Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.59.28.1
      1 /*	$NetBSD: clock.c,v 1.59.28.1 2020/04/13 08:03:39 martin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     37  *
     38  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.59.28.1 2020/04/13 08:03:39 martin Exp $");
     43 
     44 #include <sys/param.h>
     45 #include <sys/kernel.h>
     46 #include <sys/systm.h>
     47 #include <sys/device.h>
     48 #include <sys/uio.h>
     49 #include <sys/conf.h>
     50 #include <sys/proc.h>
     51 #include <sys/event.h>
     52 #include <sys/timetc.h>
     53 
     54 #include <dev/clock_subr.h>
     55 
     56 #include <machine/psl.h>
     57 #include <machine/cpu.h>
     58 #include <machine/iomap.h>
     59 #include <machine/mfp.h>
     60 #include <atari/dev/clockreg.h>
     61 #include <atari/dev/clockvar.h>
     62 #include <atari/atari/device.h>
     63 
     64 #if defined(GPROF) && defined(PROFTIMER)
     65 #include <machine/profile.h>
     66 #endif
     67 
     68 #include "ioconf.h"
     69 
     70 static int	atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
     71 static int	atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
     72 
     73 /*
     74  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     75  * of 200. Therefore the timer runs at an effective rate of:
     76  * 2457600/200 = 12288Hz.
     77  */
     78 #define CLOCK_HZ	12288
     79 
     80 static u_int clk_getcounter(struct timecounter *);
     81 
     82 static struct timecounter clk_timecounter = {
     83 	clk_getcounter,	/* get_timecount */
     84 	0,		/* no poll_pps */
     85 	~0u,		/* counter_mask */
     86 	CLOCK_HZ,	/* frequency */
     87 	"clock",	/* name, overriden later */
     88 	100,		/* quality */
     89 	NULL,		/* prev */
     90 	NULL,		/* next */
     91 };
     92 
     93 /*
     94  * Machine-dependent clock routines.
     95  *
     96  * Inittodr initializes the time of day hardware which provides
     97  * date functions.
     98  *
     99  * Resettodr restores the time of day hardware after a time change.
    100  */
    101 
    102 struct clock_softc {
    103 	device_t	sc_dev;
    104 	int		sc_flags;
    105 	struct todr_chip_handle	sc_handle;
    106 };
    107 
    108 /*
    109  *  'sc_flags' state info. Only used by the rtc-device functions.
    110  */
    111 #define	RTC_OPEN	1
    112 
    113 dev_type_open(rtcopen);
    114 dev_type_close(rtcclose);
    115 dev_type_read(rtcread);
    116 dev_type_write(rtcwrite);
    117 
    118 static void	clockattach(device_t, device_t, void *);
    119 static int	clockmatch(device_t, cfdata_t, void *);
    120 
    121 CFATTACH_DECL_NEW(clock, sizeof(struct clock_softc),
    122     clockmatch, clockattach, NULL, NULL);
    123 
    124 const struct cdevsw rtc_cdevsw = {
    125 	.d_open = rtcopen,
    126 	.d_close = rtcclose,
    127 	.d_read = rtcread,
    128 	.d_write = rtcwrite,
    129 	.d_ioctl = noioctl,
    130 	.d_stop = nostop,
    131 	.d_tty = notty,
    132 	.d_poll = nopoll,
    133 	.d_mmap = nommap,
    134 	.d_kqfilter = nokqfilter,
    135 	.d_discard = nodiscard,
    136 	.d_flag = 0
    137 };
    138 
    139 void statintr(struct clockframe);
    140 
    141 static int	twodigits(char *, int);
    142 
    143 static int	divisor;	/* Systemclock divisor	*/
    144 
    145 /*
    146  * Statistics and profile clock intervals and variances. Variance must
    147  * be a power of 2. Since this gives us an even number, not an odd number,
    148  * we discard one case and compensate. That is, a variance of 64 would
    149  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    150  * This is symmetric around the point 32, or statvar/2, and thus averages
    151  * to that value (assuming uniform random numbers).
