	sc->sc_flags = RTC_OPEN;
    483 	return 0;
    484 }
    485 
    486 int
    487 rtcclose(dev, flag, mode, p)
    488 	dev_t		dev;
    489 	int		flag;
    490 	int		mode;
    491 	struct proc	*p;
    492 {
    493 	int			unit = minor(dev);
    494 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
    495 
    496 	sc->sc_flags = 0;
    497 	return 0;
    498 }
    499 
    500 int
    501 rtcread(dev, uio, flags)
    502 	dev_t		dev;
    503 	struct uio	*uio;
    504 	int		flags;
    505 {
    506 	struct clock_softc	*sc;
    507 	mc_todregs		clkregs;
    508 	int			s, length;
    509 	char			buffer[16];
    510 
    511 	sc = clock_cd.cd_devs[minor(dev)];
    512 
    513 	s = splhigh();
    514 	MC146818_GETTOD(RTC, &clkregs);
    515 	splx(s);
    516 
    517 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    518 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    519 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    520 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    521 
    522 	if (uio->uio_offset > strlen(buffer))
    523 		return 0;
    524 
    525 	length = strlen(buffer) - uio->uio_offset;
    526 	if (length > uio->uio_resid)
    527 		length = uio->uio_resid;
    528 
    529 	return(uiomove((caddr_t)buffer, length, uio));
    530 }
    531 
    532 static int
    533 twodigits(buffer, pos)
    534 	char *buffer;
    535 	int pos;
    536 {
    537 	int result = 0;
    538 
    539 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    540 		result = (buffer[pos] - '0') * 10;
    541 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    542 		result += (buffer[pos+1] - '0');
    543 	return(result);
    544 }
    545 
    546 int
    547 rtcwrite(dev, uio, flags)
    548 	dev_t		dev;
    549 	struct uio	*uio;
    550 	int		flags;
    551 {
    552 	mc_todregs		clkregs;
    553 	int			s, length, error;
    554 	char			buffer[16];
    555 
    556 	/*
    557 	 * We require atomic updates!
    558 	 */
    559 	length = uio->uio_resid;
    560 	if (uio->uio_offset || (length != sizeof(buffer)
    561 	  && length != sizeof(buffer - 1)))
    562 		return(EINVAL);
    563 
    564 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
    565 		return(error);
    566 
    567 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    568 		return(EINVAL);
    569 
    570 	s = splclock();
    571 	mc146818_write(RTC, MC_REGB,
    572 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    573 	MC146818_GETTOD(RTC, &clkregs);
    574 	splx(s);
    575 
    576 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    577 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    578 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    579 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    580 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    581 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    582 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    583 
    584 	s = splclock();
    585 	MC146818_PUTTOD(RTC, &clkregs);
    586 	splx(s);
    587 
    588 	return(0);
    589 }
    590