Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.62
      1 /*	$NetBSD: clock.c,v 1.62 2020/07/03 16:23:03 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     37  *
     38  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.62 2020/07/03 16:23:03 maxv Exp $");
     43 
     44 #include <sys/param.h>
     45 #include <sys/kernel.h>
     46 #include <sys/systm.h>
     47 #include <sys/device.h>
     48 #include <sys/uio.h>
     49 #include <sys/conf.h>
     50 #include <sys/proc.h>
     51 #include <sys/event.h>
     52 #include <sys/timetc.h>
     53 
     54 #include <dev/clock_subr.h>
     55 
     56 #include <machine/psl.h>
     57 #include <machine/cpu.h>
     58 #include <machine/iomap.h>
     59 #include <machine/mfp.h>
     60 #include <atari/dev/clockreg.h>
     61 #include <atari/dev/clockvar.h>
     62 #include <atari/atari/device.h>
     63 
     64 #if defined(GPROF) && defined(PROFTIMER)
     65 #include <machine/profile.h>
     66 #endif
     67 
     68 #include "ioconf.h"
     69 
     70 static int	atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
     71 static int	atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
     72 
     73 /*
     74  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     75  * of 200. Therefore the timer runs at an effective rate of:
     76  * 2457600/200 = 12288Hz.
     77  */
     78 #define CLOCK_HZ	12288
     79 
     80 static u_int clk_getcounter(struct timecounter *);
     81 
     82 static struct timecounter clk_timecounter = {
     83 	.tc_get_timecount = clk_getcounter,
     84 	.tc_counter_mask = ~0u,
     85 	.tc_frequency = CLOCK_HZ,
     86 	.tc_name = "clock",
     87 	.tc_quality = 100,
     88 };
     89 
     90 /*
     91  * Machine-dependent clock routines.
     92  *
     93  * Inittodr initializes the time of day hardware which provides
     94  * date functions.
     95  *
     96  * Resettodr restores the time of day hardware after a time change.
     97  */
     98 
     99 struct clock_softc {
    100 	device_t	sc_dev;
    101 	int		sc_flags;
    102 	struct todr_chip_handle	sc_handle;
    103 };
    104 
    105 /*
    106  *  'sc_flags' state info. Only used by the rtc-device functions.
    107  */
    108 #define	RTC_OPEN	1
    109 
    110 dev_type_open(rtcopen);
    111 dev_type_close(rtcclose);
    112 dev_type_read(rtcread);
    113 dev_type_write(rtcwrite);
    114 
    115 static void	clockattach(device_t, device_t, void *);
    116 static int	clockmatch(device_t, cfdata_t, void *);
    117 
    118 CFATTACH_DECL_NEW(clock, sizeof(struct clock_softc),
    119     clockmatch, clockattach, NULL, NULL);
    120 
    121 const struct cdevsw rtc_cdevsw = {
    122 	.d_open = rtcopen,
    123 	.d_close = rtcclose,
    124 	.d_read = rtcread,
    125 	.d_write = rtcwrite,
    126 	.d_ioctl = noioctl,
    127 	.d_stop = nostop,
    128 	.d_tty = notty,
    129 	.d_poll = nopoll,
    130 	.d_mmap = nommap,
    131 	.d_kqfilter = nokqfilter,
    132 	.d_discard = nodiscard,
    133 	.d_flag = 0
    134 };
    135 
    136 void statintr(struct clockframe);
    137 
    138 static int	twodigits(char *, int);
    139 
    140 static int	divisor;	/* Systemclock divisor	*/
    141 
    142 /*
    143  * Statistics and profile clock intervals and variances. Variance must
    144  * be a power of 2. Since this gives us an even number, not an odd number,
    145  * we discard one case and compensate. That is, a variance of 64 would
    146  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    147  * This is symmetric around the point 32, or statvar/2, and thus averages
    148  * to that value (assuming uniform random numbers).
    149  */
    150 #ifdef STATCLOCK
    151 static int	statvar = 32;	/* {stat,prof}clock variance		*/
    152 static int	statmin;	/* statclock divisor - variance/2	*/
    153 static int	profmin;	/* profclock divisor - variance/2	*/
    154 static int	clk2min;	/* current, from above choices		*/
    155 #endif
    156 
    157 static int
    158 clockmatch(device_t parent, cfdata_t cf, void *aux)
    159 {
    160 
    161 	if (!strcmp("clock", aux))
    162 		return 1;
    163 	return 0;
    164 }
    165 
    166 /*
    167  * Start the real-time clock.