    152  */
    153 #ifdef STATCLOCK
    154 static int	statvar = 32;	/* {stat,prof}clock variance		*/
    155 static int	statmin;	/* statclock divisor - variance/2	*/
    156 static int	profmin;	/* profclock divisor - variance/2	*/
    157 static int	clk2min;	/* current, from above choices		*/
    158 #endif
    159 
    160 static int
    161 clockmatch(device_t parent, cfdata_t cf, void *aux)
    162 {
    163 
    164 	if (!strcmp("clock", aux))
    165 		return 1;
    166 	return 0;
    167 }
    168 
    169 /*
    170  * Start the real-time clock.
    171  */
    172 static void
    173 clockattach(device_t parent, device_t self, void *aux)
    174 {
    175 	struct clock_softc *sc = device_private(self);
    176 	struct todr_chip_handle	*tch;
    177 
    178 	sc->sc_dev = self;
    179 	tch = &sc->sc_handle;
    180 	tch->todr_gettime_ymdhms = atari_rtc_get;
    181 	tch->todr_settime_ymdhms = atari_rtc_set;
    182 	tch->todr_setwen = NULL;
    183 
    184 	todr_attach(tch);
    185 
    186 	sc->sc_flags = 0;
    187 
    188 	/*
    189 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    190 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    191 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    192 	 * following expression works for 48, 64 or 96 hz.
    193 	 */
    194 	divisor       = CLOCK_HZ/hz;
    195 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    196 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    197 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    198 
    199 	clk_timecounter.tc_frequency = CLOCK_HZ;
    200 
    201 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    202 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    203 								hz, 64);
    204 		hz = 64;
    205 	}
    206 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    207 	tc_init(&clk_timecounter);
    208 
    209 #ifdef STATCLOCK
    210 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    211 		stathz = hz;
    212 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    213 		profhz = hz << 1;
    214 
    215 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    216 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    217 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    218 
    219 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    220 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    221 	clk2min  = statmin;
    222 #endif /* STATCLOCK */
    223 }
    224 
    225 void
    226 cpu_initclocks(void)
    227 {
    228 
    229 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    230 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    231 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    232 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    233 
    234 #ifdef STATCLOCK
    235 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    236 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    237 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    238 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    239 #endif /* STATCLOCK */
    240 }
    241 
    242 void
    243 setstatclockrate(int newhz)
    244 {
    245 
    246 #ifdef STATCLOCK
    247 	if (newhz == stathz)
    248 		clk2min = statmin;
    249 	else clk2min = profmin;
    250 #endif /* STATCLOCK */
    251 }
    252 
    253 #ifdef STATCLOCK
    254 void
    255 statintr(struct clockframe frame)
    256 {
    257 	register int	var, r;
    258 
    259 	var = statvar - 1;
    260 	do {
    261 		r = random() & var;
    262 	} while (r == 0);
    263 
    264 	/*
    265 	 * Note that we are always lagging behind as the new divisor
    266 	 * value will not be loaded until the next interrupt. This
    267 	 * shouldn't disturb the median frequency (I think ;-) ) as
    268 	 * only the value used when switching frequencies is used
    269 	 * twice. This shouldn't happen very often.
    270 	 */
    271 	MFP->mf_tcdr = clk2min + r;
    272 
    273 	statclock(&frame);
    274 }
    275 #endif /* STATCLOCK */
    276 
    277 static u_int
    278 clk_getcounter(struct timecounter *tc)
    279 {
    280 	uint32_t delta, count, cur_hardclock;
    281 	uint8_t ipra, tadr;
    282 	int s;
    283 	static uint32_t lastcount;
    284 
    285 	s = splhigh();
    286 	cur_hardclock = hardclock_ticks;
    287 	ipra = MFP->mf_ipra;
    288 	tadr = MFP->mf_tadr;
    289 	delta = divisor - tadr;
    290 
    291 	if (ipra & IA_TIMA)
    292 		delta += divisor;
    293 	splx(s);
    294 
    295 	count = (divisor * cur_hardclock) + delta;
    296 	if ((int32_t)(count - lastcount) < 0) {
    297 		/* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
    298 		count = lastcount + 1;
    299 	}
    300 	lastcount = count;
    301 
    302 	return count;
    303 }
    304 
    305 #define TIMB_FREQ	614400
    306 #define TIMB_LIMIT	256
    307 
    308 void
    309 init_delay(void)
    310 {
    311 
    312 	/*
    313 	 * Initialize Timer-B in the ST-MFP. This timer is used by
    314 	 * the 'delay' function below. This timer is setup to be
    315 	 * continueously counting from 255 back to zero at a
    316 	 * frequency of 614400Hz. We do this *early* in the
    317 	 * initialisation process.
