zs.c revision 1.14 1 1.14 leo /* $NetBSD: zs.c,v 1.14 1996/01/23 09:35:15 leo Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.1 leo * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 1.1 leo * Copyright (c) 1992, 1993
6 1.1 leo * The Regents of the University of California. All rights reserved.
7 1.1 leo *
8 1.1 leo * This software was developed by the Computer Systems Engineering group
9 1.1 leo * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 1.1 leo * contributed to Berkeley.
11 1.1 leo *
12 1.1 leo *
13 1.1 leo * All advertising materials mentioning features or use of this software
14 1.1 leo * must display the following acknowledgement:
15 1.1 leo * This product includes software developed by the University of
16 1.1 leo * California, Lawrence Berkeley Laboratory.
17 1.1 leo *
18 1.1 leo * Redistribution and use in source and binary forms, with or without
19 1.1 leo * modification, are permitted provided that the following conditions
20 1.1 leo * are met:
21 1.1 leo * 1. Redistributions of source code must retain the above copyright
22 1.1 leo * notice, this list of conditions and the following disclaimer.
23 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
24 1.1 leo * notice, this list of conditions and the following disclaimer in the
25 1.1 leo * documentation and/or other materials provided with the distribution.
26 1.1 leo * 3. All advertising materials mentioning features or use of this software
27 1.1 leo * must display the following acknowledgement:
28 1.1 leo * This product includes software developed by the University of
29 1.1 leo * California, Berkeley and its contributors.
30 1.1 leo * 4. Neither the name of the University nor the names of its contributors
31 1.1 leo * may be used to endorse or promote products derived from this software
32 1.1 leo * without specific prior written permission.
33 1.1 leo *
34 1.1 leo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 1.1 leo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 1.1 leo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 1.1 leo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 1.1 leo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 1.1 leo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 1.1 leo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 1.1 leo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 1.1 leo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 1.1 leo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 1.1 leo * SUCH DAMAGE.
45 1.1 leo *
46 1.1 leo * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 1.1 leo */
48 1.1 leo
49 1.1 leo /*
50 1.1 leo * Zilog Z8530 (ZSCC) driver.
51 1.1 leo *
52 1.1 leo * Runs two tty ports (modem2 and serial2) on zs0.
53 1.1 leo *
54 1.1 leo * This driver knows far too much about chip to usage mappings.
55 1.1 leo */
56 1.1 leo #include <sys/param.h>
57 1.9 leo #include <sys/systm.h>
58 1.1 leo #include <sys/proc.h>
59 1.1 leo #include <sys/device.h>
60 1.1 leo #include <sys/conf.h>
61 1.1 leo #include <sys/file.h>
62 1.1 leo #include <sys/ioctl.h>
63 1.13 leo #include <sys/malloc.h>
64 1.1 leo #include <sys/tty.h>
65 1.1 leo #include <sys/time.h>
66 1.1 leo #include <sys/kernel.h>
67 1.1 leo #include <sys/syslog.h>
68 1.1 leo
69 1.1 leo #include <machine/cpu.h>
70 1.1 leo #include <machine/iomap.h>
71 1.1 leo #include <machine/scu.h>
72 1.1 leo #include <machine/mfp.h>
73 1.10 jtc #include <machine/video.h>
74 1.1 leo
75 1.7 cgd #include <dev/ic/z8530reg.h>
76 1.1 leo #include <atari/dev/zsvar.h>
77 1.1 leo #include "zs.h"
78 1.1 leo #if NZS > 1
79 1.1 leo #error "This driver supports only 1 85C30!"
80 1.1 leo #endif
81 1.1 leo
82 1.1 leo #if NZS > 0
83 1.1 leo
84 1.12 leo #define PCLK (8053976) /* PCLK pin input clock rate */
85 1.1 leo
86 1.1 leo #define splzs spl5
87 1.1 leo
88 1.1 leo /*
89 1.1 leo * Software state per found chip.
90 1.1 leo */
91 1.1 leo struct zs_softc {
92 1.1 leo struct device zi_dev; /* base device */
93 1.1 leo volatile struct zsdevice *zi_zs; /* chip registers */
94 1.1 leo struct zs_chanstate zi_cs[2]; /* chan A and B software state */
95 1.1 leo };
96 1.1 leo
97 1.8 leo static u_char cb_scheduled = 0; /* Already asked for callback? */
98 1.1 leo /*
99 1.1 leo * Define the registers for a closed port
100 1.1 leo */
101 1.6 leo static u_char zs_init_regs[16] = {
102 1.1 leo /* 0 */ 0,
103 1.1 leo /* 1 */ 0,
104 1.1 leo /* 2 */ 0x60,
105 1.1 leo /* 3 */ 0,
106 1.1 leo /* 4 */ 0,
107 1.1 leo /* 5 */ 0,
108 1.1 leo /* 6 */ 0,
109 1.1 leo /* 7 */ 0,
110 1.1 leo /* 8 */ 0,
111 1.13 leo /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
112 1.1 leo /* 10 */ ZSWR10_NRZ,
113 1.1 leo /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
114 1.1 leo /* 12 */ 0,
115 1.1 leo /* 13 */ 0,
116 1.1 leo /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
117 1.1 leo /* 15 */ 0
118 1.1 leo };
119 1.1 leo
120 1.6 leo /*
121 1.6 leo * Define the machine dependant clock frequencies
122 1.6 leo * If BRgen feeds sender/receiver we always use a
123 1.6 leo * divisor 16, therefor the division by 16 can as
124 1.6 leo * well be done here.
125 1.6 leo */
126 1.6 leo static u_long zs_freqs_tt[] = {
127 1.6 leo /*
128 1.6 leo * Atari TT, RTxCB is generated by TT-MFP timer C,
129 1.6 leo * which is set to 307.2KHz during initialisation
130 1.6 leo * and never changed afterwards.
