Home | History | Annotate | Line # | Download | only in dev
clock.c revision 1.7
      1 /*	$NetBSD: clock.c,v 1.7 1996/01/06 20:11:06 leo Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1990 The Regents of the University of California.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
     41  *
     42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
     43  */
     44 
     45 #include <sys/param.h>
     46 #include <sys/kernel.h>
     47 #include <sys/device.h>
     48 #include <machine/psl.h>
     49 #include <machine/cpu.h>
     50 #include <machine/iomap.h>
     51 #include <machine/mfp.h>
     52 #include <atari/dev/clockreg.h>
     53 
     54 #if defined(GPROF) && defined(PROFTIMER)
     55 #include <machine/profile.h>
     56 #endif
     57 
     58 /*
     59  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
     60  * of 200. Therefore the timer runs at an effective rate of:
     61  * 2457600/200 = 12288Hz.
     62  */
     63 #define CLOCK_HZ	12288
     64 
     65 /*
     66  * Machine-dependent clock routines.
     67  *
     68  * Inittodr initializes the time of day hardware which provides
     69  * date functions.
     70  *
     71  * Resettodr restores the time of day hardware after a time change.
     72  */
     73 
     74 int	clockmatch __P((struct device *, struct cfdata *, void *));
     75 void	clockattach __P((struct device *, struct device *, void *));
     76 
     77 struct cfdriver clockcd = {
     78 	NULL, "clock", (cfmatch_t)clockmatch, clockattach,
     79 	DV_DULL, sizeof(struct device), NULL, 0
     80 };
     81 
     82 static u_long	gettod __P((void));
     83 static int	settod __P((u_long));
     84 
     85 static int	divisor;	/* Systemclock divisor	*/
     86 
     87 /*
     88  * Statistics and profile clock intervals and variances. Variance must
     89  * be a power of 2. Since this gives us an even number, not an odd number,
     90  * we discard one case and compensate. That is, a variance of 64 would
     91  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
     92  * This is symetric around the point 32, or statvar/2, and thus averages
     93  * to that value (assuming uniform random numbers).
     94  */
     95 #ifdef STATCLOCK
     96 static int	statvar = 32;	/* {stat,prof}clock variance		*/
     97 static int	statmin;	/* statclock divisor - variance/2	*/
     98 static int	profmin;	/* profclock divisor - variance/2	*/
     99 static int	clk2min;	/* current, from above choises		*/
    100 #endif
    101 
    102 int
    103 clockmatch(pdp, cfp, auxp)
    104 struct device *pdp;
    105 struct cfdata *cfp;
    106 void *auxp;
    107 {
    108 	if(!strcmp("clock", auxp))
    109 		return(1);
    110 	return(0);
    111 }
    112 
    113 /*
    114  * Start the real-time clock.
    115  */
    116 void clockattach(pdp, dp, auxp)
    117 struct device	*pdp, *dp;
    118 void			*auxp;
    119 {
    120 	/*
    121 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
    122 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
    123 	 * at an effective rate of: 2457600/200 = 12288Hz. The
    124 	 * following expression works for 48, 64 or 96 hz.
    125 	 */
    126 	divisor       = CLOCK_HZ/hz;
    127 	MFP->mf_tacr  = 0;		/* Stop timer			*/
    128 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
    129 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
    130 
    131 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
    132 		printf (": illegal value %d for systemclock, reset to %d\n\t",
    133 								hz, 64);
    134 		hz = 64;
    135 	}
    136 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
    137 
    138 #ifdef STATCLOCK
    139 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
    140 		stathz = hz;
    141 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
    142 		profhz = hz << 1;
    143 
    144 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
    145 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
    146 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
    147 
    148 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
    149 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
    150 	clk2min  = statmin;
    151 #endif /* STATCLOCK */
    152 
    153 	/*
    154 	 * Initialize Timer-B in the ST-MFP. This timer is used by the 'delay'
    155 	 * function below. This time is setup to be continueously counting from
    156 	 * 255 back to zero at a frequency of 614400Hz.
    157 	 */
    158 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
    159 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
    160 	MFP->mf_tbdr  = 0;
    161 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
    162 
    163 }
    164 
    165 void cpu_initclocks()
    166 {
    167 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
    168 	MFP->mf_ipra &= ~IA_TIMA;	/* Clear pending interrupts	*/
    169 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
    170 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
    171 
    172 #ifdef STATCLOCK
    173 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
    174 	MFP->mf_iprb &= ~IB_TIMC;	/* Clear pending interrupts	*/
    175 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
    176 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
    177 #endif /* STATCLOCK */
    178 }
    179 
    180 setstatclockrate(newhz)
    181 	int newhz;
    182 {
    183 #ifdef STATCLOCK
    184 	if (newhz == stathz)
    185 		clk2min = statmin;
    186 	else clk2min = profmin;
    187 #endif /* STATCLOCK */
    188 }
    189 
    190 #ifdef STATCLOCK
    191 void
    192 statintr(frame)
    193 	register struct clockframe *frame;
    194 {
    195 	register int	var, r;
    196 
    197 	var = statvar - 1;
    198 	do {
    199 		r = random() & var;
    200 	} while(r == 0);
    201 
    202 	/*
    203 	 * Note that we are always lagging behind as the new divisor
    204 	 * value will not be loaded until the next interrupt. This
    205 	 * shouldn't disturb the median frequency (I think ;-) ) as
    206 	 * only the value used when switching frequencies is used
    207 	 * twice. This shouldn't happen very often.
