clock.c revision 1.52.2.1 1 /* $NetBSD: clock.c,v 1.52.2.1 2011/06/23 14:19:01 cherry Exp $ */
2
3 /*
4 * Copyright (c) 1988 University of Utah.
5 * Copyright (c) 1982, 1990 The Regents of the University of California.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: Utah $Hdr: clock.c 1.18 91/01/21$
37 *
38 * @(#)clock.c 7.6 (Berkeley) 5/7/91
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.52.2.1 2011/06/23 14:19:01 cherry Exp $");
43
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/systm.h>
47 #include <sys/device.h>
48 #include <sys/uio.h>
49 #include <sys/conf.h>
50 #include <sys/proc.h>
51 #include <sys/event.h>
52 #include <sys/timetc.h>
53
54 #include <dev/clock_subr.h>
55
56 #include <machine/psl.h>
57 #include <machine/cpu.h>
58 #include <machine/iomap.h>
59 #include <machine/mfp.h>
60 #include <atari/dev/clockreg.h>
61 #include <atari/dev/clockvar.h>
62 #include <atari/atari/device.h>
63
64 #if defined(GPROF) && defined(PROFTIMER)
65 #include <machine/profile.h>
66 #endif
67
68 #include "ioconf.h"
69
70 static int atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
71 static int atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
72
73 /*
74 * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
75 * of 200. Therefore the timer runs at an effective rate of:
76 * 2457600/200 = 12288Hz.
77 */
78 #define CLOCK_HZ 12288
79
80 static u_int clk_getcounter(struct timecounter *);
81
82 static struct timecounter clk_timecounter = {
83 clk_getcounter, /* get_timecount */
84 0, /* no poll_pps */
85 ~0u, /* counter_mask */
86 CLOCK_HZ, /* frequency */
87 "clock", /* name, overriden later */
88 100, /* quality */
89 NULL, /* prev */
90 NULL, /* next */
91 };
92
93 /*
94 * Machine-dependent clock routines.
95 *
96 * Inittodr initializes the time of day hardware which provides
97 * date functions.
98 *
99 * Resettodr restores the time of day hardware after a time change.
100 */
101
102 struct clock_softc {
103 device_t sc_dev;
104 int sc_flags;
105 struct todr_chip_handle sc_handle;
106 };
107
108 /*
109 * 'sc_flags' state info. Only used by the rtc-device functions.
110 */
111 #define RTC_OPEN 1
112
113 dev_type_open(rtcopen);
114 dev_type_close(rtcclose);
115 dev_type_read(rtcread);
116 dev_type_write(rtcwrite);
117
118 static void clockattach(device_t, device_t, void *);
119 static int clockmatch(device_t, cfdata_t, void *);
120
121 CFATTACH_DECL_NEW(clock, sizeof(struct clock_softc),
122 clockmatch, clockattach, NULL, NULL);
123
124 const struct cdevsw rtc_cdevsw = {
125 rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
126 nostop, notty, nopoll, nommap, nokqfilter,
127 };
128
129 void statintr(struct clockframe);
130
131 static int twodigits(char *, int);
132
133 static int divisor; /* Systemclock divisor */
134
135 /*
136 * Statistics and profile clock intervals and variances. Variance must
137 * be a power of 2. Since this gives us an even number, not an odd number,
138 * we discard one case and compensate. That is, a variance of 64 would
139 * give us offsets in [0..63]. Instead, we take offsets in [1..63].
140 * This is symmetric around the point 32, or statvar/2, and thus averages
141 * to that value (assuming uniform random numbers).
142 */
143 #ifdef STATCLOCK
144 static int statvar = 32; /* {stat,prof}clock variance */
145 static int statmin; /* statclock divisor - variance/2 */
146 static int profmin; /* profclock divisor - variance/2 */
147 static int clk2min; /* current, from above choices */
148 #endif
149
150 int
151 clockmatch(device_t parent, cfdata_t cf, void *aux)
152 {
153
154 if (!strcmp("clock", aux))
155 return 1;
156 return 0;
157 }
158
159 /*
160 * Start the real-time clock.