131 1.6 leo */
132 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
133 1.6 leo 229500, /* BRgen, RTxCA, divisor 16 */
134 1.6 leo 3672000, /* RTxCA, from PCLK4 */
135 1.6 leo 0, /* TRxCA, external */
136 1.6 leo
137 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
138 1.6 leo 19200, /* BRgen, RTxCB, divisor 16 */
139 1.6 leo 307200, /* RTxCB, from TT-MFP TCO */
140 1.6 leo 2457600 /* TRxCB, from BCLK */
141 1.6 leo };
142 1.6 leo static u_long zs_freqs_falcon[] = {
143 1.6 leo /*
144 1.6 leo * Atari Falcon, XXX no specs available, this might be wrong
145 1.6 leo */
146 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
147 1.6 leo 229500, /* BRgen, RTxCA, divisor 16 */
148 1.6 leo 3672000, /* RTxCA, ??? */
149 1.6 leo 0, /* TRxCA, external */
150 1.6 leo
151 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
152 1.6 leo 229500, /* BRgen, RTxCB, divisor 16 */
153 1.6 leo 3672000, /* RTxCB, ??? */
154 1.6 leo 2457600 /* TRxCB, ??? */
155 1.6 leo };
156 1.6 leo static u_long zs_freqs_generic[] = {
157 1.6 leo /*
158 1.6 leo * other machines, assume only PCLK is available
159 1.6 leo */
160 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
161 1.6 leo 0, /* BRgen, RTxCA, divisor 16 */
162 1.6 leo 0, /* RTxCA, unknown */
163 1.6 leo 0, /* TRxCA, unknown */
164 1.6 leo
165 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
166 1.6 leo 0, /* BRgen, RTxCB, divisor 16 */
167 1.6 leo 0, /* RTxCB, unknown */
168 1.6 leo 0 /* TRxCB, unknown */
169 1.6 leo };
170 1.6 leo static u_long *zs_frequencies;
171 1.6 leo
172 1.1 leo /* Definition of the driver for autoconfig. */
173 1.1 leo static int zsmatch __P((struct device *, struct cfdata *, void *));
174 1.1 leo static void zsattach __P((struct device *, struct device *, void *));
175 1.1 leo struct cfdriver zscd = {
176 1.1 leo NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
177 1.1 leo sizeof(struct zs_softc), NULL, 0 };
178 1.1 leo
179 1.1 leo /* Interrupt handlers. */
180 1.1 leo int zshard __P((long));
181 1.1 leo static int zssoft __P((long));
182 1.1 leo static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
183 1.1 leo static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
184 1.1 leo static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
185 1.1 leo
186 1.6 leo static struct zs_chanstate *zslist;
187 1.1 leo
188 1.1 leo /* Routines called from other code. */
189 1.1 leo static void zsstart __P((struct tty *));
190 1.1 leo void zsstop __P((struct tty *, int));
191 1.1 leo static int zsparam __P((struct tty *, struct termios *));
192 1.6 leo static int zsbaudrate __P((int, int, int *, int *, int *, int *));
193 1.1 leo
194 1.1 leo /* Routines purely local to this driver. */
195 1.1 leo static void zs_reset __P((volatile struct zschan *, int, int));
196 1.1 leo static int zs_modem __P((struct zs_chanstate *, int, int));
197 1.1 leo static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
198 1.1 leo
199 1.6 leo static int zsshortcuts; /* number of "shortcut" software interrupts */
200 1.1 leo
201 1.4 leo static int
202 1.4 leo zsmatch(pdp, cfp, auxp)
203 1.1 leo struct device *pdp;
204 1.1 leo struct cfdata *cfp;
205 1.1 leo void *auxp;
206 1.1 leo {
207 1.1 leo if(strcmp("zs", auxp) || cfp->cf_unit != 0)
208 1.1 leo return(0);
209 1.1 leo return(1);
210 1.1 leo }
211 1.1 leo
212 1.1 leo /*
213 1.1 leo * Attach a found zs.
214 1.1 leo */
215 1.1 leo static void
216 1.1 leo zsattach(parent, dev, aux)
217 1.1 leo struct device *parent;
218 1.1 leo struct device *dev;
219 1.1 leo void *aux;
220 1.1 leo {
221 1.1 leo register struct zs_softc *zi;
222 1.1 leo register struct zs_chanstate *cs;
223 1.1 leo register volatile struct zsdevice *addr;
224 1.1 leo register struct tty *tp;
225 1.1 leo char tmp;
226 1.1 leo
227 1.1 leo addr = (struct zsdevice *)AD_SCC;
228 1.1 leo zi = (struct zs_softc *)dev;
229 1.1 leo zi->zi_zs = addr;
230 1.1 leo cs = zi->zi_cs;
231 1.1 leo
232 1.1 leo /*
233 1.1 leo * Get the command register into a known state.
234 1.1 leo */
235 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
236 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
237 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
238 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
239 1.1 leo
240 1.1 leo /*
241 1.1 leo * Do a hardware reset.
242 1.1 leo */
243 1.2 mycroft ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
244 1.1 leo delay(50000); /*enough ? */
245 1.2 mycroft ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
246 1.1 leo
247 1.1 leo /*
248 1.1 leo * Initialize both channels
249 1.1 leo */
250 1.2 mycroft zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
251 1.2 mycroft zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
252 1.1 leo
253 1.5 leo if(machineid & ATARI_TT) {
254 1.5 leo /*
255 1.6 leo * ininitialise TT-MFP timer C: 307200Hz
256 1.6 leo * timer C and D share one control register:
257 1.6 leo * bits 0-2 control timer D
258 1.6 leo * bits 4-6 control timer C
259 1.6 leo */
260 1.6 leo int cr = MFP2->mf_tcdcr & 7;
261 1.6 leo MFP2->mf_tcdcr = cr; /* stop timer C */
262 1.6 leo MFP2->mf_tcdr = 1; /* counter 1 */
263 1.6 leo cr |= T_Q004 << 4; /* divisor 4 */
264 1.6 leo MFP2->mf_tcdcr = cr; /* start timer C */
265 1.6 leo /*
266 1.5 leo * enable scc related interrupts
267 1.5 leo */
268 1.5 leo SCU->sys_mask |= SCU_SCC;
269 1.6 leo
270 1.6 leo zs_frequencies = zs_freqs_tt;
271 1.6 leo } else if (machineid & ATARI_FALCON) {
272 1.6 leo zs_frequencies = zs_freqs_falcon;
273 1.6 leo } else {
274 1.6 leo zs_frequencies = zs_freqs_generic;
275 1.5 leo }
276 1.1 leo
277 1.1 leo /* link into interrupt list with order (A,B) (B=A+1) */
278 1.1 leo cs[0].cs_next = &cs[1];
279 1.1 leo cs[1].cs_next = zslist;
280 1.1 leo zslist = cs;
281 1.1 leo
282 1.1 leo cs->cs_unit = 0;
283 1.2 mycroft cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
284 1.1 leo cs++;
285 1.1 leo cs->cs_unit = 1;
286 1.2 mycroft cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
287 1.1 leo
288 1.1 leo printf(": serial2 on channel a and modem2 on channel b\n");
289 1.1 leo }
290 1.1 leo
291 1.1 leo /*
292 1.1 leo * Open a zs serial port.
293 1.1 leo */
294 1.1 leo int
295 1.1 leo zsopen(dev, flags, mode, p)
296 1.1 leo dev_t dev;
297 1.1 leo int flags;
298 1.1 leo int mode;
299 1.1 leo struct proc *p;
300 1.1 leo {
301 1.1 leo register struct tty *tp;
302 1.1 leo register struct zs_chanstate *cs;
303 1.1 leo struct zs_softc *zi;
304 1.1 leo int unit = ZS_UNIT(dev);
305 1.1 leo int zs = unit >> 1;
306 1.1 leo int error, s;
307 1.1 leo
308 1.1 leo if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
309 1.1 leo return (ENXIO);
310 1.1 leo cs = &zi->zi_cs[unit & 1];
311 1.10 jtc
312 1.10 jtc /*
313 1.10 jtc * When port A (ser02) is selected on the TT, make sure
314 1.10 jtc * the port is enabled.
