Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.50.4.2
      1 /*	$NetBSD: clock.c,v 1.50.4.2 2011/03/05 20:49:42 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     37  *
     38  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.50.4.2 2011/03/05 20:49:42 rmind Exp $");
     43 
     44 #include <sys/param.h>
     45 #include <sys/kernel.h>
     46 #include <sys/systm.h>
     47 #include <sys/device.h>
     48 #include <sys/uio.h>
     49 #include <sys/conf.h>
     50 #include <sys/proc.h>
     51 #include <sys/event.h>
     52 #include <sys/timetc.h>
     53 
     54 #include <dev/clock_subr.h>
     55 
     56 #include <machine/psl.h>
     57 #include <machine/cpu.h>
     58 #include <machine/iomap.h>
     59 #include <machine/mfp.h>
     60 #include <atari/dev/clockreg.h>
     61 #include <atari/dev/clockvar.h>
     62 #include <atari/atari/device.h>
     63 
     64 #if defined(GPROF) && defined(PROFTIMER)
     65 #include <machine/profile.h>
     66 #endif
     67 
     68 #include "ioconf.h"
     69 
     70 static int	atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
     71 static int	atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
     72 
     73 /*
     74  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     75  * of 200. Therefore the timer runs at an effective rate of:
     76  * 2457600/200 = 12288Hz.
     77  */
     78 #define CLOCK_HZ	12288
     79 
     80 static u_int clk_getcounter(struct timecounter *);
     81 
     82 static struct timecounter clk_timecounter = {
     83 	clk_getcounter,	/* get_timecount */
     84 	0,		/* no poll_pps */
     85 	~0u,		/* counter_mask */
     86 	CLOCK_HZ,	/* frequency */
     87 	"clock",	/* name, overriden later */
     88 	100,		/* quality */
     89 	NULL,		/* prev */
     90 	NULL,		/* next */
     91 };
     92 
     93 /*
     94  * Machine-dependent clock routines.
     95  *
     96  * Inittodr initializes the time of day hardware which provides
     97  * date functions.
     98  *
     99  * Resettodr restores the time of day hardware after a time change.
    100  */
    101 
    102 struct clock_softc {
    103 	struct device	sc_dev;
    104 	int		sc_flags;
    105 };
    106 
    107 /*
    108  *  'sc_flags' state info. Only used by the rtc-device functions.
    109  */
    110 #define	RTC_OPEN	1
    111 
    112 dev_type_open(rtcopen);
    113 dev_type_close(rtcclose);
    114 dev_type_read(rtcread);
    115 dev_type_write(rtcwrite);
    116 
    117 static void	clockattach(struct device *, struct device *, void *);
    118 static int	clockmatch(struct device *, struct cfdata *, void *);
    119 
    120 CFATTACH_DECL(clock, sizeof(struct clock_softc),
    121     clockmatch, clockattach, NULL, NULL);
    122 
    123 const struct cdevsw rtc_cdevsw = {
    124 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    125 	nostop, notty, nopoll, nommap, nokqfilter,
    126 };
    127 
    128 void statintr(struct clockframe);
    129 
    130 static int	twodigits(char *, int);
    131 
    132 static int	divisor;	/* Systemclock divisor	*/
    133 
    134 /*
    135  * Statistics and profile clock intervals and variances. Variance must
    136  * be a power of 2. Since this gives us an even number, not an odd number,
    137  * we discard one case and compensate. That is, a variance of 64 would
    138  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    139  * This is symmetric around the point 32, or statvar/2, and thus averages
    140  * to that value (assuming uniform random numbers).
    141  */
    142 #ifdef STATCLOCK
    143 static int	statvar = 32;	/* {stat,prof}clock variance		*/
    144 static int	statmin;	/* statclock divisor - variance/2	*/
    145 static int	profmin;	/* profclock divisor - variance/2	*/
    146 static int	clk2min;	/* current, from above choices		*/
    147 #endif
    148 
    149 int
    150 clockmatch(struct device *pdp, struct cfdata *cfp, void *auxp)
    151 {
    152 
    153 	if (!strcmp("clock", auxp))
    154 		return 1;
    155 	return 0;
    156 }
    157 
    158 /*
    159  * Start the real-time clock.