    318 	 */
    319 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
    320 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    321 	MFP->mf_tbdr  = 0;
    322 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    323 }
    324 
    325 /*
    326  * Wait "n" microseconds.
    327  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    328  * Note: timer had better have been programmed before this is first used!
    329  */
    330 void
    331 delay(unsigned int n)
    332 {
    333 	int	ticks, otick, remaining;
    334 
    335 	/*
    336 	 * Read the counter first, so that the rest of the setup overhead is
    337 	 * counted.
    338 	 */
    339 	otick = MFP->mf_tbdr;
    340 
    341 	if (n <= UINT_MAX / TIMB_FREQ) {
    342 		/*
    343 		 * For unsigned arithmetic, division can be replaced with
    344 		 * multiplication with the inverse and a shift.
    345 		 */
    346 		remaining = n * TIMB_FREQ / 1000000;
    347 	} else {
    348 		/* This is a very long delay.
    349 		 * Being slow here doesn't matter.
    350 		 */
    351 		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
    352 	}
    353 
    354 	while (remaining > 0) {
    355 		ticks = MFP->mf_tbdr;
    356 		if (ticks > otick)
    357 			remaining -= TIMB_LIMIT - (ticks - otick);
    358 		else
    359 			remaining -= otick - ticks;
    360 		otick = ticks;
    361 	}
    362 }
    363 
    364 #ifdef GPROF
    365 /*
    366  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    367  * Assumes it is called with clock interrupts blocked.
    368  */
    369 profclock(void *pc, int ps)
    370 {
    371 
    372 	/*
    373 	 * Came from user mode.
    374 	 * If this process is being profiled record the tick.
    375 	 */
    376 	if (USERMODE(ps)) {
    377 		if (p->p_stats.p_prof.pr_scale)
    378 			addupc(pc, &curproc->p_stats.p_prof, 1);
    379 	}
    380 	/*
    381 	 * Came from kernel (supervisor) mode.
    382 	 * If we are profiling the kernel, record the tick.
    383 	 */
    384 	else if (profiling < 2) {
    385 		register int s = pc - s_lowpc;
    386 
    387 		if (s < s_textsize)
    388 			kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
    389 	}
    390 	/*
    391 	 * Kernel profiling was on but has been disabled.
    392 	 * Mark as no longer profiling kernel and if all profiling done,
    393 	 * disable the clock.
    394 	 */
    395 	if (profiling && (profon & PRF_KERNEL)) {
    396 		profon &= ~PRF_KERNEL;
    397 		if (profon == PRF_NONE)
    398 			stopprofclock();
    399 	}
    400 }
    401 #endif
    402 
    403 /***********************************************************************
    404  *                   Real Time Clock support                           *
    405  ***********************************************************************/
    406 
    407 u_int mc146818_read(void *cookie, u_int regno)
    408 {
    409 	struct rtc *rtc = cookie;
    410 
    411 	rtc->rtc_regno = regno;
    412 	return rtc->rtc_data & 0xff;
    413 }
    414 
    415 void mc146818_write(void *cookie, u_int regno, u_int value)
    416 {
    417 	struct rtc *rtc = cookie;
    418 
    419 	rtc->rtc_regno = regno;
    420 	rtc->rtc_data  = value;
    421 }
    422 
    423 static int
    424 atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    425 {
    426 	int			sps;
    427 	mc_todregs		clkregs;
    428 	u_int			regb;
    429 
    430 	sps = splhigh();
    431 	regb = mc146818_read(RTC, MC_REGB);
    432 	MC146818_GETTOD(RTC, &clkregs);
    433 	splx(sps);
    434 
    435 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    436 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    437 		printf("Error: Nonstandard RealTimeClock Configuration -"
    438 			" value ignored\n"
    439 			"       A write to /dev/rtc will correct this.\n");
    440 			return 0;
    441 	}
    442 	if (clkregs[MC_SEC] > 59)
    443 		return -1;
    444 	if (clkregs[MC_MIN] > 59)
    445 		return -1;
    446 	if (clkregs[MC_HOUR] > 23)
    447 		return -1;
    448 	if (range_test(clkregs[MC_DOM], 1, 31))
    449 		return -1;
    450 	if (range_test(clkregs[MC_MONTH], 1, 12))
    451 		return -1;
    452 	if (clkregs[MC_YEAR] > 99)
    453 		return -1;
    454 