315 1.10 jtc */
316 1.10 jtc if((machineid & ATARI_TT) && !(unit & 1)) {
317 1.10 jtc SOUND->sd_selr = YM_IOA;
318 1.10 jtc SOUND->sd_wdat = SOUND->sd_rdat | PA_SER2;
319 1.13 leo }
320 1.13 leo
321 1.13 leo if (cs->cs_rbuf == NULL) {
322 1.13 leo cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
323 1.13 leo M_WAITOK);
324 1.10 jtc }
325 1.10 jtc
326 1.1 leo tp = cs->cs_ttyp;
327 1.1 leo if(tp == NULL) {
328 1.4 leo cs->cs_ttyp = tp = ttymalloc();
329 1.1 leo tp->t_dev = dev;
330 1.1 leo tp->t_oproc = zsstart;
331 1.1 leo tp->t_param = zsparam;
332 1.1 leo }
333 1.1 leo
334 1.1 leo s = spltty();
335 1.1 leo if((tp->t_state & TS_ISOPEN) == 0) {
336 1.1 leo ttychars(tp);
337 1.1 leo if(tp->t_ispeed == 0) {
338 1.1 leo tp->t_iflag = TTYDEF_IFLAG;
339 1.1 leo tp->t_oflag = TTYDEF_OFLAG;
340 1.1 leo tp->t_cflag = TTYDEF_CFLAG;
341 1.1 leo tp->t_lflag = TTYDEF_LFLAG;
342 1.1 leo tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
343 1.1 leo }
344 1.1 leo (void)zsparam(tp, &tp->t_termios);
345 1.1 leo ttsetwater(tp);
346 1.1 leo }
347 1.1 leo else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
348 1.1 leo splx(s);
349 1.1 leo return (EBUSY);
350 1.1 leo }
351 1.1 leo error = 0;
352 1.1 leo for(;;) {
353 1.1 leo /* loop, turning on the device, until carrier present */
354 1.1 leo zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
355 1.8 leo
356 1.8 leo /* May never get a status intr. if DCD already on. -gwr */
357 1.8 leo if(cs->cs_zc->zc_csr & ZSRR0_DCD)
358 1.8 leo tp->t_state |= TS_CARR_ON;
359 1.1 leo if(cs->cs_softcar)
360 1.1 leo tp->t_state |= TS_CARR_ON;
361 1.1 leo if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
362 1.1 leo tp->t_state & TS_CARR_ON)
363 1.1 leo break;
364 1.1 leo tp->t_state |= TS_WOPEN;
365 1.1 leo if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
366 1.1 leo ttopen, 0)) {
367 1.1 leo if(!(tp->t_state & TS_ISOPEN)) {
368 1.1 leo zs_modem(cs, 0, DMSET);
369 1.1 leo tp->t_state &= ~TS_WOPEN;
370 1.1 leo ttwakeup(tp);
371 1.1 leo }
372 1.1 leo splx(s);
373 1.1 leo return error;
374 1.1 leo }
375 1.1 leo }
376 1.1 leo splx(s);
377 1.1 leo if(error == 0)
378 1.1 leo error = linesw[tp->t_line].l_open(dev, tp);
379 1.1 leo if(error)
380 1.1 leo zs_modem(cs, 0, DMSET);
381 1.1 leo return(error);
382 1.1 leo }
383 1.1 leo
384 1.1 leo /*
385 1.1 leo * Close a zs serial port.
386 1.1 leo */
387 1.1 leo int
388 1.1 leo zsclose(dev, flags, mode, p)
389 1.1 leo dev_t dev;
390 1.1 leo int flags;
391 1.1 leo int mode;
392 1.1 leo struct proc *p;
393 1.1 leo {
394 1.1 leo register struct zs_chanstate *cs;
395 1.1 leo register struct tty *tp;
396 1.1 leo struct zs_softc *zi;
397 1.1 leo int unit = ZS_UNIT(dev);
398 1.1 leo int s;
399 1.1 leo
400 1.1 leo zi = zscd.cd_devs[unit >> 1];
401 1.1 leo cs = &zi->zi_cs[unit & 1];
402 1.1 leo tp = cs->cs_ttyp;
403 1.1 leo linesw[tp->t_line].l_close(tp, flags);
404 1.1 leo if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
405 1.1 leo (tp->t_state & TS_ISOPEN) == 0) {
406 1.1 leo zs_modem(cs, 0, DMSET);
407 1.1 leo /* hold low for 1 second */
408 1.1 leo (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
409 1.1 leo }
410 1.1 leo if(cs->cs_creg[5] & ZSWR5_BREAK) {
411 1.1 leo s = splzs();
412 1.1 leo cs->cs_preg[5] &= ~ZSWR5_BREAK;
413 1.1 leo cs->cs_creg[5] &= ~ZSWR5_BREAK;
414 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
415 1.1 leo splx(s);
416 1.1 leo }
417 1.1 leo ttyclose(tp);
418 1.1 leo
419 1.1 leo /*
420 1.1 leo * Drop all lines and cancel interrupts
421 1.1 leo */
422 1.14 leo s = splzs();
423 1.14 leo zs_loadchannelregs(cs->cs_zc, zs_init_regs);
424 1.14 leo splx(s);
425 1.1 leo return (0);
426 1.1 leo }
427 1.1 leo
428 1.1 leo /*
429 1.1 leo * Read/write zs serial port.
430 1.1 leo */
431 1.1 leo int
432 1.1 leo zsread(dev, uio, flags)
433 1.1 leo dev_t dev;
434 1.1 leo struct uio *uio;
435 1.1 leo int flags;
436 1.1 leo {
437 1.4 leo register struct zs_chanstate *cs;
438 1.4 leo register struct zs_softc *zi;
439 1.4 leo register struct tty *tp;
440 1.4 leo int unit;
441 1.4 leo
442 1.4 leo unit = ZS_UNIT(dev);
443 1.4 leo zi = zscd.cd_devs[unit >> 1];
444 1.4 leo cs = &zi->zi_cs[unit & 1];
445 1.4 leo tp = cs->cs_ttyp;
446 1.1 leo
447 1.1 leo return(linesw[tp->t_line].l_read(tp, uio, flags));
448 1.1 leo }
449 1.1 leo
450 1.4 leo int
451 1.4 leo zswrite(dev, uio, flags)
452 1.1 leo dev_t dev;
453 1.1 leo struct uio *uio;
454 1.1 leo int flags;
455 1.1 leo {
456 1.4 leo register struct zs_chanstate *cs;
457 1.4 leo register struct zs_softc *zi;
458 1.4 leo register struct tty *tp;
459 1.4 leo int unit;
460 1.4 leo
461 1.4 leo unit = ZS_UNIT(dev);
462 1.4 leo zi = zscd.cd_devs[unit >> 1];
463 1.4 leo cs = &zi->zi_cs[unit & 1];
464 1.4 leo tp = cs->cs_ttyp;
465 1.1 leo
466 1.1 leo return(linesw[tp->t_line].l_write(tp, uio, flags));
467 1.4 leo }
468 1.4 leo
469 1.4 leo struct tty *
470 1.4 leo zstty(dev)
471 1.4 leo dev_t dev;
472 1.4 leo {
473 1.4 leo register struct zs_chanstate *cs;
474 1.4 leo register struct zs_softc *zi;
475 1.4 leo int unit;
476 1.4 leo
477 1.4 leo unit = ZS_UNIT(dev);
478 1.4 leo zi = zscd.cd_devs[unit >> 1];
479 1.4 leo cs = &zi->zi_cs[unit & 1];
480 1.4 leo return(cs->cs_ttyp);
481 1.1 leo }
482 1.1 leo
483 1.1 leo /*
484 1.1 leo * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
485 1.1 leo * channels are kept in (A,B) pairs.
