clock.c revision 1.28 1 /* $NetBSD: clock.c,v 1.28 2002/09/06 13:18:43 gehenna Exp $ */
2
3 /*
4 * Copyright (c) 1988 University of Utah.
5 * Copyright (c) 1982, 1990 The Regents of the University of California.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 *
42 * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 */
44
45 #include <sys/param.h>
46 #include <sys/kernel.h>
47 #include <sys/systm.h>
48 #include <sys/device.h>
49 #include <sys/uio.h>
50 #include <sys/conf.h>
51
52 #include <dev/clock_subr.h>
53
54 #include <machine/psl.h>
55 #include <machine/cpu.h>
56 #include <machine/iomap.h>
57 #include <machine/mfp.h>
58 #include <atari/dev/clockreg.h>
59 #include <atari/atari/device.h>
60
61 #if defined(GPROF) && defined(PROFTIMER)
62 #include <machine/profile.h>
63 #endif
64
65 /*
66 * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
67 * of 200. Therefore the timer runs at an effective rate of:
68 * 2457600/200 = 12288Hz.
69 */
70 #define CLOCK_HZ 12288
71
72 /*
73 * Machine-dependent clock routines.
74 *
75 * Inittodr initializes the time of day hardware which provides
76 * date functions.
77 *
78 * Resettodr restores the time of day hardware after a time change.
79 */
80
81 struct clock_softc {
82 struct device sc_dev;
83 int sc_flags;
84 };
85
86 /*
87 * 'sc_flags' state info. Only used by the rtc-device functions.
88 */
89 #define RTC_OPEN 1
90
91 dev_type_open(rtcopen);
92 dev_type_close(rtcclose);
93 dev_type_read(rtcread);
94 dev_type_write(rtcwrite);
95
96 static void clockattach __P((struct device *, struct device *, void *));
97 static int clockmatch __P((struct device *, struct cfdata *, void *));
98
99 struct cfattach clock_ca = {
100 sizeof(struct clock_softc), clockmatch, clockattach
101 };
102
103 extern struct cfdriver clock_cd;
104
105 const struct cdevsw rtc_cdevsw = {
106 rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
107 nostop, notty, nopoll, nommap,
108 };
109
110 void statintr __P((struct clockframe));
111
112 static u_long gettod __P((void));
113 static int twodigits __P((char *, int));
114
115 static int divisor; /* Systemclock divisor */
116
117 /*
118 * Statistics and profile clock intervals and variances. Variance must
119 * be a power of 2. Since this gives us an even number, not an odd number,
120 * we discard one case and compensate. That is, a variance of 64 would
121 * give us offsets in [0..63]. Instead, we take offsets in [1..63].
122 * This is symmetric around the point 32, or statvar/2, and thus averages
123 * to that value (assuming uniform random numbers).
124 */
125 #ifdef STATCLOCK
126 static int statvar = 32; /* {stat,prof}clock variance */
127 static int statmin; /* statclock divisor - variance/2 */
128 static int profmin; /* profclock divisor - variance/2 */
129 static int clk2min; /* current, from above choices */
130 #endif
131
132 int
133 clockmatch(pdp, cfp, auxp)
134 struct device *pdp;
135 struct cfdata *cfp;
136 void *auxp;
137 {
138 if (!atari_realconfig) {
139 /*
140 * Initialize Timer-B in the ST-MFP. This timer is used by
141 * the 'delay' function below. This timer is setup to be
142 * continueously counting from 255 back to zero at a
143 * frequency of 614400Hz. We do this *early* in the
144 * initialisation process.
145 */
146 MFP->mf_tbcr = 0; /* Stop timer */
147 MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
148 MFP->mf_tbdr = 0;
149 MFP->mf_tbcr = T_Q004; /* Start timer */
150
151 /*
152 * Initialize the time structure
153 */
154 time.tv_sec = 0;
155 time.tv_usec = 0;
156
157 return 0;
158 }
159 if(!strcmp("clock", auxp))
160 return(1);
161 return(0);
162 }
163
164 /*
165 * Start the real-time clock.
