Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.30
      1 /*	$NetBSD: clock.c,v 1.30 2002/10/02 05:04:25 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  *
     42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  */
     44 
     45 #include <sys/param.h>
     46 #include <sys/kernel.h>
     47 #include <sys/systm.h>
     48 #include <sys/device.h>
     49 #include <sys/uio.h>
     50 #include <sys/conf.h>
     51 
     52 #include <dev/clock_subr.h>
     53 
     54 #include <machine/psl.h>
     55 #include <machine/cpu.h>
     56 #include <machine/iomap.h>
     57 #include <machine/mfp.h>
     58 #include <atari/dev/clockreg.h>
     59 #include <atari/atari/device.h>
     60 
     61 #if defined(GPROF) && defined(PROFTIMER)
     62 #include <machine/profile.h>
     63 #endif
     64 
     65 /*
     66  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     67  * of 200. Therefore the timer runs at an effective rate of:
     68  * 2457600/200 = 12288Hz.
     69  */
     70 #define CLOCK_HZ	12288
     71 
     72 /*
     73  * Machine-dependent clock routines.
     74  *
     75  * Inittodr initializes the time of day hardware which provides
     76  * date functions.
     77  *
     78  * Resettodr restores the time of day hardware after a time change.
     79  */
     80 
     81 struct clock_softc {
     82 	struct device	sc_dev;
     83 	int		sc_flags;
     84 };
     85 
     86 /*
     87  *  'sc_flags' state info. Only used by the rtc-device functions.
     88  */
     89 #define	RTC_OPEN	1
     90 
     91 dev_type_open(rtcopen);
     92 dev_type_close(rtcclose);
     93 dev_type_read(rtcread);
     94 dev_type_write(rtcwrite);
     95 
     96 static void	clockattach __P((struct device *, struct device *, void *));
     97 static int	clockmatch __P((struct device *, struct cfdata *, void *));
     98 
     99 CFATTACH_DECL(clock, sizeof(struct clock_softc),
    100     clockmatch, clockattach, NULL, NULL);
    101 
    102 extern struct cfdriver clock_cd;
    103 
    104 const struct cdevsw rtc_cdevsw = {
    105 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    106 	nostop, notty, nopoll, nommap,
    107 };
    108 
    109 void statintr __P((struct clockframe));
    110 
    111 static u_long	gettod __P((void));
    112 static int	twodigits __P((char *, int));
    113 
    114 static int	divisor;	/* Systemclock divisor	*/
    115 
    116 /*
    117  * Statistics and profile clock intervals and variances. Variance must
    118  * be a power of 2. Since this gives us an even number, not an odd number,
    119  * we discard one case and compensate. That is, a variance of 64 would
    120  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    121  * This is symmetric around the point 32, or statvar/2, and thus averages
    122  * to that value (assuming uniform random numbers).
    123  */
    124 #ifdef STATCLOCK
    125 static int	statvar = 32;	/* {stat,prof}clock variance		*/
    126 static int	statmin;	/* statclock divisor - variance/2	*/
    127 static int	profmin;	/* profclock divisor - variance/2	*/
    128 static int	clk2min;	/* current, from above choices		*/
    129 #endif
    130 
    131 int
    132 clockmatch(pdp, cfp, auxp)
    133 struct device	*pdp;
    134 struct cfdata	*cfp;
    135 void		*auxp;
    136 {
    137 	if (!atari_realconfig) {
    138 	    /*
    139 	     * Initialize Timer-B in the ST-MFP. This timer is used by
    140 	     * the 'delay' function below. This timer is setup to be
    141 	     * continueously counting from 255 back to zero at a
    142 	     * frequency of 614400Hz. We do this *early* in the
    143 	     * initialisation process.
    144 	     */
    145 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
    146 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    147 	    MFP->mf_tbdr  = 0;
    148 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    149 
    150 	    /*
    151 	     * Initialize the time structure
    152 	     */
    153 	    time.tv_sec  = 0;
    154 	    time.tv_usec = 0;
    155 
    156 	    return 0;
    157 	}
    158 	if(!strcmp("clock", auxp))
    159 		return(1);
    160 	return(0);
    161 }
    162 
    163 /*
    164  * Start the real-time clock.