486 1.1 leo *
487 1.1 leo * Do just a little, then get out; set a software interrupt if more
488 1.1 leo * work is needed.
489 1.1 leo *
490 1.1 leo * We deliberately ignore the vectoring Zilog gives us, and match up
491 1.1 leo * only the number of `reset interrupt under service' operations, not
492 1.1 leo * the order.
493 1.1 leo */
494 1.8 leo
495 1.1 leo int
496 1.1 leo zshard(sr)
497 1.1 leo long sr;
498 1.1 leo {
499 1.1 leo register struct zs_chanstate *a;
500 1.1 leo #define b (a + 1)
501 1.1 leo register volatile struct zschan *zc;
502 1.1 leo register int rr3, intflags = 0, v, i;
503 1.1 leo
504 1.8 leo do {
505 1.8 leo intflags &= ~4;
506 1.8 leo for(a = zslist; a != NULL; a = b->cs_next) {
507 1.1 leo rr3 = ZS_READ(a->cs_zc, 3);
508 1.1 leo if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
509 1.8 leo intflags |= 4|2;
510 1.1 leo zc = a->cs_zc;
511 1.1 leo i = a->cs_rbput;
512 1.1 leo if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
513 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
514 1.1 leo intflags |= 1;
515 1.1 leo }
516 1.1 leo if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
517 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
518 1.1 leo intflags |= 1;
519 1.1 leo }
520 1.1 leo if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
521 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
522 1.1 leo intflags |= 1;
523 1.1 leo }
524 1.1 leo a->cs_rbput = i;
525 1.1 leo }
526 1.1 leo if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
527 1.8 leo intflags |= 4|2;
528 1.1 leo zc = b->cs_zc;
529 1.1 leo i = b->cs_rbput;
530 1.1 leo if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
531 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
532 1.1 leo intflags |= 1;
533 1.1 leo }
534 1.1 leo if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
535 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
536 1.1 leo intflags |= 1;
537 1.1 leo }
538 1.1 leo if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
539 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
540 1.1 leo intflags |= 1;
541 1.1 leo }
542 1.1 leo b->cs_rbput = i;
543 1.1 leo }
544 1.8 leo }
545 1.8 leo } while(intflags & 4);
546 1.1 leo #undef b
547 1.1 leo
548 1.1 leo if(intflags & 1) {
549 1.1 leo if(BASEPRI(sr)) {
550 1.1 leo spl1();
551 1.1 leo zsshortcuts++;
552 1.1 leo return(zssoft(sr));
553 1.1 leo }
554 1.8 leo else if(!cb_scheduled) {
555 1.8 leo cb_scheduled++;
556 1.8 leo add_sicallback(zssoft, 0, 0);
557 1.8 leo }
558 1.1 leo }
559 1.1 leo return(intflags & 2);
560 1.1 leo }
561 1.1 leo
562 1.1 leo static int
563 1.1 leo zsrint(cs, zc)
564 1.1 leo register struct zs_chanstate *cs;
565 1.1 leo register volatile struct zschan *zc;
566 1.1 leo {
567 1.8 leo register int c;
568 1.1 leo
569 1.8 leo /*
570 1.8 leo * First read the status, because read of the received char
571 1.8 leo * destroy the status of this char.
572 1.8 leo */
573 1.8 leo c = ZS_READ(zc, 1);
574 1.8 leo c |= (zc->zc_data << 8);
575 1.1 leo
576 1.1 leo /* clear receive error & interrupt condition */
577 1.1 leo zc->zc_csr = ZSWR0_RESET_ERRORS;
578 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
579 1.1 leo
580 1.1 leo return(ZRING_MAKE(ZRING_RINT, c));
581 1.1 leo }
582 1.1 leo
583 1.1 leo static int
584 1.1 leo zsxint(cs, zc)
585 1.1 leo register struct zs_chanstate *cs;
586 1.1 leo register volatile struct zschan *zc;
587 1.1 leo {
588 1.1 leo register int i = cs->cs_tbc;
589 1.1 leo
590 1.1 leo if(i == 0) {
591 1.1 leo zc->zc_csr = ZSWR0_RESET_TXINT;
592 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
593 1.1 leo return(ZRING_MAKE(ZRING_XINT, 0));
594 1.1 leo }
595 1.1 leo cs->cs_tbc = i - 1;
596 1.1 leo zc->zc_data = *cs->cs_tba++;
597 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
598 1.1 leo return (0);
599 1.1 leo }
600 1.1 leo
601 1.1 leo static int
602 1.1 leo zssint(cs, zc)
603 1.1 leo register struct zs_chanstate *cs;
604 1.1 leo register volatile struct zschan *zc;
605 1.1 leo {
606 1.1 leo register int rr0;
607 1.1 leo
608 1.1 leo rr0 = zc->zc_csr;
609 1.1 leo zc->zc_csr = ZSWR0_RESET_STATUS;
610 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
611 1.1 leo /*
612 1.1 leo * The chip's hardware flow control is, as noted in zsreg.h,
613 1.1 leo * busted---if the DCD line goes low the chip shuts off the
614 1.1 leo * receiver (!). If we want hardware CTS flow control but do
615 1.1 leo * not have it, and carrier is now on, turn HFC on; if we have
616 1.1 leo * HFC now but carrier has gone low, turn it off.
617 1.1 leo */
618 1.1 leo if(rr0 & ZSRR0_DCD) {
619 1.1 leo if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
620 1.1 leo (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
621 1.1 leo cs->cs_creg[3] |= ZSWR3_HFC;
622 1.1 leo ZS_WRITE(zc, 3, cs->cs_creg[3]);
623 1.1 leo }
624 1.1 leo }
625 1.1 leo else {
626 1.1 leo if (cs->cs_creg[3] & ZSWR3_HFC) {
627 1.1 leo cs->cs_creg[3] &= ~ZSWR3_HFC;
628 1.1 leo ZS_WRITE(zc, 3, cs->cs_creg[3]);
629 1.1 leo }
630 1.1 leo }
631 1.1 leo return(ZRING_MAKE(ZRING_SINT, rr0));
632 1.1 leo }
633 1.1 leo
634 1.1 leo /*
635 1.1 leo * Print out a ring or fifo overrun error message.
