Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.52.2.1
      1 /*	$NetBSD: clock.c,v 1.52.2.1 2011/06/23 14:19:01 cherry Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     37  *
     38  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.52.2.1 2011/06/23 14:19:01 cherry Exp $");
     43 
     44 #include <sys/param.h>
     45 #include <sys/kernel.h>
     46 #include <sys/systm.h>
     47 #include <sys/device.h>
     48 #include <sys/uio.h>
     49 #include <sys/conf.h>
     50 #include <sys/proc.h>
     51 #include <sys/event.h>
     52 #include <sys/timetc.h>
     53 
     54 #include <dev/clock_subr.h>
     55 
     56 #include <machine/psl.h>
     57 #include <machine/cpu.h>
     58 #include <machine/iomap.h>
     59 #include <machine/mfp.h>
     60 #include <atari/dev/clockreg.h>
     61 #include <atari/dev/clockvar.h>
     62 #include <atari/atari/device.h>
     63 
     64 #if defined(GPROF) && defined(PROFTIMER)
     65 #include <machine/profile.h>
     66 #endif
     67 
     68 #include "ioconf.h"
     69 
     70 static int	atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
     71 static int	atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
     72 
     73 /*
     74  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     75  * of 200. Therefore the timer runs at an effective rate of:
     76  * 2457600/200 = 12288Hz.
     77  */
     78 #define CLOCK_HZ	12288
     79 
     80 static u_int clk_getcounter(struct timecounter *);
     81 
     82 static struct timecounter clk_timecounter = {
     83 	clk_getcounter,	/* get_timecount */
     84 	0,		/* no poll_pps */
     85 	~0u,		/* counter_mask */
     86 	CLOCK_HZ,	/* frequency */
     87 	"clock",	/* name, overriden later */
     88 	100,		/* quality */
     89 	NULL,		/* prev */
     90 	NULL,		/* next */
     91 };
     92 
     93 /*
     94  * Machine-dependent clock routines.
     95  *
     96  * Inittodr initializes the time of day hardware which provides
     97  * date functions.
     98  *
     99  * Resettodr restores the time of day hardware after a time change.
    100  */
    101 
    102 struct clock_softc {
    103 	device_t	sc_dev;
    104 	int		sc_flags;
    105 	struct todr_chip_handle	sc_handle;
    106 };
    107 
    108 /*
    109  *  'sc_flags' state info. Only used by the rtc-device functions.
    110  */
    111 #define	RTC_OPEN	1
    112 
    113 dev_type_open(rtcopen);
    114 dev_type_close(rtcclose);
    115 dev_type_read(rtcread);
    116 dev_type_write(rtcwrite);
    117 
    118 static void	clockattach(device_t, device_t, void *);
    119 static int	clockmatch(device_t, cfdata_t, void *);
    120 
    121 CFATTACH_DECL_NEW(clock, sizeof(struct clock_softc),
    122     clockmatch, clockattach, NULL, NULL);
    123 
    124 const struct cdevsw rtc_cdevsw = {
    125 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
    126 	nostop, notty, nopoll, nommap, nokqfilter,
    127 };
    128 
    129 void statintr(struct clockframe);
    130 
    131 static int	twodigits(char *, int);
    132 
    133 static int	divisor;	/* Systemclock divisor	*/
    134 
    135 /*
    136  * Statistics and profile clock intervals and variances. Variance must
    137  * be a power of 2. Since this gives us an even number, not an odd number,
    138  * we discard one case and compensate. That is, a variance of 64 would
    139  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    140  * This is symmetric around the point 32, or statvar/2, and thus averages
    141  * to that value (assuming uniform random numbers).
    142  */
    143 #ifdef STATCLOCK
    144 static int	statvar = 32;	/* {stat,prof}clock variance		*/
    145 static int	statmin;	/* statclock divisor - variance/2	*/
    146 static int	profmin;	/* profclock divisor - variance/2	*/
    147 static int	clk2min;	/* current, from above choices		*/
    148 #endif
    149 
    150 int
    151 clockmatch(device_t parent, cfdata_t cf, void *aux)
    152 {
    153 
    154 	if (!strcmp("clock", aux))
    155 		return 1;
    156 	return 0;
    157 }
    158 
    159 /*
    160  * Start the real-time clock.