166 */
167 void clockattach(pdp, dp, auxp)
168 struct device *pdp, *dp;
169 void *auxp;
170 {
171 struct clock_softc *sc = (void *)dp;
172
173 sc->sc_flags = 0;
174
175 /*
176 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
177 * The MFP clock runs at 2457600Hz. Therefore the timer runs
178 * at an effective rate of: 2457600/200 = 12288Hz. The
179 * following expression works for 48, 64 or 96 hz.
180 */
181 divisor = CLOCK_HZ/hz;
182 MFP->mf_tacr = 0; /* Stop timer */
183 MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
184 MFP->mf_tadr = divisor; /* Set divisor */
185
186 if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
187 printf (": illegal value %d for systemclock, reset to %d\n\t",
188 hz, 64);
189 hz = 64;
190 }
191 printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
192
193 #ifdef STATCLOCK
194 if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
195 stathz = hz;
196 if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
197 profhz = hz << 1;
198
199 MFP->mf_tcdcr &= 0x7; /* Stop timer */
200 MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
201 MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
202
203 statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
204 profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
205 clk2min = statmin;
206 #endif /* STATCLOCK */
207
208 }
209
210 void cpu_initclocks()
211 {
212 MFP->mf_tacr = T_Q200; /* Start timer */
213 MFP->mf_ipra = (u_int8_t)~IA_TIMA;/* Clear pending interrupts */
214 MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
215 MFP->mf_imra |= IA_TIMA; /* ..... */
216
217 #ifdef STATCLOCK
218 MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
219 MFP->mf_iprb = (u_int8_t)~IB_TIMC;/* Clear pending interrupts */
220 MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
221 MFP->mf_imrb |= IB_TIMC; /* ..... */
222 #endif /* STATCLOCK */
223 }
224
225 void
226 setstatclockrate(newhz)
227 int newhz;
228 {
229 #ifdef STATCLOCK
230 if (newhz == stathz)
231 clk2min = statmin;
232 else clk2min = profmin;
233 #endif /* STATCLOCK */
234 }
235
236 #ifdef STATCLOCK
237 void
238 statintr(frame)
239 struct clockframe frame;
240 {
241 register int var, r;
242
243 var = statvar - 1;
244 do {
245 r = random() & var;
246 } while(r == 0);
247
248 /*
249 * Note that we are always lagging behind as the new divisor
250 * value will not be loaded until the next interrupt. This
251 * shouldn't disturb the median frequency (I think ;-) ) as
252 * only the value used when switching frequencies is used
253 * twice. This shouldn't happen very often.
254 */
255 MFP->mf_tcdr = clk2min + r;
256
257 statclock(&frame);
258 }
259 #endif /* STATCLOCK */
260
261 /*
262 * Returns number of usec since last recorded clock "tick"
263 * (i.e. clock interrupt).
264 */
265 long
266 clkread()
267 {
268 u_int delta;
269 u_char ipra, tadr;
270
271 /*
272 * Note: Order is important!
273 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
274 * the situation that very low value in 'tadr' is read (== a big delta)
275 * while also acccounting for a full 'tick' because the counter went
276 * through zero during the calculations.
277 */
278 ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
279
280 delta = ((divisor - tadr) * tick) / divisor;
281 /*
282 * Account for pending clock interrupts
283 */
284 if(ipra & IA_TIMA)
285 return(delta + tick);
286 return(delta);
287 }
288
289 #define TIMB_FREQ 614400
290 #define TIMB_LIMIT 256
291
292 /*
293 * Wait "n" microseconds.
294 * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
295 * Note: timer had better have been programmed before this is first used!
296 */
297 void
298 delay(n)
299 int n;
300 {
301 int tick, otick;
302
303 /*
304 * Read the counter first, so that the rest of the setup overhead is
305 * counted.
306 */
307 otick = MFP->mf_tbdr;
308
309 /*
310 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
311 * we can take advantage of the intermediate 64-bit quantity to prevent
312 * loss of significance.