636 1.1 leo */
637 1.1 leo static void
638 1.1 leo zsoverrun(unit, ptime, what)
639 1.1 leo int unit;
640 1.1 leo long *ptime;
641 1.1 leo char *what;
642 1.1 leo {
643 1.1 leo
644 1.1 leo if(*ptime != time.tv_sec) {
645 1.1 leo *ptime = time.tv_sec;
646 1.1 leo log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
647 1.1 leo (unit & 1) + 'a', what);
648 1.1 leo }
649 1.1 leo }
650 1.1 leo
651 1.1 leo /*
652 1.1 leo * ZS software interrupt. Scan all channels for deferred interrupts.
653 1.1 leo */
654 1.1 leo int
655 1.1 leo zssoft(sr)
656 1.1 leo long sr;
657 1.1 leo {
658 1.1 leo register struct zs_chanstate *cs;
659 1.1 leo register volatile struct zschan *zc;
660 1.1 leo register struct linesw *line;
661 1.1 leo register struct tty *tp;
662 1.1 leo register int get, n, c, cc, unit, s;
663 1.1 leo int retval = 0;
664 1.1 leo
665 1.8 leo cb_scheduled = 0;
666 1.1 leo s = spltty();
667 1.1 leo for(cs = zslist; cs != NULL; cs = cs->cs_next) {
668 1.1 leo get = cs->cs_rbget;
669 1.1 leo again:
670 1.1 leo n = cs->cs_rbput; /* atomic */
671 1.1 leo if(get == n) /* nothing more on this line */
672 1.1 leo continue;
673 1.1 leo retval = 1;
674 1.1 leo unit = cs->cs_unit; /* set up to handle interrupts */
675 1.1 leo zc = cs->cs_zc;
676 1.1 leo tp = cs->cs_ttyp;
677 1.1 leo line = &linesw[tp->t_line];
678 1.1 leo /*
679 1.1 leo * Compute the number of interrupts in the receive ring.
680 1.1 leo * If the count is overlarge, we lost some events, and
681 1.1 leo * must advance to the first valid one. It may get
682 1.1 leo * overwritten if more data are arriving, but this is
683 1.1 leo * too expensive to check and gains nothing (we already
684 1.1 leo * lost out; all we can do at this point is trade one
685 1.1 leo * kind of loss for another).
686 1.1 leo */
687 1.1 leo n -= get;
688 1.1 leo if(n > ZLRB_RING_SIZE) {
689 1.1 leo zsoverrun(unit, &cs->cs_rotime, "ring");
690 1.1 leo get += n - ZLRB_RING_SIZE;
691 1.1 leo n = ZLRB_RING_SIZE;
692 1.1 leo }
693 1.1 leo while(--n >= 0) {
694 1.1 leo /* race to keep ahead of incoming interrupts */
695 1.1 leo c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
696 1.1 leo switch (ZRING_TYPE(c)) {
697 1.1 leo
698 1.1 leo case ZRING_RINT:
699 1.1 leo c = ZRING_VALUE(c);
700 1.1 leo if(c & ZSRR1_DO)
701 1.1 leo zsoverrun(unit, &cs->cs_fotime, "fifo");
702 1.1 leo cc = c >> 8;
703 1.1 leo if(c & ZSRR1_FE)
704 1.1 leo cc |= TTY_FE;
705 1.1 leo if(c & ZSRR1_PE)
706 1.1 leo cc |= TTY_PE;
707 1.1 leo line->l_rint(cc, tp);
708 1.1 leo break;
709 1.1 leo
710 1.1 leo case ZRING_XINT:
711 1.1 leo /*
712 1.1 leo * Transmit done: change registers and resume,
713 1.1 leo * or clear BUSY.
714 1.1 leo */
715 1.1 leo if(cs->cs_heldchange) {
716 1.1 leo int sps;
717 1.1 leo
718 1.1 leo sps = splzs();
719 1.1 leo c = zc->zc_csr;
720 1.1 leo if((c & ZSRR0_DCD) == 0)
721 1.1 leo cs->cs_preg[3] &= ~ZSWR3_HFC;
722 1.1 leo bcopy((caddr_t)cs->cs_preg,
723 1.1 leo (caddr_t)cs->cs_creg, 16);
724 1.1 leo zs_loadchannelregs(zc, cs->cs_creg);
725 1.1 leo splx(sps);
726 1.1 leo cs->cs_heldchange = 0;
727 1.1 leo if(cs->cs_heldtbc
728 1.1 leo && (tp->t_state & TS_TTSTOP) == 0) {
729 1.1 leo cs->cs_tbc = cs->cs_heldtbc - 1;
730 1.1 leo zc->zc_data = *cs->cs_tba++;
731 1.1 leo goto again;
732 1.1 leo }
733 1.1 leo }
734 1.1 leo tp->t_state &= ~TS_BUSY;
735 1.1 leo if(tp->t_state & TS_FLUSH)
736 1.1 leo tp->t_state &= ~TS_FLUSH;
737 1.1 leo else ndflush(&tp->t_outq,cs->cs_tba
738 1.1 leo - (caddr_t)tp->t_outq.c_cf);
739 1.1 leo line->l_start(tp);
740 1.1 leo break;
741 1.1 leo
742 1.1 leo case ZRING_SINT:
743 1.1 leo /*
744 1.1 leo * Status line change. HFC bit is run in
745 1.1 leo * hardware interrupt, to avoid locking
746 1.1 leo * at splzs here.
