Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.65
      1 /*	$NetBSD: clock.c,v 1.65 2025/09/07 01:04:49 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     37  *
     38  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.65 2025/09/07 01:04:49 thorpej Exp $");
     43 
     44 #include <sys/param.h>
     45 #include <sys/kernel.h>
     46 #include <sys/systm.h>
     47 #include <sys/device.h>
     48 #include <sys/uio.h>
     49 #include <sys/conf.h>
     50 #include <sys/proc.h>
     51 #include <sys/event.h>
     52 #include <sys/timetc.h>
     53 
     54 #include <dev/clock_subr.h>
     55 
     56 #include <machine/psl.h>
     57 #include <machine/cpu.h>
     58 #include <machine/iomap.h>
     59 #include <machine/mfp.h>
     60 #include <atari/dev/clockreg.h>
     61 #include <atari/dev/clockvar.h>
     62 #include <atari/atari/device.h>
     63 
     64 #if defined(GPROF) && defined(PROFTIMER)
     65 #include <machine/profile.h>
     66 #endif
     67 
     68 #include "ioconf.h"
     69 
     70 static int	atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
     71 static int	atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
     72 
     73 /*
     74  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     75  * of 200. Therefore the timer runs at an effective rate of:
     76  * 2457600/200 = 12288Hz.
     77  */
     78 #define CLOCK_HZ	12288
     79 
     80 static u_int clk_getcounter(struct timecounter *);
     81 
     82 static struct timecounter clk_timecounter = {
     83 	.tc_get_timecount = clk_getcounter,
     84 	.tc_counter_mask = ~0u,
     85 	.tc_frequency = CLOCK_HZ,
     86 	.tc_name = "clock",
     87 	.tc_quality = 100,
     88 };
     89 
     90 /*
     91  * Machine-dependent clock routines.
     92  *
     93  * Inittodr initializes the time of day hardware which provides
     94  * date functions.
     95  *
     96  * Resettodr restores the time of day hardware after a time change.
     97  */
     98 
     99 struct clock_softc {
    100 	device_t	sc_dev;
    101 	int		sc_flags;
    102 	struct todr_chip_handle	sc_handle;
    103 };
    104 
    105 /*
    106  *  'sc_flags' state info. Only used by the rtc-device functions.
    107  */
    108 #define	RTC_OPEN	1
    109 
    110 static dev_type_open(rtcopen);
    111 static dev_type_close(rtcclose);
    112 static dev_type_read(rtcread);
    113 static dev_type_write(rtcwrite);
    114 
    115 static void	clockattach(device_t, device_t, void *);
    116 static int	clockmatch(device_t, cfdata_t, void *);
    117 
    118 CFATTACH_DECL_NEW(clock, sizeof(struct clock_softc),
    119     clockmatch, clockattach, NULL, NULL);
    120 
    121 const struct cdevsw rtc_cdevsw = {
    122 	.d_open = rtcopen,
    123 	.d_close = rtcclose,
    124 	.d_read = rtcread,
    125 	.d_write = rtcwrite,
    126 	.d_ioctl = noioctl,
    127 	.d_stop = nostop,
    128 	.d_tty = notty,
    129 	.d_poll = nopoll,
    130 	.d_mmap = nommap,
    131 	.d_kqfilter = nokqfilter,
    132 	.d_discard = nodiscard,
    133 	.d_flag = 0
    134 };
    135 
    136 void statintr(struct clockframe);
    137 
    138 static int	twodigits(char *, int);
    139 
    140 static int	divisor;	/* Systemclock divisor	*/
    141 
    142 /*
    143  * Statistics and profile clock intervals and variances. Variance must
    144  * be a power of 2. Since this gives us an even number, not an odd number,
    145  * we discard one case and compensate. That is, a variance of 64 would
    146  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
    147  * This is symmetric around the point 32, or statvar/2, and thus averages
    148  * to that value (assuming uniform random numbers).
    149  */
    150 #ifdef STATCLOCK
    151 static int	statvar = 32;	/* {stat,prof}clock variance		*/
    152 static int	statmin;	/* statclock divisor - variance/2	*/
    153 static int	profmin;	/* profclock divisor - variance/2	*/
    154 static int	clk2min;	/* current, from above choices		*/
    155 #endif
    156 
    157 static int
    158 clockmatch(device_t parent, cfdata_t cf, void *aux)
    159 {
    160 
    161 	if (!strcmp("clock", aux))
    162 		return 1;
    163 	return 0;
    164 }
    165 
    166 /*
    167  * Start the real-time clock.