    168  */
    169 static void
    170 clockattach(device_t parent, device_t self, void *aux)
    171 {
    172 	struct clock_softc *sc = device_private(self);
    173 	struct todr_chip_handle	*tch;
    174 
    175 	sc->sc_dev = self;
    176 	tch = &sc->sc_handle;
    177 	tch->todr_gettime_ymdhms = atari_rtc_get;
    178 	tch->todr_settime_ymdhms = atari_rtc_set;
    179 	tch->todr_setwen = NULL;
    180 
    181 	todr_attach(tch);
    182 
    183 	sc->sc_flags = 0;
    184 
    185 	/*
    186 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    187 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    188 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    189 	 * following expression works for 48, 64 or 96 hz.
    190 	 */
    191 	divisor       = CLOCK_HZ/hz;
    192 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    193 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    194 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    195 
    196 	clk_timecounter.tc_frequency = CLOCK_HZ;
    197 
    198 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    199 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    200 								hz, 64);
    201 		hz = 64;
    202 	}
    203 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    204 	tc_init(&clk_timecounter);
    205 
    206 #ifdef STATCLOCK
    207 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    208 		stathz = hz;
    209 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    210 		profhz = hz << 1;
    211 
    212 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    213 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    214 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    215 
    216 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    217 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    218 	clk2min  = statmin;
    219 #endif /* STATCLOCK */
    220 }
    221 
    222 void
    223 cpu_initclocks(void)
    224 {
    225 
    226 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    227 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    228 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    229 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    230 
    231 #ifdef STATCLOCK
    232 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    233 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    234 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    235 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    236 #endif /* STATCLOCK */
    237 }
    238 
    239 void
    240 setstatclockrate(int newhz)
    241 {
    242 
    243 #ifdef STATCLOCK
    244 	if (newhz == stathz)
    245 		clk2min = statmin;
    246 	else clk2min = profmin;
    247 #endif /* STATCLOCK */
    248 }
    249 
    250 #ifdef STATCLOCK
    251 void
    252 statintr(struct clockframe frame)
    253 {
    254 	register int	var, r;
    255 
    256 	var = statvar - 1;
    257 	do {
    258 		r = random() & var;
    259 	} while (r == 0);
    260 
    261 	/*
    262 	 * Note that we are always lagging behind as the new divisor
    263 	 * value will not be loaded until the next interrupt. This
    264 	 * shouldn't disturb the median frequency (I think ;-) ) as
    265 	 * only the value used when switching frequencies is used
    266 	 * twice. This shouldn't happen very often.
    267 	 */
    268 	MFP->mf_tcdr = clk2min + r;
    269 
    270 	statclock(&frame);
    271 }
    272 #endif /* STATCLOCK */
    273 
    274 static u_int
    275 clk_getcounter(struct timecounter *tc)
    276 {
    277 	uint32_t delta, count, cur_hardclock;
    278 	uint8_t ipra, tadr;
    279 	int s;
    280 	static uint32_t lastcount;
    281 
    282 	s = splhigh();
    283 	cur_hardclock = getticks();
    284 	ipra = MFP->mf_ipra;
    285 	tadr = MFP->mf_tadr;
    286 	delta = divisor - tadr;
    287 
    288 	if (ipra & IA_TIMA)
    289 		delta += divisor;
    290 	splx(s);
    291 
    292 	count = (divisor * cur_hardclock) + delta;
    293 	if ((int32_t)(count - lastcount) < 0) {
    294 		/* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
    295 		count = lastcount + 1;
    296 	}
    297 	lastcount = count;
    298 
    299 	return count;
    300 }
    301 
    302 #define TIMB_FREQ	614400
    303 #define TIMB_LIMIT	256
    304 
    305 void
    306 init_delay(void)
    307 {
    308 
    309 	/*
    310 	 * Initialize Timer-B in the ST-MFP. This timer is used by
    311 	 * the 'delay' function below. This timer is setup to be
    312 	 * continueously counting from 255 back to zero at a
    313 	 * frequency of 614400Hz. We do this *early* in the
    314 	 * initialisation process.