747 1.1 leo */
748 1.1 leo c = ZRING_VALUE(c);
749 1.1 leo if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
750 1.1 leo cc = (c & ZSRR0_DCD) != 0;
751 1.1 leo if(line->l_modem(tp, cc) == 0)
752 1.1 leo zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
753 1.1 leo cc ? DMBIS : DMBIC);
754 1.1 leo }
755 1.1 leo cs->cs_rr0 = c;
756 1.1 leo break;
757 1.1 leo
758 1.1 leo default:
759 1.1 leo log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
760 1.1 leo unit >> 1, (unit & 1) + 'a', c);
761 1.1 leo break;
762 1.1 leo }
763 1.1 leo }
764 1.1 leo cs->cs_rbget = get;
765 1.1 leo goto again;
766 1.1 leo }
767 1.1 leo splx(s);
768 1.1 leo return (retval);
769 1.1 leo }
770 1.1 leo
771 1.1 leo int
772 1.1 leo zsioctl(dev, cmd, data, flag, p)
773 1.1 leo dev_t dev;
774 1.1 leo u_long cmd;
775 1.1 leo caddr_t data;
776 1.1 leo int flag;
777 1.1 leo struct proc *p;
778 1.1 leo {
779 1.1 leo int unit = ZS_UNIT(dev);
780 1.1 leo struct zs_softc *zi = zscd.cd_devs[unit >> 1];
781 1.1 leo register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
782 1.1 leo register int error, s;
783 1.1 leo register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
784 1.1 leo
785 1.1 leo error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
786 1.1 leo if(error >= 0)
787 1.1 leo return(error);
788 1.1 leo error = ttioctl(tp, cmd, data, flag, p);
789 1.1 leo if(error >= 0)
790 1.1 leo return (error);
791 1.1 leo
792 1.1 leo switch (cmd) {
793 1.1 leo case TIOCSBRK:
794 1.1 leo s = splzs();
795 1.1 leo cs->cs_preg[5] |= ZSWR5_BREAK;
796 1.1 leo cs->cs_creg[5] |= ZSWR5_BREAK;
797 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
798 1.1 leo splx(s);
799 1.1 leo break;
800 1.1 leo case TIOCCBRK:
801 1.1 leo s = splzs();
802 1.1 leo cs->cs_preg[5] &= ~ZSWR5_BREAK;
803 1.1 leo cs->cs_creg[5] &= ~ZSWR5_BREAK;
804 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
805 1.1 leo splx(s);
806 1.1 leo break;
807 1.1 leo case TIOCGFLAGS: {
808 1.1 leo int bits = 0;
809 1.1 leo
810 1.1 leo if(cs->cs_softcar)
811 1.1 leo bits |= TIOCFLAG_SOFTCAR;
812 1.1 leo if(cs->cs_creg[15] & ZSWR15_DCD_IE)
813 1.1 leo bits |= TIOCFLAG_CLOCAL;
814 1.1 leo if(cs->cs_creg[3] & ZSWR3_HFC)
815 1.1 leo bits |= TIOCFLAG_CRTSCTS;
816 1.1 leo *(int *)data = bits;
817 1.1 leo break;
818 1.1 leo }
819 1.1 leo case TIOCSFLAGS: {
820 1.1 leo int userbits, driverbits = 0;
821 1.1 leo
822 1.3 mycroft error = suser(p->p_ucred, &p->p_acflag);
823 1.1 leo if(error != 0)
824 1.1 leo return (EPERM);
825 1.1 leo
826 1.1 leo userbits = *(int *)data;
827 1.1 leo
828 1.1 leo /*
829 1.1 leo * can have `local' or `softcar', and `rtscts' or `mdmbuf'
830 1.1 leo # defaulting to software flow control.
831 1.1 leo */
832 1.1 leo if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
833 1.1 leo return(EINVAL);
834 1.1 leo if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
835 1.11 leo return(ENODEV);
836 1.1 leo
837 1.1 leo s = splzs();
838 1.1 leo if((userbits & TIOCFLAG_SOFTCAR)) {
839 1.1 leo cs->cs_softcar = 1; /* turn on softcar */
840 1.1 leo cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
841 1.1 leo cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
842 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
843 1.1 leo }
844 1.1 leo else if(userbits & TIOCFLAG_CLOCAL) {
845 1.1 leo cs->cs_softcar = 0; /* turn off softcar */
846 1.1 leo cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
847 1.1 leo cs->cs_creg[15] |= ZSWR15_DCD_IE;
848 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
849 1.1 leo tp->t_termios.c_cflag |= CLOCAL;
850 1.1 leo }
851 1.1 leo if(userbits & TIOCFLAG_CRTSCTS) {
852 1.1 leo cs->cs_preg[15] |= ZSWR15_CTS_IE;
853 1.1 leo cs->cs_creg[15] |= ZSWR15_CTS_IE;
854 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
855 1.1 leo cs->cs_preg[3] |= ZSWR3_HFC;
856 1.1 leo cs->cs_creg[3] |= ZSWR3_HFC;
857 1.1 leo ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
858 1.1 leo tp->t_termios.c_cflag |= CRTSCTS;
859 1.1 leo }
860 1.1 leo else {
861 1.1 leo /* no mdmbuf, so we must want software flow control */
862 1.1 leo cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
863 1.1 leo cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
864 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
865 1.1 leo cs->cs_preg[3] &= ~ZSWR3_HFC;
866 1.1 leo cs->cs_creg[3] &= ~ZSWR3_HFC;
867 1.1 leo ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
868 1.1 leo tp->t_termios.c_cflag &= ~CRTSCTS;
869 1.1 leo }
870 1.1 leo splx(s);
871 1.1 leo break;
872 1.1 leo }
873 1.1 leo case TIOCSDTR:
874 1.1 leo zs_modem(cs, ZSWR5_DTR, DMBIS);
875 1.1 leo break;
876 1.1 leo case TIOCCDTR:
877 1.1 leo zs_modem(cs, ZSWR5_DTR, DMBIC);
878 1.1 leo break;
879 1.1 leo case TIOCMGET:
880 1.1 leo zs_modem(cs, 0, DMGET);
881 1.1 leo break;
882 1.1 leo case TIOCMSET:
883 1.1 leo case TIOCMBIS:
884 1.1 leo case TIOCMBIC:
885 1.1 leo default:
886 1.1 leo return (ENOTTY);
887 1.1 leo }
888 1.1 leo return (0);
889 1.1 leo }
890 1.1 leo
891 1.1 leo /*
892 1.1 leo * Start or restart transmission.
893 1.1 leo */
894 1.1 leo static void
895 1.1 leo zsstart(tp)
896 1.1 leo register struct tty *tp;
897 1.1 leo {
898 1.1 leo register struct zs_chanstate *cs;
899 1.1 leo register int s, nch;
900 1.1 leo int unit = ZS_UNIT(tp->t_dev);
901 1.1 leo struct zs_softc *zi = zscd.cd_devs[unit >> 1];
902 1.1 leo
903 1.1 leo cs = &zi->zi_cs[unit & 1];
904 1.1 leo s = spltty();
905 1.1 leo
906 1.1 leo /*
907 1.1 leo * If currently active or delaying, no need to do anything.
908 1.1 leo */
909 1.1 leo if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
910 1.1 leo goto out;
911 1.1 leo
912 1.1 leo /*
913 1.1 leo * If there are sleepers, and output has drained below low
914 1.1 leo * water mark, awaken.
915 1.1 leo */
916 1.1 leo if(tp->t_outq.c_cc <= tp->t_lowat) {
917 1.1 leo if(tp->t_state & TS_ASLEEP) {
918 1.1 leo tp->t_state &= ~TS_ASLEEP;
919 1.1 leo wakeup((caddr_t)&tp->t_outq);
920 1.1 leo }
921 1.1 leo selwakeup(&tp->t_wsel);
922 1.1 leo }
923 1.1 leo
924 1.1 leo nch = ndqb(&tp->t_outq, 0); /* XXX */
925 1.1 leo if(nch) {
926 1.1 leo register char *p = tp->t_outq.c_cf;
927 1.1 leo
928 1.1 leo /* mark busy, enable tx done interrupts, & send first byte */
929 1.1 leo tp->t_state |= TS_BUSY;
930 1.1 leo (void) splzs();
931 1.1 leo cs->cs_preg[1] |= ZSWR1_TIE;
932 1.1 leo cs->cs_creg[1] |= ZSWR1_TIE;
933 1.1 leo ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
934 1.1 leo cs->cs_zc->zc_data = *p;
935 1.1 leo cs->cs_tba = p + 1;
936 1.1 leo cs->cs_tbc = nch - 1;
937 1.1 leo } else {
938 1.1 leo /*
939 1.1 leo * Nothing to send, turn off transmit done interrupts.