    161  */
    162 void clockattach(device_t parent, device_t self, void *aux)
    163 {
    164 	struct clock_softc *sc = device_private(self);
    165 	struct todr_chip_handle	*tch;
    166 
    167 	sc->sc_dev = self;
    168 	tch = &sc->sc_handle;
    169 	tch->todr_gettime_ymdhms = atari_rtc_get;
    170 	tch->todr_settime_ymdhms = atari_rtc_set;
    171 	tch->todr_setwen = NULL;
    172 
    173 	todr_attach(tch);
    174 
    175 	sc->sc_flags = 0;
    176 
    177 	/*
    178 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    179 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    180 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    181 	 * following expression works for 48, 64 or 96 hz.
    182 	 */
    183 	divisor       = CLOCK_HZ/hz;
    184 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    185 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    186 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    187 
    188 	clk_timecounter.tc_frequency = CLOCK_HZ;
    189 
    190 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    191 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    192 								hz, 64);
    193 		hz = 64;
    194 	}
    195 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    196 	tc_init(&clk_timecounter);
    197 
    198 #ifdef STATCLOCK
    199 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    200 		stathz = hz;
    201 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    202 		profhz = hz << 1;
    203 
    204 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    205 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    206 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    207 
    208 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    209 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    210 	clk2min  = statmin;
    211 #endif /* STATCLOCK */
    212 }
    213 
    214 void cpu_initclocks(void)
    215 {
    216 
    217 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    218 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    219 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    220 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    221 
    222 #ifdef STATCLOCK
    223 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    224 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    225 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    226 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    227 #endif /* STATCLOCK */
    228 }
    229 
    230 void
    231 setstatclockrate(int newhz)
    232 {
    233 
    234 #ifdef STATCLOCK
    235 	if (newhz == stathz)
    236 		clk2min = statmin;
    237 	else clk2min = profmin;
    238 #endif /* STATCLOCK */
    239 }
    240 
    241 #ifdef STATCLOCK
    242 void
    243 statintr(struct clockframe frame)
    244 {
    245 	register int	var, r;
    246 
    247 	var = statvar - 1;
    248 	do {
    249 		r = random() & var;
    250 	} while (r == 0);
    251 
    252 	/*
    253 	 * Note that we are always lagging behind as the new divisor
    254 	 * value will not be loaded until the next interrupt. This
    255 	 * shouldn't disturb the median frequency (I think ;-) ) as
    256 	 * only the value used when switching frequencies is used
    257 	 * twice. This shouldn't happen very often.
    258 	 */
    259 	MFP->mf_tcdr = clk2min + r;
    260 
    261 	statclock(&frame);
    262 }
    263 #endif /* STATCLOCK */
    264 
    265 static u_int
    266 clk_getcounter(struct timecounter *tc)
    267 {
    268 	uint32_t delta, count, cur_hardclock;
    269 	uint8_t ipra, tadr;
    270 	int s;
    271 	static uint32_t lastcount;
    272 
    273 	s = splhigh();
    274 	cur_hardclock = hardclock_ticks;
    275 	ipra = MFP->mf_ipra;
    276 	tadr = MFP->mf_tadr;
    277 	delta = divisor - tadr;
    278 
    279 	if (ipra & IA_TIMA)
    280 		delta += divisor;
    281 	splx(s);
    282 
    283 	count = (divisor * cur_hardclock) + delta;
    284 	if ((int32_t)(count - lastcount) < 0) {
    285 		/* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
    286 		count = lastcount + 1;
    287 	}
    288 	lastcount = count;
    289 
    290 	return count;
    291 }
    292 
    293 #define TIMB_FREQ	614400
    294 #define TIMB_LIMIT	256
    295 
    296 void
    297 init_delay(void)
    298 {
    299 
    300 	/*
    301 	 * Initialize Timer-B in the ST-MFP. This timer is used by
    302 	 * the 'delay' function below. This timer is setup to be
    303 	 * continueously counting from 255 back to zero at a
    304 	 * frequency of 614400Hz. We do this *early* in the
    305 	 * initialisation process.