    208 	 */
    209 	MFP->mf_tcdr = clk2min + r;
    210 
    211 	statclock(frame);
    212 }
    213 #endif /* STATCLOCK */
    214 
    215 /*
    216  * Returns number of usec since last recorded clock "tick"
    217  * (i.e. clock interrupt).
    218  */
    219 clkread()
    220 {
    221 	u_int	delta;
    222 
    223 	delta = ((divisor - MFP->mf_tadr) * tick) / divisor;
    224 	/*
    225 	 * Account for pending clock interrupts
    226 	 */
    227 	if(MFP->mf_iera & IA_TIMA)
    228 		return(delta + tick);
    229 	return(delta);
    230 }
    231 
    232 #define TIMB_FREQ	614400
    233 #define TIMB_LIMIT	256
    234 
    235 /*
    236  * Wait "n" microseconds.
    237  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
    238  * Note: timer had better have been programmed before this is first used!
    239  */
    240 void delay(n)
    241 int	n;
    242 {
    243 	int	tick, otick;
    244 
    245 	/*
    246 	 * Read the counter first, so that the rest of the setup overhead is
    247 	 * counted.
    248 	 */
    249 	otick = MFP->mf_tbdr;
    250 
    251 	/*
    252 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
    253 	 * we can take advantage of the intermediate 64-bit quantity to prevent
    254 	 * loss of significance.
    255 	 */
    256 	n -= 5;
    257 	if(n < 0)
    258 		return;
    259 	{
    260 	    u_int	temp;
    261 
    262 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
    263 					       : "d" (TIMB_FREQ));
    264 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
    265 					       : "d"(1000000),"d"(temp),"0"(n));
    266 	}
    267 
    268 	while(n > 0) {
    269 		tick = MFP->mf_tbdr;
    270 		if(tick > otick)
    271 			n -= TIMB_LIMIT - (tick - otick);
    272 		else n -= otick - tick;
    273 		otick = tick;
    274 	}
    275 }
    276 
    277 #ifdef GPROF
    278 /*
    279  * profclock() is expanded in line in lev6intr() unless profiling kernel.
    280  * Assumes it is called with clock interrupts blocked.
    281  */
    282 profclock(pc, ps)
    283 	caddr_t pc;
    284 	int ps;
    285 {
    286 	/*
    287 	 * Came from user mode.
    288 	 * If this process is being profiled record the tick.
    289 	 */
    290 	if (USERMODE(ps)) {
    291 		if (p->p_stats.p_prof.pr_scale)
    292 			addupc(pc, &curproc->p_stats.p_prof, 1);
    293 	}
    294 	/*
    295 	 * Came from kernel (supervisor) mode.
    296 	 * If we are profiling the kernel, record the tick.
    297 	 */
    298 	else if (profiling < 2) {
    299 		register int s = pc - s_lowpc;
    300 
    301 		if (s < s_textsize)
    302 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
    303 	}
    304 	/*
    305 	 * Kernel profiling was on but has been disabled.
    306 	 * Mark as no longer profiling kernel and if all profiling done,
    307 	 * disable the clock.
    308 	 */
    309 	if (profiling && (profon & PRF_KERNEL)) {
    310 		profon &= ~PRF_KERNEL;
    311 		if (profon == PRF_NONE)
    312 			stopprofclock();
    313 	}
    314 }
    315 #endif
    316 
    317 /***********************************************************************
    318  *                   Real Time Clock support                           *
    319  ***********************************************************************/
    320 
    321 u_int mc146818_read(rtc, regno)
    322 void	*rtc;
    323 u_int	regno;
    324 {
    325 	((struct rtc *)rtc)->rtc_regno = regno;
    326 	return(((struct rtc *)rtc)->rtc_data & 0377);
    327 }
    328 
    329 void mc146818_write(rtc, regno, value)
    330 void	*rtc;
    331 u_int	regno, value;
    332 {
    333 	((struct rtc *)rtc)->rtc_regno = regno;
    334 	((struct rtc *)rtc)->rtc_data  = value;
    335 }
    336 
    337 /*
    338  * Initialize the time of day register, based on the time base which is, e.g.