    165  */
    166 void clockattach(pdp, dp, auxp)
    167 struct device	*pdp, *dp;
    168 void		*auxp;
    169 {
    170 	struct clock_softc *sc = (void *)dp;
    171 
    172 	sc->sc_flags = 0;
    173 
    174 	/*
    175 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    176 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    177 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    178 	 * following expression works for 48, 64 or 96 hz.
    179 	 */
    180 	divisor       = CLOCK_HZ/hz;
    181 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    182 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    183 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    184 
    185 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    186 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    187 								hz, 64);
    188 		hz = 64;
    189 	}
    190 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    191 
    192 #ifdef STATCLOCK
    193 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    194 		stathz = hz;
    195 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    196 		profhz = hz << 1;
    197 
    198 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    199 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    200 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    201 
    202 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    203 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    204 	clk2min  = statmin;
    205 #endif /* STATCLOCK */
    206 
    207 }
    208 
    209 void cpu_initclocks()
    210 {
    211 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    212 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    213 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    214 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    215 
    216 #ifdef STATCLOCK
    217 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    218 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    219 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    220 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    221 #endif /* STATCLOCK */
    222 }
    223 
    224 void
    225 setstatclockrate(newhz)
    226 	int newhz;
    227 {
    228 #ifdef STATCLOCK
    229 	if (newhz == stathz)
    230 		clk2min = statmin;
    231 	else clk2min = profmin;
    232 #endif /* STATCLOCK */
    233 }
    234 
    235 #ifdef STATCLOCK
    236 void
    237 statintr(frame)
    238 	struct clockframe frame;
    239 {
    240 	register int	var, r;
    241 
    242 	var = statvar - 1;
    243 	do {
    244 		r = random() & var;
    245 	} while(r == 0);
    246 
    247 	/*
    248 	 * Note that we are always lagging behind as the new divisor
    249 	 * value will not be loaded until the next interrupt. This
    250 	 * shouldn't disturb the median frequency (I think ;-) ) as
    251 	 * only the value used when switching frequencies is used
    252 	 * twice. This shouldn't happen very often.
    253 	 */
    254 	MFP->mf_tcdr = clk2min + r;
    255 
    256 	statclock(&frame);
    257 }
    258 #endif /* STATCLOCK */
    259 
    260 /*
    261  * Returns number of usec since last recorded clock "tick"
    262  * (i.e. clock interrupt).
    263  */
    264 long
    265 clkread()
    266 {
    267 	u_int	delta;
    268 	u_char	ipra, tadr;
    269 
    270 	/*
    271 	 * Note: Order is important!
    272 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
    273 	 * the situation that very low value in 'tadr' is read (== a big delta)
    274 	 * while also acccounting for a full 'tick' because the counter went
    275 	 * through zero during the calculations.
    276 	 */
    277 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
    278 
    279 	delta = ((divisor - tadr) * tick) / divisor;
    280 	/*
    281 	 * Account for pending clock interrupts
    282 	 */
    283 	if(ipra & IA_TIMA)
    284 		return(delta + tick);
    285 	return(delta);
    286 }
    287 
    288 #define TIMB_FREQ	614400
    289 #define TIMB_LIMIT	256
    290 
    291 /*
    292  * Wait "n" microseconds.
    293  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    294  * Note: timer had better have been programmed before this is first used!
    295  */
    296 void
    297 delay(n)
    298 int	n;
    299 {
    300 	int	tick, otick;
    301 
    302 	/*
    303 	 * Read the counter first, so that the rest of the setup overhead is
    304 	 * counted.
    305 	 */
    306 	otick = MFP->mf_tbdr;
    307 
    308 	/*
    309 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    310 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    311 	 * loss of significance.