    168  */
    169 static void
    170 clockattach(device_t parent, device_t self, void *aux)
    171 {
    172 	struct clock_softc *sc = device_private(self);
    173 	struct todr_chip_handle	*tch;
    174 
    175 	sc->sc_dev = self;
    176 	tch = &sc->sc_handle;
    177 	tch->cookie = sc;
    178 	tch->todr_gettime_ymdhms = atari_rtc_get;
    179 	tch->todr_settime_ymdhms = atari_rtc_set;
    180 	tch->todr_setwen = NULL;
    181 
    182 	todr_attach(tch);
    183 
    184 	sc->sc_flags = 0;
    185 
    186 	/*
    187 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    188 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    189 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    190 	 * following expression works for 48, 64 or 96 hz.
    191 	 */
    192 	divisor       = CLOCK_HZ/hz;
    193 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    194 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    195 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    196 
    197 	clk_timecounter.tc_frequency = CLOCK_HZ;
    198 
    199 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    200 		aprint_normal(": illegal value %d for systemclock, reset to %d\n\t",
    201 								hz, 64);
    202 		hz = 64;
    203 	}
    204 	aprint_normal(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    205 	tc_init(&clk_timecounter);
    206 
    207 #ifdef STATCLOCK
    208 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    209 		stathz = hz;
    210 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    211 		profhz = hz << 1;
    212 
    213 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    214 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    215 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    216 
    217 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    218 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    219 	clk2min  = statmin;
    220 #endif /* STATCLOCK */
    221 }
    222 
    223 void
    224 cpu_initclocks(void)
    225 {
    226 
    227 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    228 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
    229 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    230 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    231 
    232 #ifdef STATCLOCK
    233 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    234 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
    235 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    236 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    237 #endif /* STATCLOCK */
    238 }
    239 
    240 void
    241 setstatclockrate(int newhz)
    242 {
    243 
    244 #ifdef STATCLOCK
    245 	if (newhz == stathz)
    246 		clk2min = statmin;
    247 	else clk2min = profmin;
    248 #endif /* STATCLOCK */
    249 }
    250 
    251 #ifdef STATCLOCK
    252 void
    253 statintr(struct clockframe frame)
    254 {
    255 	register int	var, r;
    256 
    257 	var = statvar - 1;
    258 	do {
    259 		r = random() & var;
    260 	} while (r == 0);
    261 
    262 	/*
    263 	 * Note that we are always lagging behind as the new divisor
    264 	 * value will not be loaded until the next interrupt. This
    265 	 * shouldn't disturb the median frequency (I think ;-) ) as
    266 	 * only the value used when switching frequencies is used
    267 	 * twice. This shouldn't happen very often.
    268 	 */
    269 	MFP->mf_tcdr = clk2min + r;
    270 
    271 	statclock(&frame);
    272 }
    273 #endif /* STATCLOCK */
    274 
    275 static u_int
    276 clk_getcounter(struct timecounter *tc)
    277 {
    278 	uint32_t delta, count, cur_hardclock;
    279 	uint8_t ipra, tadr;
    280 	int s;
    281 	static uint32_t lastcount;
    282 
    283 	s = splhigh();
    284 	cur_hardclock = getticks();
    285 	ipra = MFP->mf_ipra;
    286 	tadr = MFP->mf_tadr;
    287 	delta = divisor - tadr;
    288 
    289 	if (ipra & IA_TIMA)
    290 		delta += divisor;
    291 	splx(s);
    292 
    293 	count = (divisor * cur_hardclock) + delta;
    294 	if ((int32_t)(count - lastcount) < 0) {
    295 		/* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
    296 		count = lastcount + 1;
    297 	}
    298 	lastcount = count;
    299 
    300 	return count;
    301 }
    302 
    303 #define TIMB_FREQ	614400
    304 #define TIMB_LIMIT	256
    305 
    306 void
    307 init_delay(void)
    308 {
    309 
    310 	/*
    311 	 * Initialize Timer-B in the ST-MFP. This timer is used by
    312 	 * the 'delay' function below. This timer is setup to be
    313 	 * continueously counting from 255 back to zero at a
    314 	 * frequency of 614400Hz. We do this *early* in the
    315 	 * initialisation process.
