Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.39
      1 /*	$NetBSD: clock.c,v 1.39 2008/01/03 01:02:04 joerg Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1990 The Regents of the University of California.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * the Systems Programming Group of the University of Utah Computer
      9  * Science Department.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     36  *
     37  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     38  */
     39 /*
     40  * Copyright (c) 1988 University of Utah.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. All advertising materials mentioning features or use of this software
     55  *    must display the following acknowledgement:
     56  *	This product includes software developed by the University of
     57  *	California, Berkeley and its contributors.
     58  * 4. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     75  *
     76  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.39 2008/01/03 01:02:04 joerg Exp $");
     81 
     82 #include <sys/param.h>
     83 #include <sys/kernel.h>
     84 #include <sys/systm.h>
     85 #include <sys/device.h>
     86 #include <sys/uio.h>
     87 #include <sys/conf.h>
     88 #include <sys/proc.h>
     89 #include <sys/event.h>
     90 
     91 #include <dev/clock_subr.h>
     92 
     93 #include <machine/psl.h>
     94 #include <machine/cpu.h>
     95 #include <machine/iomap.h>
     96 #include <machine/mfp.h>
     97 #include <atari/dev/clockreg.h>
     98 #include <atari/atari/device.h>
     99 
    100 #if defined(GPROF) && defined(PROFTIMER)
    101 #include <machine/profile.h>
    102 #endif
    103 
    104 /*
    105  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
    106  * of 200. Therefore the timer runs at an effective rate of:
    107  * 2457600/200 = 12288Hz.
    108  */
    109 #define CLOCK_HZ	12288
    110 
    111 /*
    112  * Machine-dependent clock routines.
    113  *
    114  * Inittodr initializes the time of day hardware which provides
    115  * date functions.
    116  *
    117  * Resettodr restores the time of day hardware after a time change.
    118  */
    119 
    120 struct clock_softc {
    121 	struct device	sc_dev;
    122 	int		sc_flags;
    123 };
    124 
    125 /*
    126  *  'sc_flags' state info. Only used by the rtc-device functions.
    127  */
    128 #define	RTC_OPEN	1
    129 
    130 dev_type_open(rtcopen);
    131 dev_type_close(rtcclose);
    132 dev_type_read(rtcread);
    133 dev_type_write(rtcwrite);
    134 
    135 static void	clockattach __P((struct device *, struct device *, void *));
    136 static int	clockmatch __P((struct device *, struct cfdata *, void *));
    137 
    138 CFATTACH_DECL(clock, sizeof(struct clock_softc),
    139     clockmatch, clockattach, NULL, NULL);
    140 
    141 extern struct cfdriver clock_cd;
    142 
    143 const struct cdevsw rtc_cdevsw = {
    144 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    145 	nostop, notty, nopoll, nommap, nokqfilter,
    146 };
    147 
    148 void statintr __P((struct clockframe));
    149 
    150 static u_long	gettod __P((void));
    151 static int	twodigits __P((char *, int));
    152 
    153 static int	divisor;	/* Systemclock divisor	*/
    154 
    155 /*
    156  * Statistics and profile clock intervals and variances. Variance must
    157  * be a power of 2. Since this gives us an even number, not an odd number,
    158  * we discard one case and compensate. That is, a variance of 64 would
    159  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    160  * This is symmetric around the point 32, or statvar/2, and thus averages
    161  * to that value (assuming uniform random numbers).
    162  */
    163 #ifdef STATCLOCK
    164 static int	statvar = 32;	/* {stat,prof}clock variance		*/
    165 static int	statmin;	/* statclock divisor - variance/2	*/
    166 static int	profmin;	/* profclock divisor - variance/2	*/
    167 static int	clk2min;	/* current, from above choices		*/
    168 #endif
    169 
    170 int
    171 clockmatch(pdp, cfp, auxp)
    172 struct device	*pdp;
    173 struct cfdata	*cfp;
    174 void		*auxp;
    175 {
    176 	if (!atari_realconfig) {
    177 	    /*
    178 	     * Initialize Timer-B in the ST-MFP. This timer is used by
    179 	     * the 'delay' function below. This timer is setup to be
    180 	     * continueously counting from 255 back to zero at a
    181 	     * frequency of 614400Hz. We do this *early* in the
    182 	     * initialisation process.