    315 	 */
    316 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
    317 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    318 	MFP->mf_tbdr  = 0;
    319 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    320 }
    321 
    322 /*
    323  * Wait "n" microseconds.
    324  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    325  * Note: timer had better have been programmed before this is first used!
    326  */
    327 void
    328 delay(unsigned int n)
    329 {
    330 	int	ticks, otick, remaining;
    331 
    332 	/*
    333 	 * Read the counter first, so that the rest of the setup overhead is
    334 	 * counted.
    335 	 */
    336 	otick = MFP->mf_tbdr;
    337 
    338 	if (n <= UINT_MAX / TIMB_FREQ) {
    339 		/*
    340 		 * For unsigned arithmetic, division can be replaced with
    341 		 * multiplication with the inverse and a shift.
    342 		 */
    343 		remaining = n * TIMB_FREQ / 1000000;
    344 	} else {
    345 		/* This is a very long delay.
    346 		 * Being slow here doesn't matter.
    347 		 */
    348 		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
    349 	}
    350 
    351 	while (remaining > 0) {
    352 		ticks = MFP->mf_tbdr;
    353 		if (ticks > otick)
    354 			remaining -= TIMB_LIMIT - (ticks - otick);
    355 		else
    356 			remaining -= otick - ticks;
    357 		otick = ticks;
    358 	}
    359 }
    360 
    361 #ifdef GPROF
    362 /*
    363  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    364  * Assumes it is called with clock interrupts blocked.
    365  */
    366 profclock(void *pc, int ps)
    367 {
    368 
    369 	/*
    370 	 * Came from user mode.
    371 	 * If this process is being profiled record the tick.
    372 	 */
    373 	if (USERMODE(ps)) {
    374 		if (p->p_stats.p_prof.pr_scale)
    375 			addupc(pc, &curproc->p_stats.p_prof, 1);
    376 	}
    377 	/*
    378 	 * Came from kernel (supervisor) mode.
    379 	 * If we are profiling the kernel, record the tick.
    380 	 */
    381 	else if (profiling < 2) {
    382 		register int s = pc - s_lowpc;
    383 
    384 		if (s < s_textsize)
    385 			kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
    386 	}
    387 	/*
    388 	 * Kernel profiling was on but has been disabled.
    389 	 * Mark as no longer profiling kernel and if all profiling done,
    390 	 * disable the clock.
    391 	 */
    392 	if (profiling && (profon & PRF_KERNEL)) {
    393 		profon &= ~PRF_KERNEL;
    394 		if (profon == PRF_NONE)
    395 			stopprofclock();
    396 	}
    397 }
    398 #endif
    399 
    400 /***********************************************************************
    401  *                   Real Time Clock support                           *
    402  ***********************************************************************/
    403 
    404 u_int mc146818_read(void *cookie, u_int regno)
    405 {
    406 	struct rtc *rtc = cookie;
    407 
    408 	rtc->rtc_regno = regno;
    409 	return rtc->rtc_data & 0xff;
    410 }
    411 
    412 void mc146818_write(void *cookie, u_int regno, u_int value)
    413 {
    414 	struct rtc *rtc = cookie;
    415 
    416 	rtc->rtc_regno = regno;
    417 	rtc->rtc_data  = value;
    418 }
    419 
    420 static int
    421 atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    422 {
    423 	int			sps;
    424 	mc_todregs		clkregs;
    425 	u_int			regb;
    426 
    427 	sps = splhigh();
    428 	regb = mc146818_read(RTC, MC_REGB);
    429 	MC146818_GETTOD(RTC, &clkregs);
    430 	splx(sps);
    431 
    432 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    433 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    434 		printf("Error: Nonstandard RealTimeClock Configuration -"
    435 			" value ignored\n"
    436 			"       A write to /dev/rtc will correct this.\n");
    437 			return 0;
    438 	}
    439 	if (clkregs[MC_SEC] > 59)
    440 		return -1;
    441 	if (clkregs[MC_MIN] > 59)
    442 		return -1;
    443 	if (clkregs[MC_HOUR] > 23)
    444 		return -1;
    445 	if (range_test(clkregs[MC_DOM], 1, 31))
    446 		return -1;
    447 	if (range_test(clkregs[MC_MONTH], 1, 12))
    448 		return -1;
    449 	if (clkregs[MC_YEAR] > 99)
    450 		return -1;
    451 