    160  */
    161 void clockattach(struct device *pdp, struct device *dp, void *auxp)
    162 {
    163 
    164 	struct clock_softc *sc = (void *)dp;
    165 	static struct todr_chip_handle	tch;
    166 
    167 	tch.todr_gettime_ymdhms = atari_rtc_get;
    168 	tch.todr_settime_ymdhms = atari_rtc_set;
    169 	tch.todr_setwen = NULL;
    170 
    171 	todr_attach(&tch);
    172 
    173 	sc->sc_flags = 0;
    174 
    175 	/*
    176 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    177 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    178 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    179 	 * following expression works for 48, 64 or 96 hz.
    180 	 */
    181 	divisor       = CLOCK_HZ/hz;
    182 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    183 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    184 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    185 
    186 	clk_timecounter.tc_frequency = CLOCK_HZ;
    187 
    188 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    189 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    190 								hz, 64);
    191 		hz = 64;
    192 	}
    193 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    194 	tc_init(&clk_timecounter);
    195 
    196 #ifdef STATCLOCK
    197 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    198 		stathz = hz;
    199 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    200 		profhz = hz << 1;
    201 
    202 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    203 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    204 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    205 
    206 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    207 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    208 	clk2min  = statmin;
    209 #endif /* STATCLOCK */
    210 }
    211 
    212 void cpu_initclocks(void)
    213 {
    214 
    215 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    216 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    217 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    218 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    219 
    220 #ifdef STATCLOCK
    221 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    222 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    223 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    224 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    225 #endif /* STATCLOCK */
    226 }
    227 
    228 void
    229 setstatclockrate(int newhz)
    230 {
    231 
    232 #ifdef STATCLOCK
    233 	if (newhz == stathz)
    234 		clk2min = statmin;
    235 	else clk2min = profmin;
    236 #endif /* STATCLOCK */
    237 }
    238 
    239 #ifdef STATCLOCK
    240 void
    241 statintr(struct clockframe frame)
    242 {
    243 	register int	var, r;
    244 
    245 	var = statvar - 1;
    246 	do {
    247 		r = random() & var;
    248 	} while (r == 0);
    249 
    250 	/*
    251 	 * Note that we are always lagging behind as the new divisor
    252 	 * value will not be loaded until the next interrupt. This
    253 	 * shouldn't disturb the median frequency (I think ;-) ) as
    254 	 * only the value used when switching frequencies is used
    255 	 * twice. This shouldn't happen very often.
    256 	 */
    257 	MFP->mf_tcdr = clk2min + r;
    258 
    259 	statclock(&frame);
    260 }
    261 #endif /* STATCLOCK */
    262 
    263 static u_int
    264 clk_getcounter(struct timecounter *tc)
    265 {
    266 	uint32_t delta, count, cur_hardclock;
    267 	uint8_t ipra, tadr;
    268 	int s;
    269 	static uint32_t lastcount;
    270 
    271 	s = splhigh();
    272 	cur_hardclock = hardclock_ticks;
    273 	ipra = MFP->mf_ipra;
    274 	tadr = MFP->mf_tadr;
    275 	delta = divisor - tadr;
    276 
    277 	if (ipra & IA_TIMA)
    278 		delta += divisor;
    279 	splx(s);
    280 
    281 	count = (divisor * cur_hardclock) + delta;
    282 	if ((int32_t)(count - lastcount) < 0) {
    283 		/* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
    284 		count = lastcount + 1;
    285 	}
    286 	lastcount = count;
    287 
    288 	return count;
    289 }
    290 
    291 #define TIMB_FREQ	614400
    292 #define TIMB_LIMIT	256
    293 
    294 void
    295 init_delay(void)
    296 {
    297 
    298 	/*
    299 	 * Initialize Timer-B in the ST-MFP. This timer is used by
    300 	 * the 'delay' function below. This timer is setup to be
    301 	 * continueously counting from 255 back to zero at a
    302 	 * frequency of 614400Hz. We do this *early* in the
    303 	 * initialisation process.
    304 	 */
    305 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
    306 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    307 	MFP->mf_tbdr  = 0;
    308 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    309 }
    310 
    311 /*
    312  * Wait "n" microseconds.