    183 	     */
    184 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
    185 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    186 	    MFP->mf_tbdr  = 0;
    187 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    188 
    189 	    /*
    190 	     * Initialize the time structure
    191 	     */
    192 	    time.tv_sec  = 0;
    193 	    time.tv_usec = 0;
    194 
    195 	    return 0;
    196 	}
    197 	if(!strcmp("clock", auxp))
    198 		return(1);
    199 	return(0);
    200 }
    201 
    202 /*
    203  * Start the real-time clock.
    204  */
    205 void clockattach(pdp, dp, auxp)
    206 struct device	*pdp, *dp;
    207 void		*auxp;
    208 {
    209 	struct clock_softc *sc = (void *)dp;
    210 
    211 	sc->sc_flags = 0;
    212 
    213 	/*
    214 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    215 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    216 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    217 	 * following expression works for 48, 64 or 96 hz.
    218 	 */
    219 	divisor       = CLOCK_HZ/hz;
    220 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    221 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    222 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    223 
    224 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    225 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    226 								hz, 64);
    227 		hz = 64;
    228 	}
    229 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    230 
    231 #ifdef STATCLOCK
    232 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    233 		stathz = hz;
    234 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    235 		profhz = hz << 1;
    236 
    237 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    238 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    239 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    240 
    241 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    242 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    243 	clk2min  = statmin;
    244 #endif /* STATCLOCK */
    245 
    246 }
    247 
    248 void cpu_initclocks()
    249 {
    250 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    251 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    252 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    253 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    254 
    255 #ifdef STATCLOCK
    256 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    257 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    258 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    259 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    260 #endif /* STATCLOCK */
    261 }
    262 
    263 void
    264 setstatclockrate(newhz)
    265 	int newhz;
    266 {
    267 #ifdef STATCLOCK
    268 	if (newhz == stathz)
    269 		clk2min = statmin;
    270 	else clk2min = profmin;
    271 #endif /* STATCLOCK */
    272 }
    273 
    274 #ifdef STATCLOCK
    275 void
    276 statintr(frame)
    277 	struct clockframe frame;
    278 {
    279 	register int	var, r;
    280 
    281 	var = statvar - 1;
    282 	do {
    283 		r = random() & var;
    284 	} while(r == 0);
    285 
    286 	/*
    287 	 * Note that we are always lagging behind as the new divisor
    288 	 * value will not be loaded until the next interrupt. This
    289 	 * shouldn't disturb the median frequency (I think ;-) ) as
    290 	 * only the value used when switching frequencies is used
    291 	 * twice. This shouldn't happen very often.
    292 	 */
    293 	MFP->mf_tcdr = clk2min + r;
    294 
    295 	statclock(&frame);
    296 }
    297 #endif /* STATCLOCK */
    298 
    299 /*
    300  * Returns number of usec since last recorded clock "tick"
    301  * (i.e. clock interrupt).
    302  */
    303 long
    304 clkread()
    305 {
    306 	u_int	delta;
    307 	u_char	ipra, tadr;
    308 
    309 	/*
    310 	 * Note: Order is important!
    311 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
    312 	 * the situation that very low value in 'tadr' is read (== a big delta)
    313 	 * while also acccounting for a full 'tick' because the counter went
    314 	 * through zero during the calculations.
    315 	 */
    316 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
    317 
    318 	delta = ((divisor - tadr) * tick) / divisor;
    319 	/*
    320 	 * Account for pending clock interrupts
    321 	 */
    322 	if(ipra & IA_TIMA)
    323 		return(delta + tick);
    324 	return(delta);
    325 }
    326 
    327 #define TIMB_FREQ	614400
    328 #define TIMB_LIMIT	256
    329 
    330 /*
    331  * Wait "n" microseconds.
    332  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    333  * Note: timer had better have been programmed before this is first used!
    334  */
    335 void
    336 delay(unsigned int n)
    337 {
    338 	int	ticks, otick, remaining;
    339 
    340 	/*
    341 	 * Read the counter first, so that the rest of the setup overhead is
    342 	 * counted.
    343 	 */
    344 	otick = MFP->mf_tbdr;
    345 
    346 	if (n <= UINT_MAX / TIMB_FREQ) {
    347 		/*
    348 		 * For unsigned arithmetic, division can be replaced with
    349 		 * multiplication with the inverse and a shift.
