clock.c revision 1.3 1 /* $NetBSD: clock.c,v 1.3 1995/05/28 19:38:49 leo Exp $ */
2
3 /*
4 * Copyright (c) 1988 University of Utah.
5 * Copyright (c) 1982, 1990 The Regents of the University of California.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * from: Utah $Hdr: clock.c 1.18 91/01/21$
41 *
42 * @(#)clock.c 7.6 (Berkeley) 5/7/91
43 */
44
45 #include <sys/param.h>
46 #include <sys/kernel.h>
47 #include <sys/device.h>
48 #include <machine/psl.h>
49 #include <machine/cpu.h>
50 #include <machine/iomap.h>
51 #include <machine/mfp.h>
52 #include <atari/dev/clockreg.h>
53
54 #if defined(PROF) && defined(PROFTIMER)
55 #include <sys/PROF.h>
56 #endif
57
58
59 /*
60 * Machine-dependent clock routines.
61 *
62 * Startrtclock restarts the real-time clock, which provides
63 * hardclock interrupts to kern_clock.c.
64 *
65 * Inittodr initializes the time of day hardware which provides
66 * date functions.
67 *
68 * Resettodr restores the time of day hardware after a time change.
69 *
70 * A note on the real-time clock:
71 * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
72 * This is because the counter decrements to zero after N+1 enabled clock
73 * periods where N is the value loaded into the counter.
74 */
75
76 int clockmatch __P((struct device *, struct cfdata *, void *));
77 void clockattach __P((struct device *, struct device *, void *));
78
79 struct cfdriver clockcd = {
80 NULL, "clock", (cfmatch_t)clockmatch, clockattach,
81 DV_DULL, sizeof(struct device), NULL, 0
82 };
83
84 static u_long gettod __P((void));
85 static int settod __P((u_long));
86
87 static int divisor;
88
89 int
90 clockmatch(pdp, cfp, auxp)
91 struct device *pdp;
92 struct cfdata *cfp;
93 void *auxp;
94 {
95 if(!strcmp("clock", auxp))
96 return(1);
97 return(0);
98 }
99
100 /*
101 * Start the real-time clock.
102 */
103 void clockattach(pdp, dp, auxp)
104 struct device *pdp, *dp;
105 void *auxp;
106 {
107 /*
108 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
109 * The MFP clock runs at 2457600Hz. Therefore the timer runs
110 * at an effective rate of: 2457600/200 = 12288Hz. The
111 * following expression works for 48, 64 or 96 hz.
112 */
113 divisor = 12288/hz;
114 MFP->mf_tacr = 0; /* Stop timer */
115 MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
116 MFP->mf_tadr = divisor; /* Set divisor */
117
118 printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
119
120 /*
121 * Initialize Timer-B in the ST-MFP. This timer is used by the 'delay'
122 * function below. This time is setup to be continueously counting from
123 * 255 back to zero at a frequency of 614400Hz.
124 */
125 MFP->mf_tbcr = 0; /* Stop timer */
126 MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
127 MFP->mf_tbdr = 0;
128 MFP->mf_tbcr = T_Q004; /* Start timer */
129
130 }
131
132 void cpu_initclocks()
133 {
134 MFP->mf_tacr = T_Q200; /* Start timer */
135 MFP->mf_ipra &= ~IA_TIMA; /* Clear pending interrupts */
136 MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
137 MFP->mf_imra |= IA_TIMA; /* ..... */
138 }
139
140 setstatclockrate(hz)
141 int hz;
142 {
143 }
144
145 /*
146 * Returns number of usec since last recorded clock "tick"
147 * (i.e. clock interrupt).
148 */
149 clkread()
150 {
151 u_int delta;
152
153 delta = ((divisor - MFP->mf_tadr) * tick) / divisor;
154 /*
155 * Account for pending clock interrupts
156 */
157 if(MFP->mf_iera & IA_TIMA)
158 return(delta + tick);
159 return(delta);
160 }
161
162 #define TIMB_FREQ 614400
163 #define TIMB_LIMIT 256
164
165 /*
166 * Wait "n" microseconds.
167 * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
168 * Note: timer had better have been programmed before this is first used!
169 */
170 void delay(n)
171 int n;
172 {
173 int tick, otick;
174
175 /*
176 * Read the counter first, so that the rest of the setup overhead is
177 * counted.
178 */
179 otick = MFP->mf_tbdr;
180
181 /*
182 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
183 * we can take advantage of the intermediate 64-bit quantity to prevent
184 * loss of significance.