    306 	 */
    307 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
    308 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    309 	MFP->mf_tbdr  = 0;
    310 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    311 }
    312 
    313 /*
    314  * Wait "n" microseconds.
    315  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    316  * Note: timer had better have been programmed before this is first used!
    317  */
    318 void
    319 delay(unsigned int n)
    320 {
    321 	int	ticks, otick, remaining;
    322 
    323 	/*
    324 	 * Read the counter first, so that the rest of the setup overhead is
    325 	 * counted.
    326 	 */
    327 	otick = MFP->mf_tbdr;
    328 
    329 	if (n <= UINT_MAX / TIMB_FREQ) {
    330 		/*
    331 		 * For unsigned arithmetic, division can be replaced with
    332 		 * multiplication with the inverse and a shift.
    333 		 */
    334 		remaining = n * TIMB_FREQ / 1000000;
    335 	} else {
    336 		/* This is a very long delay.
    337 		 * Being slow here doesn't matter.
    338 		 */
    339 		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
    340 	}
    341 
    342 	while (remaining > 0) {
    343 		ticks = MFP->mf_tbdr;
    344 		if (ticks > otick)
    345 			remaining -= TIMB_LIMIT - (ticks - otick);
    346 		else
    347 			remaining -= otick - ticks;
    348 		otick = ticks;
    349 	}
    350 }
    351 
    352 #ifdef GPROF
    353 /*
    354  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    355  * Assumes it is called with clock interrupts blocked.
    356  */
    357 profclock(void *pc, int ps)
    358 {
    359 
    360 	/*
    361 	 * Came from user mode.
    362 	 * If this process is being profiled record the tick.
    363 	 */
    364 	if (USERMODE(ps)) {
    365 		if (p->p_stats.p_prof.pr_scale)
    366 			addupc(pc, &curproc->p_stats.p_prof, 1);
    367 	}
    368 	/*
    369 	 * Came from kernel (supervisor) mode.
    370 	 * If we are profiling the kernel, record the tick.
    371 	 */
    372 	else if (profiling < 2) {
    373 		register int s = pc - s_lowpc;
    374 
    375 		if (s < s_textsize)
    376 			kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
    377 	}
    378 	/*
    379 	 * Kernel profiling was on but has been disabled.
    380 	 * Mark as no longer profiling kernel and if all profiling done,
    381 	 * disable the clock.
    382 	 */
    383 	if (profiling && (profon & PRF_KERNEL)) {
    384 		profon &= ~PRF_KERNEL;
    385 		if (profon == PRF_NONE)
    386 			stopprofclock();
    387 	}
    388 }
    389 #endif
    390 
    391 /***********************************************************************
    392  *                   Real Time Clock support                           *
    393  ***********************************************************************/
    394 
    395 u_int mc146818_read(void *cookie, u_int regno)
    396 {
    397 	struct rtc *rtc = cookie;
    398 
    399 	rtc->rtc_regno = regno;
    400 	return rtc->rtc_data & 0xff;
    401 }
    402 
    403 void mc146818_write(void *cookie, u_int regno, u_int value)
    404 {
    405 	struct rtc *rtc = cookie;
    406 
    407 	rtc->rtc_regno = regno;
    408 	rtc->rtc_data  = value;
    409 }
    410 
    411 static int
    412 atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    413 {
    414 	int			sps;
    415 	mc_todregs		clkregs;
    416 	u_int			regb;
    417 
    418 	sps = splhigh();
    419 	regb = mc146818_read(RTC, MC_REGB);
    420 	MC146818_GETTOD(RTC, &clkregs);
    421 	splx(sps);
    422 
    423 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    424 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    425 		printf("Error: Nonstandard RealTimeClock Configuration -"
    426 			" value ignored\n"
    427 			"       A write to /dev/rtc will correct this.\n");
    428 			return 0;
    429 	}
    430 	if (clkregs[MC_SEC] > 59)
    431 		return -1;
    432 	if (clkregs[MC_MIN] > 59)
    433 		return -1;
    434 	if (clkregs[MC_HOUR] > 23)
    435 		return -1;
    436 	if (range_test(clkregs[MC_DOM], 1, 31))
    437 		return -1;
    438 	if (range_test(clkregs[MC_MONTH], 1, 12))
    439 		return -1;
    440 	if (clkregs[MC_YEAR] > 99)
    441 		return -1;
    442 
    443 	dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    444 	dtp->dt_mon  = clkregs[MC_MONTH];