    350 		 */
    351 		remaining = n * TIMB_FREQ / 1000000;
    352 	} else {
    353 		/* This is a very long delay.
    354 		 * Being slow here doesn't matter.
    355 		 */
    356 		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
    357 	}
    358 
    359 	while(remaining > 0) {
    360 		ticks = MFP->mf_tbdr;
    361 		if(ticks > otick)
    362 			remaining -= TIMB_LIMIT - (ticks - otick);
    363 		else
    364 			remaining -= otick - ticks;
    365 		otick = ticks;
    366 	}
    367 }
    368 
    369 #ifdef GPROF
    370 /*
    371  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    372  * Assumes it is called with clock interrupts blocked.
    373  */
    374 profclock(pc, ps)
    375 	void *pc;
    376 	int ps;
    377 {
    378 	/*
    379 	 * Came from user mode.
    380 	 * If this process is being profiled record the tick.
    381 	 */
    382 	if (USERMODE(ps)) {
    383 		if (p->p_stats.p_prof.pr_scale)
    384 			addupc(pc, &curproc->p_stats.p_prof, 1);
    385 	}
    386 	/*
    387 	 * Came from kernel (supervisor) mode.
    388 	 * If we are profiling the kernel, record the tick.
    389 	 */
    390 	else if (profiling < 2) {
    391 		register int s = pc - s_lowpc;
    392 
    393 		if (s < s_textsize)
    394 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    395 	}
    396 	/*
    397 	 * Kernel profiling was on but has been disabled.
    398 	 * Mark as no longer profiling kernel and if all profiling done,
    399 	 * disable the clock.
    400 	 */
    401 	if (profiling && (profon & PRF_KERNEL)) {
    402 		profon &= ~PRF_KERNEL;
    403 		if (profon == PRF_NONE)
    404 			stopprofclock();
    405 	}
    406 }
    407 #endif
    408 
    409 /***********************************************************************
    410  *                   Real Time Clock support                           *
    411  ***********************************************************************/
    412 
    413 u_int mc146818_read(rtc, regno)
    414 void	*rtc;
    415 u_int	regno;
    416 {
    417 	((struct rtc *)rtc)->rtc_regno = regno;
    418 	return(((struct rtc *)rtc)->rtc_data & 0377);
    419 }
    420 
    421 void mc146818_write(rtc, regno, value)
    422 void	*rtc;
    423 u_int	regno, value;
    424 {
    425 	((struct rtc *)rtc)->rtc_regno = regno;
    426 	((struct rtc *)rtc)->rtc_data  = value;
    427 }
    428 
    429 /*
    430  * Initialize the time of day register, assuming the RTC runs in UTC.
    431  * Since we've got the 'rtc' device, this functionality should be removed
    432  * from the kernel. The only problem to be solved before that can happen
    433  * is the possibility of init(1) providing a way (rc.boot?) to set
    434  * the RTC before single-user mode is entered.
    435  */
    436 void
    437 inittodr(base)
    438 time_t base;
    439 {
    440 	/* Battery clock does not store usec's, so forget about it. */
    441 	time.tv_sec  = gettod();
    442 	time.tv_usec = 0;
    443 }
    444 
    445 /*
    446  * Function turned into a No-op. Use /dev/rtc to update the RTC.