161 */
162 void clockattach(device_t parent, device_t self, void *aux)
163 {
164 struct clock_softc *sc = device_private(self);
165 struct todr_chip_handle *tch;
166
167 sc->sc_dev = self;
168 tch = &sc->sc_handle;
169 tch->todr_gettime_ymdhms = atari_rtc_get;
170 tch->todr_settime_ymdhms = atari_rtc_set;
171 tch->todr_setwen = NULL;
172
173 todr_attach(tch);
174
175 sc->sc_flags = 0;
176
177 /*
178 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
179 * The MFP clock runs at 2457600Hz. Therefore the timer runs
180 * at an effective rate of: 2457600/200 = 12288Hz. The
181 * following expression works for 48, 64 or 96 hz.
182 */
183 divisor = CLOCK_HZ/hz;
184 MFP->mf_tacr = 0; /* Stop timer */
185 MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
186 MFP->mf_tadr = divisor; /* Set divisor */
187
188 clk_timecounter.tc_frequency = CLOCK_HZ;
189
190 if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
191 printf (": illegal value %d for systemclock, reset to %d\n\t",
192 hz, 64);
193 hz = 64;
194 }
195 printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
196 tc_init(&clk_timecounter);
197
198 #ifdef STATCLOCK
199 if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
200 stathz = hz;
201 if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
202 profhz = hz << 1;
203
204 MFP->mf_tcdcr &= 0x7; /* Stop timer */
205 MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
206 MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
207
208 statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
209 profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
210 clk2min = statmin;
211 #endif /* STATCLOCK */
212 }
213
214 void cpu_initclocks(void)
215 {
216
217 MFP->mf_tacr = T_Q200; /* Start timer */
218 MFP->mf_ipra = (u_int8_t)~IA_TIMA;/* Clear pending interrupts */
219 MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
220 MFP->mf_imra |= IA_TIMA; /* ..... */
221
222 #ifdef STATCLOCK
223 MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
224 MFP->mf_iprb = (u_int8_t)~IB_TIMC;/* Clear pending interrupts */
225 MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
226 MFP->mf_imrb |= IB_TIMC; /* ..... */
227 #endif /* STATCLOCK */
228 }
229
230 void
231 setstatclockrate(int newhz)
232 {
233
234 #ifdef STATCLOCK
235 if (newhz == stathz)
236 clk2min = statmin;
237 else clk2min = profmin;
238 #endif /* STATCLOCK */
239 }
240
241 #ifdef STATCLOCK
242 void
243 statintr(struct clockframe frame)
244 {
245 register int var, r;
246
247 var = statvar - 1;
248 do {
249 r = random() & var;
250 } while (r == 0);
251
252 /*
253 * Note that we are always lagging behind as the new divisor
254 * value will not be loaded until the next interrupt. This
255 * shouldn't disturb the median frequency (I think ;-) ) as
256 * only the value used when switching frequencies is used
257 * twice. This shouldn't happen very often.
258 */
259 MFP->mf_tcdr = clk2min + r;
260
261 statclock(&frame);
262 }
263 #endif /* STATCLOCK */
264
265 static u_int
266 clk_getcounter(struct timecounter *tc)
267 {
268 uint32_t delta, count, cur_hardclock;
269 uint8_t ipra, tadr;
270 int s;
271 static uint32_t lastcount;
272
273 s = splhigh();
274 cur_hardclock = hardclock_ticks;
275 ipra = MFP->mf_ipra;
276 tadr = MFP->mf_tadr;
277 delta = divisor - tadr;
278
279 if (ipra & IA_TIMA)
280 delta += divisor;
281 splx(s);
282
283 count = (divisor * cur_hardclock) + delta;
284 if ((int32_t)(count - lastcount) < 0) {
285 /* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
286 count = lastcount + 1;
287 }
288 lastcount = count;
289
290 return count;
291 }
292
293 #define TIMB_FREQ 614400
294 #define TIMB_LIMIT 256
295
296 void
297 init_delay(void)
298 {
299
300 /*
301 * Initialize Timer-B in the ST-MFP. This timer is used by
302 * the 'delay' function below. This timer is setup to be
303 * continueously counting from 255 back to zero at a
304 * frequency of 614400Hz. We do this *early* in the
305 * initialisation process.