185 */
186 n -= 5;
187 if(n < 0)
188 return;
189 {
190 u_int temp;
191
192 __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
193 : "d" (TIMB_FREQ));
194 __asm __volatile ("divul %1,%2:%0" : "=d" (n)
195 : "d"(1000000),"d"(temp),"0"(n));
196 }
197
198 while(n > 0) {
199 tick = MFP->mf_tbdr;
200 if(tick > otick)
201 n -= TIMB_LIMIT - (tick - otick);
202 else n -= otick - tick;
203 otick = tick;
204 }
205 }
206
207 #ifdef PROFTIMER
208 /*
209 * This code allows the amiga kernel to use one of the extra timers on
210 * the clock chip for profiling, instead of the regular system timer.
211 * The advantage of this is that the profiling timer can be turned up to
212 * a higher interrupt rate, giving finer resolution timing. The profclock
213 * routine is called from the lev6intr in locore, and is a specialized
214 * routine that calls addupc. The overhead then is far less than if
215 * hardclock/softclock was called. Further, the context switch code in
216 * locore has been changed to turn the profile clock on/off when switching
217 * into/out of a process that is profiling (startprofclock/stopprofclock).
218 * This reduces the impact of the profiling clock on other users, and might
219 * possibly increase the accuracy of the profiling.
220 */
221 int profint = PRF_INTERVAL; /* Clock ticks between interrupts */
222 int profscale = 0; /* Scale factor from sys clock to prof clock */
223 char profon = 0; /* Is profiling clock on? */
224
225 /* profon values - do not change, locore.s assumes these values */
226 #define PRF_NONE 0x00
227 #define PRF_USER 0x01
228 #define PRF_KERNEL 0x80
229
230 initprofclock()
231 {
232 #if NCLOCK > 0
233 struct proc *p = curproc; /* XXX */
234
235 /*
236 * If the high-res timer is running, force profiling off.
237 * Unfortunately, this gets reflected back to the user not as
238 * an error but as a lack of results.
239 */
240 if (clockon) {
241 p->p_stats->p_prof.pr_scale = 0;
242 return;
243 }
244 /*
245 * Keep track of the number of user processes that are profiling
246 * by checking the scale value.
247 *
248 * XXX: this all assumes that the profiling code is well behaved;
249 * i.e. profil() is called once per process with pcscale non-zero
250 * to turn it on, and once with pcscale zero to turn it off.
251 * Also assumes you don't do any forks or execs. Oh well, there
252 * is always adb...
253 */
254 if (p->p_stats->p_prof.pr_scale)
255 profprocs++;
256 else
257 profprocs--;
258 #endif
259 /*
260 * The profile interrupt interval must be an even divisor
261 * of the CLK_INTERVAL so that scaling from a system clock
262 * tick to a profile clock tick is possible using integer math.
263 */
264 if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
265 profint = CLK_INTERVAL;
266 profscale = CLK_INTERVAL / profint;
267 }
268
269 startprofclock()
270 {
271 unsigned short interval;
272
273 /* stop timer B */
274 ciab.crb = ciab.crb & 0xc0;
275
276 /* load interval into registers.
277 the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
278
279 interval = profint - 1;
280
281 /* order of setting is important ! */
282 ciab.tblo = interval & 0xff;
283 ciab.tbhi = interval >> 8;
284
285 /* enable interrupts for timer B */
286 ciab.icr = (1<<7) | (1<<1);
287
288 /* start timer B in continuous shot mode */
289 ciab.crb = (ciab.crb & 0xc0) | 1;
290 }
291
292 stopprofclock()
293 {
294 /* stop timer B */
295 ciab.crb = ciab.crb & 0xc0;
296 }
297
298 #ifdef PROF
299 /*
300 * profclock() is expanded in line in lev6intr() unless profiling kernel.
301 * Assumes it is called with clock interrupts blocked.
302 */
303 profclock(pc, ps)
304 caddr_t pc;
305 int ps;
306 {
307 /*
308 * Came from user mode.
309 * If this process is being profiled record the tick.
310 */
311 if (USERMODE(ps)) {
312 if (p->p_stats.p_prof.pr_scale)
313 addupc(pc, &curproc->p_stats.p_prof, 1);
314 }
315 /*
316 * Came from kernel (supervisor) mode.
317 * If we are profiling the kernel, record the tick.
318 */
319 else if (profiling < 2) {
320 register int s = pc - s_lowpc;
321
322 if (s < s_textsize)
323 kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
324 }
325 /*
326 * Kernel profiling was on but has been disabled.
