Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.33
      1 /*	$NetBSD: clock.c,v 1.33 2003/07/15 01:19:48 lukem Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  *
     42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.33 2003/07/15 01:19:48 lukem Exp $");
     47 
     48 #include <sys/param.h>
     49 #include <sys/kernel.h>
     50 #include <sys/systm.h>
     51 #include <sys/device.h>
     52 #include <sys/uio.h>
     53 #include <sys/conf.h>
     54 #include <sys/proc.h>
     55 #include <sys/event.h>
     56 
     57 #include <dev/clock_subr.h>
     58 
     59 #include <machine/psl.h>
     60 #include <machine/cpu.h>
     61 #include <machine/iomap.h>
     62 #include <machine/mfp.h>
     63 #include <atari/dev/clockreg.h>
     64 #include <atari/atari/device.h>
     65 
     66 #if defined(GPROF) && defined(PROFTIMER)
     67 #include <machine/profile.h>
     68 #endif
     69 
     70 /*
     71  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     72  * of 200. Therefore the timer runs at an effective rate of:
     73  * 2457600/200 = 12288Hz.
     74  */
     75 #define CLOCK_HZ	12288
     76 
     77 /*
     78  * Machine-dependent clock routines.
     79  *
     80  * Inittodr initializes the time of day hardware which provides
     81  * date functions.
     82  *
     83  * Resettodr restores the time of day hardware after a time change.
     84  */
     85 
     86 struct clock_softc {
     87 	struct device	sc_dev;
     88 	int		sc_flags;
     89 };
     90 
     91 /*
     92  *  'sc_flags' state info. Only used by the rtc-device functions.
     93  */
     94 #define	RTC_OPEN	1
     95 
     96 dev_type_open(rtcopen);
     97 dev_type_close(rtcclose);
     98 dev_type_read(rtcread);
     99 dev_type_write(rtcwrite);
    100 
    101 static void	clockattach __P((struct device *, struct device *, void *));
    102 static int	clockmatch __P((struct device *, struct cfdata *, void *));
    103 
    104 CFATTACH_DECL(clock, sizeof(struct clock_softc),
    105     clockmatch, clockattach, NULL, NULL);
    106 
    107 extern struct cfdriver clock_cd;
    108 
    109 const struct cdevsw rtc_cdevsw = {
    110 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    111 	nostop, notty, nopoll, nommap, nokqfilter,
    112 };
    113 
    114 void statintr __P((struct clockframe));
    115 
    116 static u_long	gettod __P((void));
    117 static int	twodigits __P((char *, int));
    118 
    119 static int	divisor;	/* Systemclock divisor	*/
    120 
    121 /*
    122  * Statistics and profile clock intervals and variances. Variance must
    123  * be a power of 2. Since this gives us an even number, not an odd number,
    124  * we discard one case and compensate. That is, a variance of 64 would
    125  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    126  * This is symmetric around the point 32, or statvar/2, and thus averages
    127  * to that value (assuming uniform random numbers).
    128  */
    129 #ifdef STATCLOCK
    130 static int	statvar = 32;	/* {stat,prof}clock variance		*/
    131 static int	statmin;	/* statclock divisor - variance/2	*/
    132 static int	profmin;	/* profclock divisor - variance/2	*/
    133 static int	clk2min;	/* current, from above choices		*/
    134 #endif
    135 
    136 int
    137 clockmatch(pdp, cfp, auxp)
    138 struct device	*pdp;
    139 struct cfdata	*cfp;
    140 void		*auxp;
    141 {
    142 	if (!atari_realconfig) {
    143 	    /*
    144 	     * Initialize Timer-B in the ST-MFP. This timer is used by
    145 	     * the 'delay' function below. This timer is setup to be
    146 	     * continueously counting from 255 back to zero at a
    147 	     * frequency of 614400Hz. We do this *early* in the
    148 	     * initialisation process.
    149 	     */
    150 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
    151 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    152 	    MFP->mf_tbdr  = 0;
    153 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    154 
    155 	    /*
    156 	     * Initialize the time structure
    157 	     */
    158 	    time.tv_sec  = 0;
    159 	    time.tv_usec = 0;
    160 
    161 	    return 0;
    162 	}
    163 	if(!strcmp("clock", auxp))
    164 		return(1);
    165 	return(0);
    166 }
    167 
    168 /*
    169  * Start the real-time clock.