306 */
307 MFP->mf_tbcr = 0; /* Stop timer */
308 MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
309 MFP->mf_tbdr = 0;
310 MFP->mf_tbcr = T_Q004; /* Start timer */
311 }
312
313 /*
314 * Wait "n" microseconds.
315 * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
316 * Note: timer had better have been programmed before this is first used!
317 */
318 void
319 delay(unsigned int n)
320 {
321 int ticks, otick, remaining;
322
323 /*
324 * Read the counter first, so that the rest of the setup overhead is
325 * counted.
326 */
327 otick = MFP->mf_tbdr;
328
329 if (n <= UINT_MAX / TIMB_FREQ) {
330 /*
331 * For unsigned arithmetic, division can be replaced with
332 * multiplication with the inverse and a shift.
333 */
334 remaining = n * TIMB_FREQ / 1000000;
335 } else {
336 /* This is a very long delay.
337 * Being slow here doesn't matter.
338 */
339 remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
340 }
341
342 while (remaining > 0) {
343 ticks = MFP->mf_tbdr;
344 if (ticks > otick)
345 remaining -= TIMB_LIMIT - (ticks - otick);
346 else
347 remaining -= otick - ticks;
348 otick = ticks;
349 }
350 }
351
352 #ifdef GPROF
353 /*
354 * profclock() is expanded in line in lev6intr() unless profiling kernel.
355 * Assumes it is called with clock interrupts blocked.
356 */
357 profclock(void *pc, int ps)
358 {
359
360 /*
361 * Came from user mode.
362 * If this process is being profiled record the tick.
363 */
364 if (USERMODE(ps)) {
365 if (p->p_stats.p_prof.pr_scale)
366 addupc(pc, &curproc->p_stats.p_prof, 1);
367 }
368 /*
369 * Came from kernel (supervisor) mode.
370 * If we are profiling the kernel, record the tick.
371 */
372 else if (profiling < 2) {
373 register int s = pc - s_lowpc;
374
375 if (s < s_textsize)
376 kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
377 }
378 /*
379 * Kernel profiling was on but has been disabled.
380 * Mark as no longer profiling kernel and if all profiling done,
381 * disable the clock.
382 */
383 if (profiling && (profon & PRF_KERNEL)) {
384 profon &= ~PRF_KERNEL;
385 if (profon == PRF_NONE)
386 stopprofclock();
387 }
388 }
389 #endif
390
391 /***********************************************************************
392 * Real Time Clock support *
393 ***********************************************************************/
394
395 u_int mc146818_read(void *cookie, u_int regno)
396 {
397 struct rtc *rtc = cookie;
398
399 rtc->rtc_regno = regno;
400 return rtc->rtc_data & 0xff;
401 }
402
403 void mc146818_write(void *cookie, u_int regno, u_int value)
404 {
405 struct rtc *rtc = cookie;
406
407 rtc->rtc_regno = regno;
408 rtc->rtc_data = value;
409 }
410
411 static int
412 atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
413 {
414 int sps;
415 mc_todregs clkregs;
416 u_int regb;
417
418 sps = splhigh();
419 regb = mc146818_read(RTC, MC_REGB);
420 MC146818_GETTOD(RTC, &clkregs);
421 splx(sps);
422
423 regb &= MC_REGB_24HR|MC_REGB_BINARY;
424 if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
425 printf("Error: Nonstandard RealTimeClock Configuration -"
426 " value ignored\n"
427 " A write to /dev/rtc will correct this.\n");
428 return 0;
429 }
430 if (clkregs[MC_SEC] > 59)
431 return -1;
432 if (clkregs[MC_MIN] > 59)
433 return -1;
434 if (clkregs[MC_HOUR] > 23)
435 return -1;
436 if (range_test(clkregs[MC_DOM], 1, 31))
437 return -1;
438 if (range_test(clkregs[MC_MONTH], 1, 12))
439 return -1;
440 if (clkregs[MC_YEAR] > 99)
441 return -1;
442
443 dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