    313  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    314  * Note: timer had better have been programmed before this is first used!
    315  */
    316 void
    317 delay(unsigned int n)
    318 {
    319 	int	ticks, otick, remaining;
    320 
    321 	/*
    322 	 * Read the counter first, so that the rest of the setup overhead is
    323 	 * counted.
    324 	 */
    325 	otick = MFP->mf_tbdr;
    326 
    327 	if (n <= UINT_MAX / TIMB_FREQ) {
    328 		/*
    329 		 * For unsigned arithmetic, division can be replaced with
    330 		 * multiplication with the inverse and a shift.
    331 		 */
    332 		remaining = n * TIMB_FREQ / 1000000;
    333 	} else {
    334 		/* This is a very long delay.
    335 		 * Being slow here doesn't matter.
    336 		 */
    337 		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
    338 	}
    339 
    340 	while (remaining > 0) {
    341 		ticks = MFP->mf_tbdr;
    342 		if (ticks > otick)
    343 			remaining -= TIMB_LIMIT - (ticks - otick);
    344 		else
    345 			remaining -= otick - ticks;
    346 		otick = ticks;
    347 	}
    348 }
    349 
    350 #ifdef GPROF
    351 /*
    352  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    353  * Assumes it is called with clock interrupts blocked.
    354  */
    355 profclock(void *pc, int ps)
    356 {
    357 
    358 	/*
    359 	 * Came from user mode.
    360 	 * If this process is being profiled record the tick.
    361 	 */
    362 	if (USERMODE(ps)) {
    363 		if (p->p_stats.p_prof.pr_scale)
    364 			addupc(pc, &curproc->p_stats.p_prof, 1);
    365 	}
    366 	/*
    367 	 * Came from kernel (supervisor) mode.
    368 	 * If we are profiling the kernel, record the tick.
    369 	 */
    370 	else if (profiling < 2) {
    371 		register int s = pc - s_lowpc;
    372 
    373 		if (s < s_textsize)
    374 			kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
    375 	}
    376 	/*
    377 	 * Kernel profiling was on but has been disabled.
    378 	 * Mark as no longer profiling kernel and if all profiling done,
    379 	 * disable the clock.
    380 	 */
    381 	if (profiling && (profon & PRF_KERNEL)) {
    382 		profon &= ~PRF_KERNEL;
    383 		if (profon == PRF_NONE)
    384 			stopprofclock();
    385 	}
    386 }
    387 #endif
    388 
    389 /***********************************************************************
    390  *                   Real Time Clock support                           *
    391  ***********************************************************************/
    392 
    393 u_int mc146818_read(void *cookie, u_int regno)
    394 {
    395 	struct rtc *rtc = cookie;
    396 
    397 	rtc->rtc_regno = regno;
    398 	return rtc->rtc_data & 0xff;
    399 }
    400 
    401 void mc146818_write(void *cookie, u_int regno, u_int value)
    402 {
    403 	struct rtc *rtc = cookie;
    404 
    405 	rtc->rtc_regno = regno;
    406 	rtc->rtc_data  = value;
    407 }
    408 
    409 static int
    410 atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    411 {
    412 	int			sps;
    413 	mc_todregs		clkregs;
    414 	u_int			regb;
    415 
    416 	sps = splhigh();
    417 	regb = mc146818_read(RTC, MC_REGB);
    418 	MC146818_GETTOD(RTC, &clkregs);
    419 	splx(sps);
    420 
    421 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    422 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    423 		printf("Error: Nonstandard RealTimeClock Configuration -"
    424 			" value ignored\n"
    425 			"       A write to /dev/rtc will correct this.\n");
    426 			return 0;
    427 	}
    428 	if (clkregs[MC_SEC] > 59)
    429 		return -1;
    430 	if (clkregs[MC_MIN] > 59)
    431 		return -1;
    432 	if (clkregs[MC_HOUR] > 23)
    433 		return -1;
    434 	if (range_test(clkregs[MC_DOM], 1, 31))
    435 		return -1;
    436 	if (range_test(clkregs[MC_MONTH], 1, 12))
    437 		return -1;
    438 	if (clkregs[MC_YEAR] > 99)
    439 		return -1;
    440 
    441 	dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    442 	dtp->dt_mon  = clkregs[MC_MONTH];
    443 	dtp->dt_day  = clkregs[MC_DOM];
    444 	dtp->dt_hour = clkregs[MC_HOUR];
    445 	dtp->dt_min  = clkregs[MC_MIN];