    455 	dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    456 	dtp->dt_mon  = clkregs[MC_MONTH];
    457 	dtp->dt_day  = clkregs[MC_DOM];
    458 	dtp->dt_hour = clkregs[MC_HOUR];
    459 	dtp->dt_min  = clkregs[MC_MIN];
    460 	dtp->dt_sec  = clkregs[MC_SEC];
    461 
    462 	return 0;
    463 }
    464 
    465 static int
    466 atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    467 {
    468 	int s;
    469 	mc_todregs clkregs;
    470 
    471 	clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
    472 	clkregs[MC_MONTH] = dtp->dt_mon;
    473 	clkregs[MC_DOM] = dtp->dt_day;
    474 	clkregs[MC_HOUR] = dtp->dt_hour;
    475 	clkregs[MC_MIN] = dtp->dt_min;
    476 	clkregs[MC_SEC] = dtp->dt_sec;
    477 
    478 	s = splclock();
    479 	MC146818_PUTTOD(RTC, &clkregs);
    480 	splx(s);
    481 
    482 	return 0;
    483 }
    484 
    485 /***********************************************************************
    486  *                   RTC-device support				       *
    487  ***********************************************************************/
    488 int
    489 rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
    490 {
    491 	int			unit = minor(dev);
    492 	struct clock_softc	*sc;
    493 
    494 	sc = device_lookup_private(&clock_cd, unit);
    495 	if (sc == NULL)
    496 		return ENXIO;
    497 	if (sc->sc_flags & RTC_OPEN)
    498 		return EBUSY;
    499 
    500 	sc->sc_flags = RTC_OPEN;
    501 	return 0;
    502 }
    503 
    504 int
    505 rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
    506 {
    507 	int			unit = minor(dev);
    508 	struct clock_softc	*sc = device_lookup_private(&clock_cd, unit);
    509 
    510 	sc->sc_flags = 0;
    511 	return 0;
    512 }
    513 
    514 int
    515 rtcread(dev_t dev, struct uio *uio, int flags)
    516 {
    517 	mc_todregs		clkregs;
    518 	int			s, length;
    519 	char			buffer[16 + 1];
    520 
    521 	s = splhigh();
    522 	MC146818_GETTOD(RTC, &clkregs);
    523 	splx(s);
    524 
    525 	snprintf(buffer, sizeof(buffer), "%4d%02d%02d%02d%02d.%02d\n",
    526 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    527 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    528 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    529 
    530 	if (uio->uio_offset > strlen(buffer))
    531 		return 0;
    532 
    533 	length = strlen(buffer) - uio->uio_offset;
    534 	if (length > uio->uio_resid)
    535 		length = uio->uio_resid;
    536 
    537 	return uiomove((void *)buffer, length, uio);
    538 }
    539 
    540 static int
    541 twodigits(char *buffer, int pos)
    542 {
    543 	int result = 0;
    544 
    545 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    546 		result = (buffer[pos] - '0') * 10;
    547 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    548 		result += (buffer[pos+1] - '0');
    549 	return result;
    550 }
    551 
    552 int
    553 rtcwrite(dev_t dev, struct uio *uio, int flags)
    554 {
    555 	mc_todregs		clkregs;
    556 	int			s, length, error;
    557 	char			buffer[16];
    558 
    559 	/*
    560 	 * We require atomic updates!
    561 	 */
    562 	length = uio->uio_resid;
    563 	if (uio->uio_offset || (length != sizeof(buffer)
    564 	    && length != sizeof(buffer) - 1))
    565 		return EINVAL;
    566 
    567 	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
    568 		return error;
    569 
    570 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    571 		return EINVAL;
    572 
    573 	s = splclock();
    574 	mc146818_write(RTC, MC_REGB,
    575 	    mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    576 	MC146818_GETTOD(RTC, &clkregs);
    577 	splx(s);
    578 
    579 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    580 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    581 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    582 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    583 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    584 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    585 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    586 
    587 	s = splclock();
    588 	MC146818_PUTTOD(RTC, &clkregs);
    589 	splx(s);
    590 
    591 	return 0;
    592 }
    593