313 */
314 n -= 5;
315 if(n < 0)
316 return;
317 {
318 u_int temp;
319
320 __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
321 : "d" (TIMB_FREQ), "d" (n));
322 __asm __volatile ("divul %1,%2:%0" : "=d" (n)
323 : "d"(1000000),"d"(temp),"0"(n));
324 }
325
326 while(n > 0) {
327 tick = MFP->mf_tbdr;
328 if(tick > otick)
329 n -= TIMB_LIMIT - (tick - otick);
330 else n -= otick - tick;
331 otick = tick;
332 }
333 }
334
335 #ifdef GPROF
336 /*
337 * profclock() is expanded in line in lev6intr() unless profiling kernel.
338 * Assumes it is called with clock interrupts blocked.
339 */
340 profclock(pc, ps)
341 caddr_t pc;
342 int ps;
343 {
344 /*
345 * Came from user mode.
346 * If this process is being profiled record the tick.
347 */
348 if (USERMODE(ps)) {
349 if (p->p_stats.p_prof.pr_scale)
350 addupc(pc, &curproc->p_stats.p_prof, 1);
351 }
352 /*
353 * Came from kernel (supervisor) mode.
354 * If we are profiling the kernel, record the tick.
355 */
356 else if (profiling < 2) {
357 register int s = pc - s_lowpc;
358
359 if (s < s_textsize)
360 kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
361 }
362 /*
363 * Kernel profiling was on but has been disabled.
364 * Mark as no longer profiling kernel and if all profiling done,
365 * disable the clock.
366 */
367 if (profiling && (profon & PRF_KERNEL)) {
368 profon &= ~PRF_KERNEL;
369 if (profon == PRF_NONE)
370 stopprofclock();
371 }
372 }
373 #endif
374
375 /***********************************************************************
376 * Real Time Clock support *
377 ***********************************************************************/
378
379 u_int mc146818_read(rtc, regno)
380 void *rtc;
381 u_int regno;
382 {
383 ((struct rtc *)rtc)->rtc_regno = regno;
384 return(((struct rtc *)rtc)->rtc_data & 0377);
385 }
386
387 void mc146818_write(rtc, regno, value)
388 void *rtc;
389 u_int regno, value;
390 {
391 ((struct rtc *)rtc)->rtc_regno = regno;
392 ((struct rtc *)rtc)->rtc_data = value;
393 }
394
395 /*
396 * Initialize the time of day register, assuming the RTC runs in UTC.
397 * Since we've got the 'rtc' device, this functionality should be removed
398 * from the kernel. The only problem to be solved before that can happen
399 * is the possibility of init(1) providing a way (rc.boot?) to set
400 * the RTC before single-user mode is entered.
401 */
402 void
403 inittodr(base)
404 time_t base;
405 {
406 /* Battery clock does not store usec's, so forget about it. */
407 time.tv_sec = gettod();
408 time.tv_usec = 0;
409 }
410
411 /*
412 * Function turned into a No-op. Use /dev/rtc to update the RTC.