    447  */
    448 void
    449 resettodr()
    450 {
    451 	return;
    452 }
    453 
    454 static u_long
    455 gettod()
    456 {
    457 	int			sps;
    458 	mc_todregs		clkregs;
    459 	u_int			regb;
    460 	struct clock_ymdhms	dt;
    461 
    462 	sps = splhigh();
    463 	regb = mc146818_read(RTC, MC_REGB);
    464 	MC146818_GETTOD(RTC, &clkregs);
    465 	splx(sps);
    466 
    467 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    468 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    469 		printf("Error: Nonstandard RealTimeClock Configuration -"
    470 			" value ignored\n"
    471 			"       A write to /dev/rtc will correct this.\n");
    472 			return(0);
    473 	}
    474 	if(clkregs[MC_SEC] > 59)
    475 		return(0);
    476 	if(clkregs[MC_MIN] > 59)
    477 		return(0);
    478 	if(clkregs[MC_HOUR] > 23)
    479 		return(0);
    480 	if(range_test(clkregs[MC_DOM], 1, 31))
    481 		return(0);
    482 	if (range_test(clkregs[MC_MONTH], 1, 12))
    483 		return(0);
    484 	if(clkregs[MC_YEAR] > 99)
    485 		return(0);
    486 
    487 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    488 	dt.dt_mon  = clkregs[MC_MONTH];
    489 	dt.dt_day  = clkregs[MC_DOM];
    490 	dt.dt_hour = clkregs[MC_HOUR];
    491 	dt.dt_min  = clkregs[MC_MIN];
    492 	dt.dt_sec  = clkregs[MC_SEC];
    493 
    494 	return(clock_ymdhms_to_secs(&dt));
    495 }
    496 /***********************************************************************
    497  *                   RTC-device support				       *
    498  ***********************************************************************/
    499 int
    500 rtcopen(dev, flag, mode, l)
    501 	dev_t		dev;
    502 	int		flag, mode;
    503 	struct lwp	*l;
    504 {
    505 	int			unit = minor(dev);
    506 	struct clock_softc	*sc;
    507 
    508 	if (unit >= clock_cd.cd_ndevs)
    509 		return ENXIO;
    510 	sc = clock_cd.cd_devs[unit];
    511 	if (!sc)
    512 		return ENXIO;
    513 	if (sc->sc_flags & RTC_OPEN)
    514 		return EBUSY;
    515 
    516 	sc->sc_flags = RTC_OPEN;
    517 	return 0;
    518 }
    519 
    520 int
    521 rtcclose(dev, flag, mode, l)
    522 	dev_t		dev;
    523 	int		flag;
    524 	int		mode;
    525 	struct lwp	*l;
    526 {
    527 	int			unit = minor(dev);
    528 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
    529 
    530 	sc->sc_flags = 0;
    531 	return 0;
    532 }
    533 
    534 int
    535 rtcread(dev, uio, flags)
    536 	dev_t		dev;
    537 	struct uio	*uio;
    538 	int		flags;
    539 {
    540 	struct clock_softc	*sc;
    541 	mc_todregs		clkregs;
    542 	int			s, length;
    543 	char			buffer[16];
    544 
    545 	sc = clock_cd.cd_devs[minor(dev)];
    546 
    547 	s = splhigh();
    548 	MC146818_GETTOD(RTC, &clkregs);
    549 	splx(s);
    550 
    551 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    552 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    553 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    554 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    555 
    556 	if (uio->uio_offset > strlen(buffer))
    557 		return 0;
    558 
    559 	length = strlen(buffer) - uio->uio_offset;
    560 	if (length > uio->uio_resid)
    561 		length = uio->uio_resid;
    562 
    563 	return(uiomove((void *)buffer, length, uio));
    564 }
    565 
    566 static int
    567 twodigits(buffer, pos)
    568 	char *buffer;
    569 	int pos;
    570 {
    571 	int result = 0;
    572 
    573 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    574 		result = (buffer[pos] - '0') * 10;
    575 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    576 		result += (buffer[pos+1] - '0');
    577 	return(result);
    578 }
    579 
    580 int
    581 rtcwrite(dev, uio, flags)
    582 	dev_t		dev;
    583 	struct uio	*uio;
    584 	int		flags;
    585 {
    586 	mc_todregs		clkregs;
    587 	int			s, length, error;
    588 	char			buffer[16];
    589 
    590 	/*
    591 	 * We require atomic updates!
    592 	 */
    593 	length = uio->uio_resid;
    594 	if (uio->uio_offset || (length != sizeof(buffer)
    595 	  && length != sizeof(buffer - 1)))
    596 		return(EINVAL);
    597 
    598 	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
    599 		return(error);
    600 
    601 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    602 		return(EINVAL);
    603 
    604 	s = splclock();
    605 	mc146818_write(RTC, MC_REGB,
    606 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    607 	MC146818_GETTOD(RTC, &clkregs);
    608 	splx(s);
    609 
    610 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    611 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    612 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    613 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    614 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    615 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    616 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    617 
    618 	s = splclock();
    619 	MC146818_PUTTOD(RTC, &clkregs);
    620 	splx(s);
    621 
    622 	return(0);
    623 }
    624