    445 	dtp->dt_day  = clkregs[MC_DOM];
    446 	dtp->dt_hour = clkregs[MC_HOUR];
    447 	dtp->dt_min  = clkregs[MC_MIN];
    448 	dtp->dt_sec  = clkregs[MC_SEC];
    449 
    450 	return 0;
    451 }
    452 
    453 static int
    454 atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    455 {
    456 	int s;
    457 	mc_todregs clkregs;
    458 
    459 	clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
    460 	clkregs[MC_MONTH] = dtp->dt_mon;
    461 	clkregs[MC_DOM] = dtp->dt_day;
    462 	clkregs[MC_HOUR] = dtp->dt_hour;
    463 	clkregs[MC_MIN] = dtp->dt_min;
    464 	clkregs[MC_SEC] = dtp->dt_sec;
    465 
    466 	s = splclock();
    467 	MC146818_PUTTOD(RTC, &clkregs);
    468 	splx(s);
    469 
    470 	return 0;
    471 }
    472 
    473 /***********************************************************************
    474  *                   RTC-device support				       *
    475  ***********************************************************************/
    476 int
    477 rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
    478 {
    479 	int			unit = minor(dev);
    480 	struct clock_softc	*sc;
    481 
    482 	sc = device_lookup_private(&clock_cd, unit);
    483 	if (sc == NULL)
    484 		return ENXIO;
    485 	if (sc->sc_flags & RTC_OPEN)
    486 		return EBUSY;
    487 
    488 	sc->sc_flags = RTC_OPEN;
    489 	return 0;
    490 }
    491 
    492 int
    493 rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
    494 {
    495 	int			unit = minor(dev);
    496 	struct clock_softc	*sc = device_lookup_private(&clock_cd, unit);
    497 
    498 	sc->sc_flags = 0;
    499 	return 0;
    500 }
    501 
    502 int
    503 rtcread(dev_t dev, struct uio *uio, int flags)
    504 {
    505 	struct clock_softc	*sc;
    506 	mc_todregs		clkregs;
    507 	int			s, length;
    508 	char			buffer[16];
    509 
    510 	sc = device_lookup_private(&clock_cd, minor(dev));
    511 
    512 	s = splhigh();
    513 	MC146818_GETTOD(RTC, &clkregs);
    514 	splx(s);
    515 
    516 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
    517 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    518 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    519 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    520 
    521 	if (uio->uio_offset > strlen(buffer))
    522 		return 0;
    523 
    524 	length = strlen(buffer) - uio->uio_offset;
    525 	if (length > uio->uio_resid)
    526 		length = uio->uio_resid;
    527 
    528 	return uiomove((void *)buffer, length, uio);
    529 }
    530 
    531 static int
    532 twodigits(char *buffer, int pos)
    533 {
    534 	int result = 0;
    535 
    536 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    537 		result = (buffer[pos] - '0') * 10;
    538 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    539 		result += (buffer[pos+1] - '0');
    540 	return result;
    541 }
    542 
    543 int
    544 rtcwrite(dev_t dev, struct uio *uio, int flags)
    545 {
    546 	mc_todregs		clkregs;
    547 	int			s, length, error;
    548 	char			buffer[16];
    549 
    550 	/*
    551 	 * We require atomic updates!
    552 	 */
    553 	length = uio->uio_resid;
    554 	if (uio->uio_offset || (length != sizeof(buffer)
    555 	  && length != sizeof(buffer - 1)))
    556 		return EINVAL;
    557 
    558 	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
    559 		return error;
    560 
    561 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    562 		return EINVAL;
    563 
    564 	s = splclock();
    565 	mc146818_write(RTC, MC_REGB,
    566 	    mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    567 	MC146818_GETTOD(RTC, &clkregs);
    568 	splx(s);
    569 
    570 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    571 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    572 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    573 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    574 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    575 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    576 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    577 
    578 	s = splclock();
    579 	MC146818_PUTTOD(RTC, &clkregs);
    580 	splx(s);
    581 
    582 	return 0;
    583 }
    584