    312 	 */
    313 	n -= 5;
    314 	if(n < 0)
    315 		return;
    316 	{
    317 	    u_int	temp;
    318 
    319 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    320 					       : "d" (TIMB_FREQ), "d" (n));
    321 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    322 					       : "d"(1000000),"d"(temp),"0"(n));
    323 	}
    324 
    325 	while(n > 0) {
    326 		tick = MFP->mf_tbdr;
    327 		if(tick > otick)
    328 			n -= TIMB_LIMIT - (tick - otick);
    329 		else n -= otick - tick;
    330 		otick = tick;
    331 	}
    332 }
    333 
    334 #ifdef GPROF
    335 /*
    336  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    337  * Assumes it is called with clock interrupts blocked.
    338  */
    339 profclock(pc, ps)
    340 	caddr_t pc;
    341 	int ps;
    342 {
    343 	/*
    344 	 * Came from user mode.
    345 	 * If this process is being profiled record the tick.
    346 	 */
    347 	if (USERMODE(ps)) {
    348 		if (p->p_stats.p_prof.pr_scale)
    349 			addupc(pc, &curproc->p_stats.p_prof, 1);
    350 	}
    351 	/*
    352 	 * Came from kernel (supervisor) mode.
    353 	 * If we are profiling the kernel, record the tick.
    354 	 */
    355 	else if (profiling < 2) {
    356 		register int s = pc - s_lowpc;
    357 
    358 		if (s < s_textsize)
    359 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    360 	}
    361 	/*
    362 	 * Kernel profiling was on but has been disabled.
    363 	 * Mark as no longer profiling kernel and if all profiling done,
    364 	 * disable the clock.
    365 	 */
    366 	if (profiling && (profon & PRF_KERNEL)) {
    367 		profon &= ~PRF_KERNEL;
    368 		if (profon == PRF_NONE)
    369 			stopprofclock();
    370 	}
    371 }
    372 #endif
    373 
    374 /***********************************************************************
    375  *                   Real Time Clock support                           *
    376  ***********************************************************************/
    377 
    378 u_int mc146818_read(rtc, regno)
    379 void	*rtc;
    380 u_int	regno;
    381 {
    382 	((struct rtc *)rtc)->rtc_regno = regno;
    383 	return(((struct rtc *)rtc)->rtc_data & 0377);
    384 }
    385 
    386 void mc146818_write(rtc, regno, value)
    387 void	*rtc;
    388 u_int	regno, value;
    389 {
    390 	((struct rtc *)rtc)->rtc_regno = regno;
    391 	((struct rtc *)rtc)->rtc_data  = value;
    392 }
    393 
    394 /*
    395  * Initialize the time of day register, assuming the RTC runs in UTC.
    396  * Since we've got the 'rtc' device, this functionality should be removed
    397  * from the kernel. The only problem to be solved before that can happen
    398  * is the possibility of init(1) providing a way (rc.boot?) to set
    399  * the RTC before single-user mode is entered.
    400  */
    401 void
    402 inittodr(base)
    403 time_t base;
    404 {
    405 	/* Battery clock does not store usec's, so forget about it. */
    406 	time.tv_sec  = gettod();
    407 	time.tv_usec = 0;
    408 }
    409 
    410 /*
    411  * Function turned into a No-op. Use /dev/rtc to update the RTC.