    316 	 */
    317 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
    318 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    319 	MFP->mf_tbdr  = 0;
    320 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    321 }
    322 
    323 /*
    324  * Wait "n" microseconds.
    325  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    326  * Note: timer had better have been programmed before this is first used!
    327  */
    328 void
    329 delay(unsigned int n)
    330 {
    331 	int	ticks, otick, remaining;
    332 
    333 	/*
    334 	 * Read the counter first, so that the rest of the setup overhead is
    335 	 * counted.
    336 	 */
    337 	otick = MFP->mf_tbdr;
    338 
    339 	if (n <= UINT_MAX / TIMB_FREQ) {
    340 		/*
    341 		 * For unsigned arithmetic, division can be replaced with
    342 		 * multiplication with the inverse and a shift.
    343 		 */
    344 		remaining = n * TIMB_FREQ / 1000000;
    345 	} else {
    346 		/* This is a very long delay.
    347 		 * Being slow here doesn't matter.
    348 		 */
    349 		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
    350 	}
    351 
    352 	while (remaining > 0) {
    353 		ticks = MFP->mf_tbdr;
    354 		if (ticks > otick)
    355 			remaining -= TIMB_LIMIT - (ticks - otick);
    356 		else
    357 			remaining -= otick - ticks;
    358 		otick = ticks;
    359 	}
    360 }
    361 
    362 #ifdef GPROF
    363 /*
    364  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    365  * Assumes it is called with clock interrupts blocked.
    366  */
    367 profclock(void *pc, int ps)
    368 {
    369 
    370 	/*
    371 	 * Came from user mode.
    372 	 * If this process is being profiled record the tick.
    373 	 */
    374 	if (USERMODE(ps)) {
    375 		if (p->p_stats.p_prof.pr_scale)
    376 			addupc(pc, &curproc->p_stats.p_prof, 1);
    377 	}
    378 	/*
    379 	 * Came from kernel (supervisor) mode.
    380 	 * If we are profiling the kernel, record the tick.
    381 	 */
    382 	else if (profiling < 2) {
    383 		register int s = pc - s_lowpc;
    384 
    385 		if (s < s_textsize)
    386 			kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
    387 	}
    388 	/*
    389 	 * Kernel profiling was on but has been disabled.
    390 	 * Mark as no longer profiling kernel and if all profiling done,
    391 	 * disable the clock.
    392 	 */
    393 	if (profiling && (profon & PRF_KERNEL)) {
    394 		profon &= ~PRF_KERNEL;
    395 		if (profon == PRF_NONE)
    396 			stopprofclock();
    397 	}
    398 }
    399 #endif
    400 
    401 /***********************************************************************
    402  *                   Real Time Clock support                           *
    403  ***********************************************************************/
    404 
    405 u_int mc146818_read(void *cookie, u_int regno)
    406 {
    407 	struct rtc *rtc = cookie;
    408 
    409 	rtc->rtc_regno = regno;
    410 	return rtc->rtc_data & 0xff;
    411 }
    412 
    413 void mc146818_write(void *cookie, u_int regno, u_int value)
    414 {
    415 	struct rtc *rtc = cookie;
    416 
    417 	rtc->rtc_regno = regno;
    418 	rtc->rtc_data  = value;
    419 }
    420 
    421 static int
    422 atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    423 {
    424 	int			sps;
    425 	mc_todregs		clkregs;
    426 	u_int			regb;
    427 
    428 	sps = splhigh();
    429 	regb = mc146818_read(RTC, MC_REGB);
    430 	MC146818_GETTOD(RTC, &clkregs);
    431 	splx(sps);
    432 
    433 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
    434 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
    435 		printf("Error: Nonstandard RealTimeClock Configuration -"
    436 			" value ignored\n"
    437 			"       A write to /dev/rtc will correct this.\n");
    438 			return 0;
    439 	}
    440 	if (clkregs[MC_SEC] > 59)
    441 		return -1;
    442 	if (clkregs[MC_MIN] > 59)
    443 		return -1;
    444 	if (clkregs[MC_HOUR] > 23)
    445 		return -1;
    446 	if (range_test(clkregs[MC_DOM], 1, 31))
    447 		return -1;
    448 	if (range_test(clkregs[MC_MONTH], 1, 12))
    449 		return -1;
    450 	if (clkregs[MC_YEAR] > 99)
    451 		return -1;
    452 