    452 	dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    453 	dtp->dt_mon  = clkregs[MC_MONTH];
    454 	dtp->dt_day  = clkregs[MC_DOM];
    455 	dtp->dt_hour = clkregs[MC_HOUR];
    456 	dtp->dt_min  = clkregs[MC_MIN];
    457 	dtp->dt_sec  = clkregs[MC_SEC];
    458 
    459 	return 0;
    460 }
    461 
    462 static int
    463 atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    464 {
    465 	int s;
    466 	mc_todregs clkregs;
    467 
    468 	clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
    469 	clkregs[MC_MONTH] = dtp->dt_mon;
    470 	clkregs[MC_DOM] = dtp->dt_day;
    471 	clkregs[MC_HOUR] = dtp->dt_hour;
    472 	clkregs[MC_MIN] = dtp->dt_min;
    473 	clkregs[MC_SEC] = dtp->dt_sec;
    474 
    475 	s = splclock();
    476 	MC146818_PUTTOD(RTC, &clkregs);
    477 	splx(s);
    478 
    479 	return 0;
    480 }
    481 
    482 /***********************************************************************
    483  *                   RTC-device support				       *
    484  ***********************************************************************/
    485 int
    486 rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
    487 {
    488 	int			unit = minor(dev);
    489 	struct clock_softc	*sc;
    490 
    491 	sc = device_lookup_private(&clock_cd, unit);
    492 	if (sc == NULL)
    493 		return ENXIO;
    494 	if (sc->sc_flags & RTC_OPEN)
    495 		return EBUSY;
    496 
    497 	sc->sc_flags = RTC_OPEN;
    498 	return 0;
    499 }
    500 
    501 int
    502 rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
    503 {
    504 	int			unit = minor(dev);
    505 	struct clock_softc	*sc = device_lookup_private(&clock_cd, unit);
    506 
    507 	sc->sc_flags = 0;
    508 	return 0;
    509 }
    510 
    511 int
    512 rtcread(dev_t dev, struct uio *uio, int flags)
    513 {
    514 	mc_todregs		clkregs;
    515 	int			s, length;
    516 	char			buffer[16 + 1];
    517 
    518 	s = splhigh();
    519 	MC146818_GETTOD(RTC, &clkregs);
    520 	splx(s);
    521 
    522 	snprintf(buffer, sizeof(buffer), "%4d%02d%02d%02d%02d.%02d\n",
    523 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    524 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    525 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    526 
    527 	if (uio->uio_offset > strlen(buffer))
    528 		return 0;
    529 
    530 	length = strlen(buffer) - uio->uio_offset;
    531 	if (length > uio->uio_resid)
    532 		length = uio->uio_resid;
    533 
    534 	return uiomove((void *)buffer, length, uio);
    535 }
    536 
    537 static int
    538 twodigits(char *buffer, int pos)
    539 {
    540 	int result = 0;
    541 
    542 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    543 		result = (buffer[pos] - '0') * 10;
    544 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    545 		result += (buffer[pos+1] - '0');
    546 	return result;
    547 }
    548 
    549 int
    550 rtcwrite(dev_t dev, struct uio *uio, int flags)
    551 {
    552 	mc_todregs		clkregs;
    553 	int			s, length, error;
    554 	char			buffer[16];
    555 
    556 	/*
    557 	 * We require atomic updates!
    558 	 */
    559 	length = uio->uio_resid;
    560 	if (uio->uio_offset || (length != sizeof(buffer)
    561 	    && length != sizeof(buffer) - 1))
    562 		return EINVAL;
    563 
    564 	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
    565 		return error;
    566 
    567 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    568 		return EINVAL;
    569 
    570 	s = splclock();
    571 	mc146818_write(RTC, MC_REGB,
    572 	    mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    573 	MC146818_GETTOD(RTC, &clkregs);
    574 	splx(s);
    575 
    576 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    577 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    578 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    579 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    580 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    581 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    582 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    583 
    584 	s = splclock();
    585 	MC146818_PUTTOD(RTC, &clkregs);
    586 	splx(s);
    587 
    588 	return 0;
    589 }
    590