    170  */
    171 void clockattach(pdp, dp, auxp)
    172 struct device	*pdp, *dp;
    173 void		*auxp;
    174 {
    175 	struct clock_softc *sc = (void *)dp;
    176 
    177 	sc->sc_flags = 0;
    178 
    179 	/*
    180 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    181 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    182 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    183 	 * following expression works for 48, 64 or 96 hz.
    184 	 */
    185 	divisor       = CLOCK_HZ/hz;
    186 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    187 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    188 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    189 
    190 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    191 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    192 								hz, 64);
    193 		hz = 64;
    194 	}
    195 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    196 
    197 #ifdef STATCLOCK
    198 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    199 		stathz = hz;
    200 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    201 		profhz = hz << 1;
    202 
    203 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    204 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    205 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    206 
    207 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    208 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    209 	clk2min  = statmin;
    210 #endif /* STATCLOCK */
    211 
    212 }
    213 
    214 void cpu_initclocks()
    215 {
    216 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    217 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    218 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    219 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    220 
    221 #ifdef STATCLOCK
    222 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    223 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    224 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    225 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    226 #endif /* STATCLOCK */
    227 }
    228 
    229 void
    230 setstatclockrate(newhz)
    231 	int newhz;
    232 {
    233 #ifdef STATCLOCK
    234 	if (newhz == stathz)
    235 		clk2min = statmin;
    236 	else clk2min = profmin;
    237 #endif /* STATCLOCK */
    238 }
    239 
    240 #ifdef STATCLOCK
    241 void
    242 statintr(frame)
    243 	struct clockframe frame;
    244 {
    245 	register int	var, r;
    246 
    247 	var = statvar - 1;
    248 	do {
    249 		r = random() & var;
    250 	} while(r == 0);
    251 
    252 	/*
    253 	 * Note that we are always lagging behind as the new divisor
    254 	 * value will not be loaded until the next interrupt. This
    255 	 * shouldn't disturb the median frequency (I think ;-) ) as
    256 	 * only the value used when switching frequencies is used
    257 	 * twice. This shouldn't happen very often.
    258 	 */
    259 	MFP->mf_tcdr = clk2min + r;
    260 
    261 	statclock(&frame);
    262 }
    263 #endif /* STATCLOCK */
    264 
    265 /*
    266  * Returns number of usec since last recorded clock "tick"
    267  * (i.e. clock interrupt).
    268  */
    269 long
    270 clkread()
    271 {
    272 	u_int	delta;
    273 	u_char	ipra, tadr;
    274 
    275 	/*
    276 	 * Note: Order is important!
    277 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
    278 	 * the situation that very low value in 'tadr' is read (== a big delta)
    279 	 * while also acccounting for a full 'tick' because the counter went
    280 	 * through zero during the calculations.
    281 	 */
    282 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
    283 
    284 	delta = ((divisor - tadr) * tick) / divisor;
    285 	/*
    286 	 * Account for pending clock interrupts
    287 	 */
    288 	if(ipra & IA_TIMA)
    289 		return(delta + tick);
    290 	return(delta);
    291 }
    292 
    293 #define TIMB_FREQ	614400
    294 #define TIMB_LIMIT	256
    295 
    296 /*
    297  * Wait "n" microseconds.
    298  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    299  * Note: timer had better have been programmed before this is first used!
    300  */
    301 void
    302 delay(n)
    303 int	n;
    304 {
    305 	int	tick, otick;
    306 
    307 	/*
    308 	 * Read the counter first, so that the rest of the setup overhead is
    309 	 * counted.
    310 	 */
    311 	otick = MFP->mf_tbdr;
    312 
    313 	/*
    314 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    315 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    316 	 * loss of significance.