940 1.1 leo * This is useful if something is doing polled output.
941 1.1 leo */
942 1.1 leo (void) splzs();
943 1.1 leo cs->cs_preg[1] &= ~ZSWR1_TIE;
944 1.1 leo cs->cs_creg[1] &= ~ZSWR1_TIE;
945 1.1 leo ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
946 1.1 leo }
947 1.1 leo out:
948 1.1 leo splx(s);
949 1.1 leo }
950 1.1 leo
951 1.1 leo /*
952 1.1 leo * Stop output, e.g., for ^S or output flush.
953 1.1 leo */
954 1.1 leo void
955 1.1 leo zsstop(tp, flag)
956 1.1 leo register struct tty *tp;
957 1.1 leo int flag;
958 1.1 leo {
959 1.1 leo register struct zs_chanstate *cs;
960 1.1 leo register int s, unit = ZS_UNIT(tp->t_dev);
961 1.1 leo struct zs_softc *zi = zscd.cd_devs[unit >> 1];
962 1.1 leo
963 1.1 leo cs = &zi->zi_cs[unit & 1];
964 1.1 leo s = splzs();
965 1.1 leo if(tp->t_state & TS_BUSY) {
966 1.1 leo /*
967 1.1 leo * Device is transmitting; must stop it.
968 1.1 leo */
969 1.1 leo cs->cs_tbc = 0;
970 1.1 leo if ((tp->t_state & TS_TTSTOP) == 0)
971 1.1 leo tp->t_state |= TS_FLUSH;
972 1.1 leo }
973 1.1 leo splx(s);
974 1.1 leo }
975 1.1 leo
976 1.1 leo /*
977 1.1 leo * Set ZS tty parameters from termios.
978 1.1 leo *
979 1.1 leo * This routine makes use of the fact that only registers
980 1.1 leo * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
981 1.1 leo */
982 1.1 leo static int
983 1.1 leo zsparam(tp, t)
984 1.1 leo register struct tty *tp;
985 1.1 leo register struct termios *t;
986 1.1 leo {
987 1.1 leo int unit = ZS_UNIT(tp->t_dev);
988 1.1 leo struct zs_softc *zi = zscd.cd_devs[unit >> 1];
989 1.1 leo register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
990 1.6 leo int cdiv, clkm, brgm, tcon;
991 1.1 leo register int tmp, tmp5, cflag, s;
992 1.1 leo
993 1.6 leo tmp = t->c_ospeed;
994 1.6 leo tmp5 = t->c_ispeed;
995 1.6 leo if(tmp < 0 || (tmp5 && tmp5 != tmp))
996 1.1 leo return(EINVAL);
997 1.1 leo if(tmp == 0) {
998 1.1 leo /* stty 0 => drop DTR and RTS */
999 1.1 leo zs_modem(cs, 0, DMSET);
1000 1.1 leo return(0);
1001 1.1 leo }
1002 1.6 leo tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1003 1.6 leo if (tmp < 0)
1004 1.1 leo return(EINVAL);
1005 1.6 leo tp->t_ispeed = tp->t_ospeed = tmp;
1006 1.1 leo
1007 1.6 leo cflag = tp->t_cflag = t->c_cflag;
1008 1.6 leo if (cflag & CSTOPB)
1009 1.6 leo cdiv |= ZSWR4_TWOSB;
1010 1.6 leo else
1011 1.6 leo cdiv |= ZSWR4_ONESB;
1012 1.6 leo if (!(cflag & PARODD))
1013 1.6 leo cdiv |= ZSWR4_EVENP;
1014 1.6 leo if (cflag & PARENB)
1015 1.6 leo cdiv |= ZSWR4_PARENB;
1016 1.1 leo
1017 1.1 leo switch(cflag & CSIZE) {
1018 1.1 leo case CS5:
1019 1.1 leo tmp = ZSWR3_RX_5;
1020 1.1 leo tmp5 = ZSWR5_TX_5;
1021 1.1 leo break;
1022 1.1 leo case CS6:
1023 1.1 leo tmp = ZSWR3_RX_6;
1024 1.1 leo tmp5 = ZSWR5_TX_6;
1025 1.1 leo break;
1026 1.1 leo case CS7:
1027 1.1 leo tmp = ZSWR3_RX_7;
1028 1.1 leo tmp5 = ZSWR5_TX_7;
1029 1.1 leo break;
1030 1.1 leo case CS8:
1031 1.1 leo default:
1032 1.1 leo tmp = ZSWR3_RX_8;
1033 1.1 leo tmp5 = ZSWR5_TX_8;
1034 1.1 leo break;
1035 1.1 leo }
1036 1.6 leo tmp |= ZSWR3_RX_ENABLE;
1037 1.6 leo tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1038 1.6 leo
1039 1.6 leo /*
1040 1.6 leo * Block interrupts so that state will not
1041 1.6 leo * be altered until we are done setting it up.
1042 1.6 leo */
1043 1.6 leo s = splzs();
1044 1.6 leo cs->cs_preg[4] = cdiv;
1045 1.6 leo cs->cs_preg[11] = clkm;
1046 1.6 leo cs->cs_preg[12] = tcon;
1047 1.6 leo cs->cs_preg[13] = tcon >> 8;
1048 1.6 leo cs->cs_preg[14] = brgm;
1049 1.6 leo cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1050 1.6 leo cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1051 1.6 leo cs->cs_preg[10] = ZSWR10_NRZ;
1052 1.6 leo cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1053 1.1 leo
1054 1.1 leo /*
1055 1.1 leo * Output hardware flow control on the chip is horrendous: if
1056 1.1 leo * carrier detect drops, the receiver is disabled. Hence we
1057 1.1 leo * can only do this when the carrier is on.
1058 1.1 leo */
1059 1.1 leo if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1060 1.6 leo tmp |= ZSWR3_HFC;
1061 1.1 leo cs->cs_preg[3] = tmp;
1062 1.6 leo cs->cs_preg[5] = tmp5;
1063 1.1 leo
1064 1.1 leo /*
1065 1.1 leo * If nothing is being transmitted, set up new current values,
1066 1.1 leo * else mark them as pending.