    446 	dtp->dt_sec  = clkregs[MC_SEC];
    447 
    448 	return 0;
    449 }
    450 
    451 static int
    452 atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    453 {
    454 	int s;
    455 	mc_todregs clkregs;
    456 
    457 	clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
    458 	clkregs[MC_MONTH] = dtp->dt_mon;
    459 	clkregs[MC_DOM] = dtp->dt_day;
    460 	clkregs[MC_HOUR] = dtp->dt_hour;
    461 	clkregs[MC_MIN] = dtp->dt_min;
    462 	clkregs[MC_SEC] = dtp->dt_sec;
    463 
    464 	s = splclock();
    465 	MC146818_PUTTOD(RTC, &clkregs);
    466 	splx(s);
    467 
    468 	return 0;
    469 }
    470 
    471 /***********************************************************************
    472  *                   RTC-device support				       *
    473  ***********************************************************************/
    474 int
    475 rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
    476 {
    477 	int			unit = minor(dev);
    478 	struct clock_softc	*sc;
    479 
    480 	sc = device_lookup_private(&clock_cd, unit);
    481 	if (sc == NULL)
    482 		return ENXIO;
    483 	if (sc->sc_flags & RTC_OPEN)
    484 		return EBUSY;
    485 
    486 	sc->sc_flags = RTC_OPEN;
    487 	return 0;
    488 }
    489 
    490 int
    491 rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
    492 {
    493 	int			unit = minor(dev);
    494 	struct clock_softc	*sc = device_lookup_private(&clock_cd, unit);
    495 
    496 	sc->sc_flags = 0;
    497 	return 0;
    498 }
    499 
    500 int
    501 rtcread(dev_t dev, struct uio *uio, int flags)
    502 {
    503 	struct clock_softc	*sc;
    504 	mc_todregs		clkregs;
    505 	int			s, length;
    506 	char			buffer[16];
    507 
    508 	sc = device_lookup_private(&clock_cd, minor(dev));
    509 
    510 	s = splhigh();
    511 	MC146818_GETTOD(RTC, &clkregs);
    512 	splx(s);
    513 
    514 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    515 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    516 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    517 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    518 
    519 	if (uio->uio_offset > strlen(buffer))
    520 		return 0;
    521 
    522 	length = strlen(buffer) - uio->uio_offset;
    523 	if (length > uio->uio_resid)
    524 		length = uio->uio_resid;
    525 
    526 	return uiomove((void *)buffer, length, uio);
    527 }
    528 
    529 static int
    530 twodigits(char *buffer, int pos)
    531 {
    532 	int result = 0;
    533 
    534 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    535 		result = (buffer[pos] - '0') * 10;
    536 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    537 		result += (buffer[pos+1] - '0');
    538 	return result;
    539 }
    540 
    541 int
    542 rtcwrite(dev_t dev, struct uio *uio, int flags)
    543 {
    544 	mc_todregs		clkregs;
    545 	int			s, length, error;
    546 	char			buffer[16];
    547 
    548 	/*
    549 	 * We require atomic updates!
    550 	 */
    551 	length = uio->uio_resid;
    552 	if (uio->uio_offset || (length != sizeof(buffer)
    553 	  && length != sizeof(buffer - 1)))
    554 		return EINVAL;
    555 
    556 	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
    557 		return error;
    558 
    559 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    560 		return EINVAL;
    561 
    562 	s = splclock();
    563 	mc146818_write(RTC, MC_REGB,
    564 	    mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    565 	MC146818_GETTOD(RTC, &clkregs);
    566 	splx(s);
    567 
    568 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    569 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    570 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    571 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    572 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    573 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    574 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    575 
    576 	s = splclock();
    577 	MC146818_PUTTOD(RTC, &clkregs);
    578 	splx(s);
    579 
    580 	return 0;
    581 }
    582