    317 	 */
    318 	n -= 5;
    319 	if(n < 0)
    320 		return;
    321 	{
    322 	    u_int	temp;
    323 
    324 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    325 					       : "d" (TIMB_FREQ), "d" (n));
    326 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    327 					       : "d"(1000000),"d"(temp),"0"(n));
    328 	}
    329 
    330 	while(n > 0) {
    331 		tick = MFP->mf_tbdr;
    332 		if(tick > otick)
    333 			n -= TIMB_LIMIT - (tick - otick);
    334 		else n -= otick - tick;
    335 		otick = tick;
    336 	}
    337 }
    338 
    339 #ifdef GPROF
    340 /*
    341  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    342  * Assumes it is called with clock interrupts blocked.
    343  */
    344 profclock(pc, ps)
    345 	caddr_t pc;
    346 	int ps;
    347 {
    348 	/*
    349 	 * Came from user mode.
    350 	 * If this process is being profiled record the tick.
    351 	 */
    352 	if (USERMODE(ps)) {
    353 		if (p->p_stats.p_prof.pr_scale)
    354 			addupc(pc, &curproc->p_stats.p_prof, 1);
    355 	}
    356 	/*
    357 	 * Came from kernel (supervisor) mode.
    358 	 * If we are profiling the kernel, record the tick.
    359 	 */
    360 	else if (profiling < 2) {
    361 		register int s = pc - s_lowpc;
    362 
    363 		if (s < s_textsize)
    364 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    365 	}
    366 	/*
    367 	 * Kernel profiling was on but has been disabled.
    368 	 * Mark as no longer profiling kernel and if all profiling done,
    369 	 * disable the clock.
    370 	 */
    371 	if (profiling && (profon & PRF_KERNEL)) {
    372 		profon &= ~PRF_KERNEL;
    373 		if (profon == PRF_NONE)
    374 			stopprofclock();
    375 	}
    376 }
    377 #endif
    378 
    379 /***********************************************************************
    380  *                   Real Time Clock support                           *
    381  ***********************************************************************/
    382 
    383 u_int mc146818_read(rtc, regno)
    384 void	*rtc;
    385 u_int	regno;
    386 {
    387 	((struct rtc *)rtc)->rtc_regno = regno;
    388 	return(((struct rtc *)rtc)->rtc_data & 0377);
    389 }
    390 
    391 void mc146818_write(rtc, regno, value)
    392 void	*rtc;
    393 u_int	regno, value;
    394 {
    395 	((struct rtc *)rtc)->rtc_regno = regno;
    396 	((struct rtc *)rtc)->rtc_data  = value;
    397 }
    398 
    399 /*
    400  * Initialize the time of day register, assuming the RTC runs in UTC.
    401  * Since we've got the 'rtc' device, this functionality should be removed
    402  * from the kernel. The only problem to be solved before that can happen
    403  * is the possibility of init(1) providing a way (rc.boot?) to set
    404  * the RTC before single-user mode is entered.
    405  */
    406 void
    407 inittodr(base)
    408 time_t base;
    409 {
    410 	/* Battery clock does not store usec's, so forget about it. */
    411 	time.tv_sec  = gettod();
    412 	time.tv_usec = 0;
    413 }
    414 
    415 /*
    416  * Function turned into a No-op. Use /dev/rtc to update the RTC.