    453 	dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
    454 	dtp->dt_mon  = clkregs[MC_MONTH];
    455 	dtp->dt_day  = clkregs[MC_DOM];
    456 	dtp->dt_hour = clkregs[MC_HOUR];
    457 	dtp->dt_min  = clkregs[MC_MIN];
    458 	dtp->dt_sec  = clkregs[MC_SEC];
    459 
    460 	return 0;
    461 }
    462 
    463 static int
    464 atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
    465 {
    466 	int s;
    467 	mc_todregs clkregs;
    468 
    469 	clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
    470 	clkregs[MC_MONTH] = dtp->dt_mon;
    471 	clkregs[MC_DOM] = dtp->dt_day;
    472 	clkregs[MC_HOUR] = dtp->dt_hour;
    473 	clkregs[MC_MIN] = dtp->dt_min;
    474 	clkregs[MC_SEC] = dtp->dt_sec;
    475 
    476 	s = splclock();
    477 	MC146818_PUTTOD(RTC, &clkregs);
    478 	splx(s);
    479 
    480 	return 0;
    481 }
    482 
    483 /***********************************************************************
    484  *                   RTC-device support				       *
    485  ***********************************************************************/
    486 static int
    487 rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
    488 {
    489 	int			unit = minor(dev);
    490 	struct clock_softc	*sc;
    491 
    492 	sc = device_lookup_private(&clock_cd, unit);
    493 	if (sc == NULL)
    494 		return ENXIO;
    495 	if (sc->sc_flags & RTC_OPEN)
    496 		return EBUSY;
    497 
    498 	sc->sc_flags = RTC_OPEN;
    499 	return 0;
    500 }
    501 
    502 static int
    503 rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
    504 {
    505 	int			unit = minor(dev);
    506 	struct clock_softc	*sc = device_lookup_private(&clock_cd, unit);
    507 
    508 	sc->sc_flags = 0;
    509 	return 0;
    510 }
    511 
    512 static int
    513 rtcread(dev_t dev, struct uio *uio, int flags)
    514 {
    515 	mc_todregs		clkregs;
    516 	int			s, length;
    517 	char			buffer[16 + 1];
    518 
    519 	s = splhigh();
    520 	MC146818_GETTOD(RTC, &clkregs);
    521 	splx(s);
    522 
    523 	snprintf(buffer, sizeof(buffer), "%4d%02d%02d%02d%02d.%02d\n",
    524 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
    525 	    clkregs[MC_MONTH], clkregs[MC_DOM],
    526 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
    527 
    528 	if (uio->uio_offset > strlen(buffer))
    529 		return 0;
    530 
    531 	length = strlen(buffer) - uio->uio_offset;
    532 	if (length > uio->uio_resid)
    533 		length = uio->uio_resid;
    534 
    535 	return uiomove((void *)buffer, length, uio);
    536 }
    537 
    538 static int
    539 twodigits(char *buffer, int pos)
    540 {
    541 	int result = 0;
    542 
    543 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
    544 		result = (buffer[pos] - '0') * 10;
    545 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
    546 		result += (buffer[pos+1] - '0');
    547 	return result;
    548 }
    549 
    550 static int
    551 rtcwrite(dev_t dev, struct uio *uio, int flags)
    552 {
    553 	mc_todregs		clkregs;
    554 	int			s, length, error;
    555 	char			buffer[16];
    556 
    557 	/*
    558 	 * We require atomic updates!
    559 	 */
    560 	length = uio->uio_resid;
    561 	if (uio->uio_offset || (length != sizeof(buffer)
    562 	    && length != sizeof(buffer) - 1))
    563 		return EINVAL;
    564 
    565 	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
    566 		return error;
    567 
    568 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
    569 		return EINVAL;
    570 
    571 	s = splclock();
    572 	mc146818_write(RTC, MC_REGB,
    573 	    mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
    574 	MC146818_GETTOD(RTC, &clkregs);
    575 	splx(s);
    576 
    577 	clkregs[MC_SEC]   = twodigits(buffer, 13);
    578 	clkregs[MC_MIN]   = twodigits(buffer, 10);
    579 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
    580 	clkregs[MC_DOM]   = twodigits(buffer, 6);
    581 	clkregs[MC_MONTH] = twodigits(buffer, 4);
    582 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
    583 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
    584 
    585 	s = splclock();
    586 	MC146818_PUTTOD(RTC, &clkregs);
    587 	splx(s);
    588 
    589 	return 0;
    590 }
    591