413 */
414 void
415 resettodr()
416 {
417 return;
418 }
419
420 static u_long
421 gettod()
422 {
423 int sps;
424 mc_todregs clkregs;
425 u_int regb;
426 struct clock_ymdhms dt;
427
428 sps = splhigh();
429 regb = mc146818_read(RTC, MC_REGB);
430 MC146818_GETTOD(RTC, &clkregs);
431 splx(sps);
432
433 regb &= MC_REGB_24HR|MC_REGB_BINARY;
434 if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
435 printf("Error: Nonstandard RealTimeClock Configuration -"
436 " value ignored\n"
437 " A write to /dev/rtc will correct this.\n");
438 return(0);
439 }
440 if(clkregs[MC_SEC] > 59)
441 return(0);
442 if(clkregs[MC_MIN] > 59)
443 return(0);
444 if(clkregs[MC_HOUR] > 23)
445 return(0);
446 if(range_test(clkregs[MC_DOM], 1, 31))
447 return(0);
448 if (range_test(clkregs[MC_MONTH], 1, 12))
449 return(0);
450 if(clkregs[MC_YEAR] > 99)
451 return(0);
452
453 dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
454 dt.dt_mon = clkregs[MC_MONTH];
455 dt.dt_day = clkregs[MC_DOM];
456 dt.dt_hour = clkregs[MC_HOUR];
457 dt.dt_min = clkregs[MC_MIN];
458 dt.dt_sec = clkregs[MC_SEC];
459
460 return(clock_ymdhms_to_secs(&dt));
461 }
462 /***********************************************************************
463 * RTC-device support *
464 ***********************************************************************/
465 int
466 rtcopen(dev, flag, mode, p)
467 dev_t dev;
468 int flag, mode;
469 struct proc *p;
470 {
471 int unit = minor(dev);
472 struct clock_softc *sc;
473
474 if (unit >= clock_cd.cd_ndevs)
475 return ENXIO;
476 sc = clock_cd.cd_devs[unit];
477 if (!sc)
478 return ENXIO;
479 if (sc->sc_flags & RTC_OPEN)
480 return EBUSY;
481
482 sc->sc_flags = RTC_OPEN;
483 return 0;
484 }
485
486 int
487 rtcclose(dev, flag, mode, p)
488 dev_t dev;
489 int flag;
490 int mode;
491 struct proc *p;
492 {
493 int unit = minor(dev);
494 struct clock_softc *sc = clock_cd.cd_devs[unit];
495
496 sc->sc_flags = 0;
497 return 0;
498 }
499
500 int
501 rtcread(dev, uio, flags)
502 dev_t dev;
503 struct uio *uio;
504 int flags;
505 {
506 struct clock_softc *sc;
507 mc_todregs clkregs;
508 int s, length;
509 char buffer[16];
510
511 sc = clock_cd.cd_devs[minor(dev)];
512
513 s = splhigh();
514 MC146818_GETTOD(RTC, &clkregs);
515 splx(s);
516
517 sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
518 clkregs[MC_YEAR] + GEMSTARTOFTIME,
519 clkregs[MC_MONTH], clkregs[MC_DOM],
520 clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
521
522 if (uio->uio_offset > strlen(buffer))
523 return 0;
524
525 length = strlen(buffer) - uio->uio_offset;
526 if (length > uio->uio_resid)
527 length = uio->uio_resid;
528
529 return(uiomove((caddr_t)buffer, length, uio));
530 }
531
532 static int
533 twodigits(buffer, pos)
534 char *buffer;
535 int pos;
536 {
537 int result = 0;
538
539 if (buffer[pos] >= '0' && buffer[pos] <= '9')
540 result = (buffer[pos] - '0') * 10;
541 if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
542 result += (buffer[pos+1] - '0');
543 return(result);
544 }
545
546 int
547 rtcwrite(dev, uio, flags)
548 dev_t dev;
549 struct uio *uio;
550 int flags;
551 {
552 mc_todregs clkregs;
553 int s, length, error;
554 char buffer[16];
555
556 /*
557 * We require atomic updates!
558 */
559 length = uio->uio_resid;
560 if (uio->uio_offset || (length != sizeof(buffer)
561 && length != sizeof(buffer - 1)))
562 return(EINVAL);
563
564 if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
565 return(error);
566
567 if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
568 return(EINVAL);
569
570 s = splclock();
571 mc146818_write(RTC, MC_REGB,
572 mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
573 MC146818_GETTOD(RTC, &clkregs);
574 splx(s);
575
576 clkregs[MC_SEC] = twodigits(buffer, 13);
577 clkregs[MC_MIN] = twodigits(buffer, 10);
578 clkregs[MC_HOUR] = twodigits(buffer, 8);
579 clkregs[MC_DOM] = twodigits(buffer, 6);
580 clkregs[MC_MONTH] = twodigits(buffer, 4);
581 s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
582 clkregs[MC_YEAR] = s - GEMSTARTOFTIME;
583
584 s = splclock();
585 MC146818_PUTTOD(RTC, &clkregs);
586 splx(s);
587
588 return(0);
589 }
590