444 dtp->dt_mon = clkregs[MC_MONTH];
445 dtp->dt_day = clkregs[MC_DOM];
446 dtp->dt_hour = clkregs[MC_HOUR];
447 dtp->dt_min = clkregs[MC_MIN];
448 dtp->dt_sec = clkregs[MC_SEC];
449
450 return 0;
451 }
452
453 static int
454 atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
455 {
456 int s;
457 mc_todregs clkregs;
458
459 clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
460 clkregs[MC_MONTH] = dtp->dt_mon;
461 clkregs[MC_DOM] = dtp->dt_day;
462 clkregs[MC_HOUR] = dtp->dt_hour;
463 clkregs[MC_MIN] = dtp->dt_min;
464 clkregs[MC_SEC] = dtp->dt_sec;
465
466 s = splclock();
467 MC146818_PUTTOD(RTC, &clkregs);
468 splx(s);
469
470 return 0;
471 }
472
473 /***********************************************************************
474 * RTC-device support *
475 ***********************************************************************/
476 int
477 rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
478 {
479 int unit = minor(dev);
480 struct clock_softc *sc;
481
482 sc = device_lookup_private(&clock_cd, unit);
483 if (sc == NULL)
484 return ENXIO;
485 if (sc->sc_flags & RTC_OPEN)
486 return EBUSY;
487
488 sc->sc_flags = RTC_OPEN;
489 return 0;
490 }
491
492 int
493 rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
494 {
495 int unit = minor(dev);
496 struct clock_softc *sc = device_lookup_private(&clock_cd, unit);
497
498 sc->sc_flags = 0;
499 return 0;
500 }
501
502 int
503 rtcread(dev_t dev, struct uio *uio, int flags)
504 {
505 struct clock_softc *sc;
506 mc_todregs clkregs;
507 int s, length;
508 char buffer[16];
509
510 sc = device_lookup_private(&clock_cd, minor(dev));
511
512 s = splhigh();
513 MC146818_GETTOD(RTC, &clkregs);
514 splx(s);
515
516 sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
517 clkregs[MC_YEAR] + GEMSTARTOFTIME,
518 clkregs[MC_MONTH], clkregs[MC_DOM],
519 clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
520
521 if (uio->uio_offset > strlen(buffer))
522 return 0;
523
524 length = strlen(buffer) - uio->uio_offset;
525 if (length > uio->uio_resid)
526 length = uio->uio_resid;
527
528 return uiomove((void *)buffer, length, uio);
529 }
530
531 static int
532 twodigits(char *buffer, int pos)
533 {
534 int result = 0;
535
536 if (buffer[pos] >= '0' && buffer[pos] <= '9')
537 result = (buffer[pos] - '0') * 10;
538 if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
539 result += (buffer[pos+1] - '0');
540 return result;
541 }
542
543 int
544 rtcwrite(dev_t dev, struct uio *uio, int flags)
545 {
546 mc_todregs clkregs;
547 int s, length, error;
548 char buffer[16];
549
550 /*
551 * We require atomic updates!
552 */
553 length = uio->uio_resid;
554 if (uio->uio_offset || (length != sizeof(buffer)
555 && length != sizeof(buffer - 1)))
556 return EINVAL;
557
558 if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
559 return error;
560
561 if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
562 return EINVAL;
563
564 s = splclock();
565 mc146818_write(RTC, MC_REGB,
566 mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
567 MC146818_GETTOD(RTC, &clkregs);
568 splx(s);
569
570 clkregs[MC_SEC] = twodigits(buffer, 13);
571 clkregs[MC_MIN] = twodigits(buffer, 10);
572 clkregs[MC_HOUR] = twodigits(buffer, 8);
573 clkregs[MC_DOM] = twodigits(buffer, 6);
574 clkregs[MC_MONTH] = twodigits(buffer, 4);
575 s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
576 clkregs[MC_YEAR] = s - GEMSTARTOFTIME;
577
578 s = splclock();
579 MC146818_PUTTOD(RTC, &clkregs);
580 splx(s);
581
582 return 0;
583 }
584