    412  */
    413 void
    414 resettodr()
    415 {
    416 	return;
    417 }
    418 
    419 static u_long
    420 gettod()
    421 {
    422 	int			sps;
    423 	mc_todregs		clkregs;
    424 	u_int			regb;
    425 	struct clock_ymdhms	dt;
    426 
    427 	sps = splhigh();
    428 	regb = mc146818_read(RTC, MC_REGB);
    429 	MC146818_GETTOD(RTC, &clkregs);
    430 	splx(sps);
    431 
    432 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    433 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    434 		printf("Error: Nonstandard RealTimeClock Configuration -"
    435 			" value ignored\n"
    436 			"       A write to /dev/rtc will correct this.\n");
    437 			return(0);
    438 	}
    439 	if(clkregs[MC_SEC] > 59)
    440 		return(0);
    441 	if(clkregs[MC_MIN] > 59)
    442 		return(0);
    443 	if(clkregs[MC_HOUR] > 23)
    444 		return(0);
    445 	if(range_test(clkregs[MC_DOM], 1, 31))
    446 		return(0);
    447 	if (range_test(clkregs[MC_MONTH], 1, 12))
    448 		return(0);
    449 	if(clkregs[MC_YEAR] > 99)
    450 		return(0);
    451 
    452 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    453 	dt.dt_mon  = clkregs[MC_MONTH];
    454 	dt.dt_day  = clkregs[MC_DOM];
    455 	dt.dt_hour = clkregs[MC_HOUR];
    456 	dt.dt_min  = clkregs[MC_MIN];
    457 	dt.dt_sec  = clkregs[MC_SEC];
    458 
    459 	return(clock_ymdhms_to_secs(&dt));
    460 }
    461 /***********************************************************************
    462  *                   RTC-device support				       *
    463  ***********************************************************************/
    464 int
    465 rtcopen(dev, flag, mode, p)
    466 	dev_t		dev;
    467 	int		flag, mode;
    468 	struct proc	*p;
    469 {
    470 	int			unit = minor(dev);
    471 	struct clock_softc	*sc;
    472 
    473 	if (unit >= clock_cd.cd_ndevs)
    474 		return ENXIO;
    475 	sc = clock_cd.cd_devs[unit];
    476 	if (!sc)
    477 		return ENXIO;
    478 	if (sc->sc_flags & RTC_OPEN)
    479 		return EBUSY;
    480 
    481 	sc->sc_flags = RTC_OPEN;
    482 	return 0;
    483 }
    484 
    485 int
    486 rtcclose(dev, flag, mode, p)
    487 	dev_t		dev;
    488 	int		flag;
    489 	int		mode;
    490 	struct proc	*p;
    491 {
    492 	int			unit = minor(dev);
    493 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
    494 
    495 	sc->sc_flags = 0;
    496 	return 0;
    497 }
    498 
    499 int
    500 rtcread(dev, uio, flags)
    501 	dev_t		dev;
    502 	struct uio	*uio;
    503 	int		flags;
    504 {
    505 	struct clock_softc	*sc;
    506 	mc_todregs		clkregs;
    507 	int			s, length;
    508 	char			buffer[16];
    509 
    510 	sc = clock_cd.cd_devs[minor(dev)];
    511 
    512 	s = splhigh();
    513 	MC146818_GETTOD(RTC, &clkregs);
    514 	splx(s);
    515 
    516 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    517 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    518 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    519 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    520 
    521 	if (uio->uio_offset > strlen(buffer))
    522 		return 0;
    523 
    524 	length = strlen(buffer) - uio->uio_offset;
    525 	if (length > uio->uio_resid)
    526 		length = uio->uio_resid;
    527 
    528 	return(uiomove((caddr_t)buffer, length, uio));
    529 }
    530 
    531 static int
    532 twodigits(buffer, pos)
    533 	char *buffer;
    534 	int pos;
    535 {
    536 	int result = 0;
    537 
    538 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    539 		result = (buffer[pos] - '0') * 10;
    540 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    541 		result += (buffer[pos+1] - '0');
    542 	return(result);
    543 }
    544 
    545 int
    546 rtcwrite(dev, uio, flags)
    547 	dev_t		dev;
    548 	struct uio	*uio;
    549 	int		flags;
    550 {
    551 	mc_todregs		clkregs;
    552 	int			s, length, error;
    553 	char			buffer[16];
    554 
    555 	/*
    556 	 * We require atomic updates!
    557 	 */
    558 	length = uio->uio_resid;
    559 	if (uio->uio_offset || (length != sizeof(buffer)
    560 	  && length != sizeof(buffer - 1)))
    561 		return(EINVAL);
    562 
    563 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
    564 		return(error);
    565 
    566 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    567 		return(EINVAL);
    568 
    569 	s = splclock();
    570 	mc146818_write(RTC, MC_REGB,
    571 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    572 	MC146818_GETTOD(RTC, &clkregs);
    573 	splx(s);
    574 
    575 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    576 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    577 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    578 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    579 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    580 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    581 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    582 
    583 	s = splclock();
    584 	MC146818_PUTTOD(RTC, &clkregs);
    585 	splx(s);
    586 
    587 	return(0);
    588 }
    589