1067 1.1 leo */
1068 1.1 leo if(cs->cs_heldchange == 0) {
1069 1.1 leo if (cs->cs_ttyp->t_state & TS_BUSY) {
1070 1.1 leo cs->cs_heldtbc = cs->cs_tbc;
1071 1.1 leo cs->cs_tbc = 0;
1072 1.1 leo cs->cs_heldchange = 1;
1073 1.6 leo } else {
1074 1.1 leo bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1075 1.1 leo zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1076 1.1 leo }
1077 1.1 leo }
1078 1.1 leo splx(s);
1079 1.1 leo return (0);
1080 1.6 leo }
1081 1.6 leo
1082 1.6 leo /*
1083 1.6 leo * search for the best matching baudrate
1084 1.6 leo */
1085 1.6 leo static int
1086 1.6 leo zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1087 1.6 leo int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1088 1.6 leo {
1089 1.6 leo int bestdiff, bestbps, source;
1090 1.6 leo
1091 1.6 leo unit = (unit & 1) << 2;
1092 1.6 leo for (source = 0; source < 4; ++source) {
1093 1.6 leo long freq = zs_frequencies[unit + source];
1094 1.6 leo int diff, bps, div, clkm, brgm, tcon;
1095 1.6 leo switch (source) {
1096 1.6 leo case 0: /* BRgen, PCLK */
1097 1.6 leo brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1098 1.6 leo break;
1099 1.6 leo case 1: /* BRgen, RTxC */
1100 1.6 leo brgm = ZSWR14_BAUD_ENA;
1101 1.6 leo break;
1102 1.6 leo case 2: /* RTxC */
1103 1.6 leo clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1104 1.6 leo break;
1105 1.6 leo case 3: /* TRxC */
1106 1.6 leo clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1107 1.6 leo break;
1108 1.6 leo }
1109 1.6 leo switch (source) {
1110 1.6 leo case 0:
1111 1.6 leo case 1:
1112 1.6 leo div = ZSWR4_CLK_X16;
1113 1.6 leo clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1114 1.6 leo tcon = BPS_TO_TCONST(freq, wanted);
1115 1.6 leo if (tcon < 0)
1116 1.6 leo tcon = 0;
1117 1.6 leo bps = TCONST_TO_BPS(freq, tcon);
1118 1.6 leo break;
1119 1.6 leo case 2:
1120 1.6 leo case 3:
1121 1.6 leo { int b1 = freq / 16, d1 = abs(b1 - wanted);
1122 1.6 leo int b2 = freq / 32, d2 = abs(b2 - wanted);
1123 1.6 leo int b3 = freq / 64, d3 = abs(b3 - wanted);
1124 1.6 leo
1125 1.6 leo if (d1 < d2 && d1 < d3) {
1126 1.6 leo div = ZSWR4_CLK_X16;
1127 1.6 leo bps = b1;
1128 1.6 leo } else if (d2 < d3 && d2 < d1) {
1129 1.6 leo div = ZSWR4_CLK_X32;
1130 1.6 leo bps = b2;
1131 1.6 leo } else {
1132 1.6 leo div = ZSWR4_CLK_X64;
1133 1.6 leo bps = b3;
1134 1.6 leo }
1135 1.6 leo brgm = tcon = 0;
1136 1.6 leo break;
1137 1.6 leo }
1138 1.6 leo }
1139 1.6 leo diff = abs(bps - wanted);
1140 1.6 leo if (!source || diff < bestdiff) {
1141 1.6 leo *divisor = div;
1142 1.6 leo *clockmode = clkm;
1143 1.6 leo *brgenmode = brgm;
1144 1.6 leo *timeconst = tcon;
1145 1.6 leo bestbps = bps;
1146 1.6 leo bestdiff = diff;
1147 1.6 leo if (diff == 0)
1148 1.6 leo break;
1149 1.6 leo }
1150 1.6 leo }
1151 1.6 leo /* Allow deviations upto 5% */
1152 1.6 leo if (20 * bestdiff > wanted)
1153 1.6 leo return -1;
1154 1.6 leo return bestbps;
1155 1.1 leo }
1156 1.1 leo
1157 1.1 leo /*
1158 1.1 leo * Raise or lower modem control (DTR/RTS) signals. If a character is
1159 1.1 leo * in transmission, the change is deferred.
1160 1.1 leo */
1161 1.1 leo static int
1162 1.1 leo zs_modem(cs, bits, how)
1163 1.1 leo struct zs_chanstate *cs;
1164 1.1 leo int bits, how;
1165 1.1 leo {
1166 1.1 leo int s, mbits;
1167 1.1 leo
1168 1.1 leo bits &= ZSWR5_DTR | ZSWR5_RTS;
1169 1.1 leo
1170 1.1 leo s = splzs();
1171 1.1 leo mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1172 1.1 leo
1173 1.1 leo switch(how) {
1174 1.1 leo case DMSET:
1175 1.1 leo mbits = bits;
1176 1.1 leo break;
1177 1.1 leo case DMBIS:
1178 1.1 leo mbits |= bits;
1179 1.1 leo break;
1180 1.1 leo case DMBIC:
1181 1.1 leo mbits &= ~bits;
1182 1.1 leo break;
1183 1.1 leo case DMGET:
1184 1.1 leo splx(s);
1185 1.1 leo return(mbits);
1186 1.1 leo }
1187 1.1 leo
1188 1.1 leo cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1189 1.1 leo if(cs->cs_heldchange == 0) {
1190 1.1 leo if(cs->cs_ttyp->t_state & TS_BUSY) {
1191 1.1 leo cs->cs_heldtbc = cs->cs_tbc;
1192 1.1 leo cs->cs_tbc = 0;
1193 1.1 leo cs->cs_heldchange = 1;
1194 1.1 leo }
1195 1.1 leo else {
1196 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1197 1.1 leo }
1198 1.1 leo }
1199 1.1 leo splx(s);
1200 1.1 leo return(0);
1201 1.1 leo }
1202 1.1 leo
1203 1.1 leo /*
1204 1.1 leo * Write the given register set to the given zs channel in the proper order.
1205 1.1 leo * The channel must not be transmitting at the time. The receiver will
1206 1.1 leo * be disabled for the time it takes to write all the registers.
1207 1.1 leo */
1208 1.1 leo static void
1209 1.1 leo zs_loadchannelregs(zc, reg)
1210 1.1 leo volatile struct zschan *zc;
1211 1.1 leo u_char *reg;
1212 1.1 leo {
1213 1.1 leo int i;
1214 1.1 leo
1215 1.1 leo zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1216 1.1 leo i = zc->zc_data; /* drain fifo */
1217 1.1 leo i = zc->zc_data;
1218 1.1 leo i = zc->zc_data;
1219 1.1 leo ZS_WRITE(zc, 4, reg[4]);
1220 1.1 leo ZS_WRITE(zc, 10, reg[10]);
1221 1.1 leo ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1222 1.1 leo ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1223 1.1 leo ZS_WRITE(zc, 1, reg[1]);
1224 1.1 leo ZS_WRITE(zc, 9, reg[9]);
1225 1.1 leo ZS_WRITE(zc, 11, reg[11]);
1226 1.1 leo ZS_WRITE(zc, 12, reg[12]);
1227 1.1 leo ZS_WRITE(zc, 13, reg[13]);
1228 1.1 leo ZS_WRITE(zc, 14, reg[14]);
1229 1.1 leo ZS_WRITE(zc, 15, reg[15]);
1230 1.1 leo ZS_WRITE(zc, 3, reg[3]);
1231 1.1 leo ZS_WRITE(zc, 5, reg[5]);
1232 1.1 leo }
1233 1.1 leo #endif /* NZS > 1 */
1234