327 * Mark as no longer profiling kernel and if all profiling done,
328 * disable the clock.
329 */
330 if (profiling && (profon & PRF_KERNEL)) {
331 profon &= ~PRF_KERNEL;
332 if (profon == PRF_NONE)
333 stopprofclock();
334 }
335 }
336 #endif
337 #endif
338
339 /*
340 * Initialize the time of day register, based on the time base which is, e.g.
341 * from a filesystem.
342 */
343 inittodr(base)
344 time_t base;
345 {
346 u_long timbuf = base; /* assume no battery clock exists */
347
348 timbuf = gettod();
349
350 if(timbuf < base) {
351 printf("WARNING: bad date in battery clock\n");
352 timbuf = base;
353 }
354
355 /* Battery clock does not store usec's, so forget about it. */
356 time.tv_sec = timbuf;
357 }
358
359 resettodr()
360 {
361 if(settod(time.tv_sec) == 1)
362 return;
363 printf("Cannot set battery backed clock\n");
364 }
365
366 static char dmsize[12] =
367 {
368 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
369 };
370
371 static char ldmsize[12] =
372 {
373 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
374 };
375
376 static u_long
377 gettod()
378 {
379 int i, sps;
380 u_long new_time = 0;
381 char *msize;
382 mc_todregs clkregs;
383
384 sps = splhigh();
385 MC146818_GETTOD(RTC, &clkregs);
386 splx(sps);
387
388 if(range_test(clkregs[MC_HOUR], 0, 23))
389 return(0);
390 if(range_test(clkregs[MC_DOM], 1, 31))
391 return(0);
392 if (range_test(clkregs[MC_MONTH], 1, 12))
393 return(0);
394 if(range_test(clkregs[MC_YEAR], 0, 2000 - GEMSTARTOFTIME))
395 return(0);
396 clkregs[MC_YEAR] += GEMSTARTOFTIME;
397
398 for(i = BSDSTARTOFTIME; i < clkregs[MC_YEAR]; i++) {
399 if(is_leap(i))
400 new_time += 366;
401 else new_time += 365;
402 }
403
404 msize = is_leap(clkregs[MC_YEAR]) ? ldmsize : dmsize;
405 for(i = 0; i < (clkregs[MC_MONTH] - 1); i++)
406 new_time += msize[i];
407 new_time += clkregs[MC_DOM] - 1;
408 new_time *= SECS_DAY;
409 new_time += (clkregs[MC_HOUR] * 3600) + (clkregs[MC_MIN] * 60);
410 return(new_time + clkregs[MC_SEC]);
411 }
412
413 static int
414 settod(newtime)
415 u_long newtime;
416 {
417 register long days, rem, year;
418 register char *ml;
419 int sps, sec, min, hour, month;
420 mc_todregs clkregs;
421
422 /* Number of days since Jan. 1 'BSDSTARTOFTIME' */
423 days = newtime / SECS_DAY;
424 rem = newtime % SECS_DAY;
425
426 /*
427 * Calculate sec, min, hour
428 */
429 hour = rem / SECS_HOUR;
430 rem %= SECS_HOUR;
431 min = rem / 60;
432 sec = rem % 60;
433
434 /*
435 * Figure out the year. Day in year is left in 'days'.
436 */
437 year = BSDSTARTOFTIME;
438 while(days >= (rem = is_leap(year) ? 366 : 365)) {
439 ++year;
440 days -= rem;
441 }
442
443 /*
444 * Determine the month
445 */
446 ml = is_leap(year) ? ldmsize : dmsize;
447 for(month = 0; days >= ml[month]; ++month)
448 days -= ml[month];
449
450 /*
451 * Now that everything is calculated, program the RTC
452 */
453 mc146818_write(RTC, MC_REGA, MC_BASE_32_KHz);
454 mc146818_write(RTC, MC_REGB, MC_REGB_24HR | MC_REGB_BINARY);
455 sps = splhigh();
456 MC146818_GETTOD(RTC, &clkregs);
457 clkregs[MC_SEC] = sec;
458 clkregs[MC_MIN] = min;
459 clkregs[MC_HOUR] = hour;
460 clkregs[MC_DOM] = days+1;
461 clkregs[MC_MONTH] = month+1;
462 clkregs[MC_YEAR] = year - GEMSTARTOFTIME;
463 MC146818_PUTTOD(RTC, &clkregs);
464 splx(sps);
465
466 return(1);
467 }
468