    417  */
    418 void
    419 resettodr()
    420 {
    421 	return;
    422 }
    423 
    424 static u_long
    425 gettod()
    426 {
    427 	int			sps;
    428 	mc_todregs		clkregs;
    429 	u_int			regb;
    430 	struct clock_ymdhms	dt;
    431 
    432 	sps = splhigh();
    433 	regb = mc146818_read(RTC, MC_REGB);
    434 	MC146818_GETTOD(RTC, &clkregs);
    435 	splx(sps);
    436 
    437 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    438 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    439 		printf("Error: Nonstandard RealTimeClock Configuration -"
    440 			" value ignored\n"
    441 			"       A write to /dev/rtc will correct this.\n");
    442 			return(0);
    443 	}
    444 	if(clkregs[MC_SEC] > 59)
    445 		return(0);
    446 	if(clkregs[MC_MIN] > 59)
    447 		return(0);
    448 	if(clkregs[MC_HOUR] > 23)
    449 		return(0);
    450 	if(range_test(clkregs[MC_DOM], 1, 31))
    451 		return(0);
    452 	if (range_test(clkregs[MC_MONTH], 1, 12))
    453 		return(0);
    454 	if(clkregs[MC_YEAR] > 99)
    455 		return(0);
    456 
    457 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    458 	dt.dt_mon  = clkregs[MC_MONTH];
    459 	dt.dt_day  = clkregs[MC_DOM];
    460 	dt.dt_hour = clkregs[MC_HOUR];
    461 	dt.dt_min  = clkregs[MC_MIN];
    462 	dt.dt_sec  = clkregs[MC_SEC];
    463 
    464 	return(clock_ymdhms_to_secs(&dt));
    465 }
    466 /***********************************************************************
    467  *                   RTC-device support				       *
    468  ***********************************************************************/
    469 int
    470 rtcopen(dev, flag, mode, p)
    471 	dev_t		dev;
    472 	int		flag, mode;
    473 	struct proc	*p;
    474 {
    475 	int			unit = minor(dev);
    476 	struct clock_softc	*sc;
    477 
    478 	if (unit >= clock_cd.cd_ndevs)
    479 		return ENXIO;
    480 	sc = clock_cd.cd_devs[unit];
    481 	if (!sc)
    482 		return ENXIO;
    483 	if (sc->sc_flags & RTC_OPEN)
    484 		return EBUSY;
    485 
    486 	sc->sc_flags = RTC_OPEN;
    487 	return 0;
    488 }
    489 
    490 int
    491 rtcclose(dev, flag, mode, p)
    492 	dev_t		dev;
    493 	int		flag;
    494 	int		mode;
    495 	struct proc	*p;
    496 {
    497 	int			unit = minor(dev);
    498 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
    499 
    500 	sc->sc_flags = 0;
    501 	return 0;
    502 }
    503 
    504 int
    505 rtcread(dev, uio, flags)
    506 	dev_t		dev;
    507 	struct uio	*uio;
    508 	int		flags;
    509 {
    510 	struct clock_softc	*sc;
    511 	mc_todregs		clkregs;
    512 	int			s, length;
    513 	char			buffer[16];
    514 
    515 	sc = clock_cd.cd_devs[minor(dev)];
    516 
    517 	s = splhigh();
    518 	MC146818_GETTOD(RTC, &clkregs);
    519 	splx(s);
    520 
    521 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    522 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    523 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    524 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    525 
    526 	if (uio->uio_offset > strlen(buffer))
    527 		return 0;
    528 
    529 	length = strlen(buffer) - uio->uio_offset;
    530 	if (length > uio->uio_resid)
    531 		length = uio->uio_resid;
    532 
    533 	return(uiomove((caddr_t)buffer, length, uio));
    534 }
    535 
    536 static int
    537 twodigits(buffer, pos)
    538 	char *buffer;
    539 	int pos;
    540 {
    541 	int result = 0;
    542 
    543 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    544 		result = (buffer[pos] - '0') * 10;
    545 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    546 		result += (buffer[pos+1] - '0');
    547 	return(result);
    548 }
    549 
    550 int
    551 rtcwrite(dev, uio, flags)
    552 	dev_t		dev;
    553 	struct uio	*uio;
    554 	int		flags;
    555 {
    556 	mc_todregs		clkregs;
    557 	int			s, length, error;
    558 	char			buffer[16];
    559 
    560 	/*
    561 	 * We require atomic updates!
    562 	 */
    563 	length = uio->uio_resid;
    564 	if (uio->uio_offset || (length != sizeof(buffer)
    565 	  && length != sizeof(buffer - 1)))
    566 		return(EINVAL);
    567 
    568 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
    569 		return(error);
    570 
    571 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    572 		return(EINVAL);
    573 
    574 	s = splclock();
    575 	mc146818_write(RTC, MC_REGB,
    576 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    577 	MC146818_GETTOD(RTC, &clkregs);
    578 	splx(s);
    579 
    580 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    581 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    582 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    583 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    584 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    585 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    586 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    587 
    588 	s = splclock();
    589 	MC146818_PUTTOD(RTC, &clkregs);
    590 	splx(s);
    591 
    592 	return(0);
    593 }
    594