    339  * from a filesystem.
    340  */
    341 inittodr(base)
    342 time_t base;
    343 {
    344 	u_long timbuf = base;	/* assume no battery clock exists */
    345 
    346 	timbuf = gettod();
    347 
    348 	if(timbuf < base) {
    349 		printf("WARNING: bad date in battery clock\n");
    350 		timbuf = base;
    351 	}
    352 
    353 	/* Battery clock does not store usec's, so forget about it. */
    354 	time.tv_sec = timbuf;
    355 }
    356 
    357 resettodr()
    358 {
    359 	if(settod(time.tv_sec) == 1)
    360 		return;
    361 	printf("Cannot set battery backed clock\n");
    362 }
    363 
    364 static	char	dmsize[12] =
    365 {
    366 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    367 };
    368 
    369 static	char	ldmsize[12] =
    370 {
    371 	31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    372 };
    373 
    374 static u_long
    375 gettod()
    376 {
    377 	int		i, sps;
    378 	u_long		new_time = 0;
    379 	char		*msize;
    380 	mc_todregs	clkregs;
    381 
    382 	sps = splhigh();
    383 	MC146818_GETTOD(RTC, &clkregs);
    384 	splx(sps);
    385 
    386 	if(range_test(clkregs[MC_HOUR], 0, 23))
    387 		return(0);
    388 	if(range_test(clkregs[MC_DOM], 1, 31))
    389 		return(0);
    390 	if (range_test(clkregs[MC_MONTH], 1, 12))
    391 		return(0);
    392 	if(range_test(clkregs[MC_YEAR], 0, 2000 - GEMSTARTOFTIME))
    393 		return(0);
    394 	clkregs[MC_YEAR] += GEMSTARTOFTIME;
    395 
    396 	for(i = BSDSTARTOFTIME; i < clkregs[MC_YEAR]; i++) {
    397 		if(is_leap(i))
    398 			new_time += 366;
    399 		else new_time += 365;
    400 	}
    401 
    402 	msize = is_leap(clkregs[MC_YEAR]) ? ldmsize : dmsize;
    403 	for(i = 0; i < (clkregs[MC_MONTH] - 1); i++)
    404 		new_time += msize[i];
    405 	new_time += clkregs[MC_DOM] - 1;
    406 	new_time *= SECS_DAY;
    407 	new_time += (clkregs[MC_HOUR] * 3600) + (clkregs[MC_MIN] * 60);
    408 	return(new_time + clkregs[MC_SEC]);
    409 }
    410 
    411 static int
    412 settod(newtime)
    413 u_long	newtime;
    414 {
    415 	register long	days, rem, year;
    416 	register char	*ml;
    417 		 int	sps, sec, min, hour, month;
    418 	mc_todregs	clkregs;
    419 
    420 	/* Number of days since Jan. 1 'BSDSTARTOFTIME'	*/
    421 	days = newtime / SECS_DAY;
    422 	rem  = newtime % SECS_DAY;
    423 
    424 	/*
    425 	 * Calculate sec, min, hour
    426 	 */
    427 	hour = rem / SECS_HOUR;
    428 	rem %= SECS_HOUR;
    429 	min  = rem / 60;
    430 	sec  = rem % 60;
    431 
    432 	/*
    433 	 * Figure out the year. Day in year is left in 'days'.
    434 	 */
    435 	year = BSDSTARTOFTIME;
    436 	while(days >= (rem = is_leap(year) ? 366 : 365)) {
    437 		++year;
    438 		days -= rem;
    439 	}
    440 
    441 	/*
    442 	 * Determine the month
    443 	 */
    444 	ml = is_leap(year) ? ldmsize : dmsize;
    445 	for(month = 0; days >= ml[month]; ++month)
    446 		days -= ml[month];
    447 
    448 	/*
    449 	 * Now that everything is calculated, program the RTC
    450 	 */
    451 	mc146818_write(RTC, MC_REGA, MC_BASE_32_KHz);
    452 	mc146818_write(RTC, MC_REGB, MC_REGB_24HR | MC_REGB_BINARY);
    453 	sps = splhigh();
    454 	MC146818_GETTOD(RTC, &clkregs);
    455 	clkregs[MC_SEC]   = sec;
    456 	clkregs[MC_MIN]   = min;
    457 	clkregs[MC_HOUR]  = hour;
    458 	clkregs[MC_DOM]   = days+1;
    459 	clkregs[MC_MONTH] = month+1;
    460 	clkregs[MC_YEAR]  = year - GEMSTARTOFTIME;
    461 	MC146818_PUTTOD(RTC, &clkregs);
    462 	splx(sps);
    463 
    464 	return(1);
    465 }
    466