zs.c revision 1.34.4.1 1 1.34.4.1 fvdl /* $NetBSD: zs.c,v 1.34.4.1 2001/10/13 17:42:36 fvdl Exp $ */
2 1.1 leo
3 1.1 leo /*
4 1.1 leo * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 1.1 leo * Copyright (c) 1992, 1993
6 1.1 leo * The Regents of the University of California. All rights reserved.
7 1.1 leo *
8 1.1 leo * This software was developed by the Computer Systems Engineering group
9 1.1 leo * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 1.1 leo * contributed to Berkeley.
11 1.1 leo *
12 1.1 leo *
13 1.1 leo * All advertising materials mentioning features or use of this software
14 1.1 leo * must display the following acknowledgement:
15 1.1 leo * This product includes software developed by the University of
16 1.1 leo * California, Lawrence Berkeley Laboratory.
17 1.1 leo *
18 1.1 leo * Redistribution and use in source and binary forms, with or without
19 1.1 leo * modification, are permitted provided that the following conditions
20 1.1 leo * are met:
21 1.1 leo * 1. Redistributions of source code must retain the above copyright
22 1.1 leo * notice, this list of conditions and the following disclaimer.
23 1.1 leo * 2. Redistributions in binary form must reproduce the above copyright
24 1.1 leo * notice, this list of conditions and the following disclaimer in the
25 1.1 leo * documentation and/or other materials provided with the distribution.
26 1.1 leo * 3. All advertising materials mentioning features or use of this software
27 1.1 leo * must display the following acknowledgement:
28 1.1 leo * This product includes software developed by the University of
29 1.1 leo * California, Berkeley and its contributors.
30 1.1 leo * 4. Neither the name of the University nor the names of its contributors
31 1.1 leo * may be used to endorse or promote products derived from this software
32 1.1 leo * without specific prior written permission.
33 1.1 leo *
34 1.1 leo * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 1.1 leo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 1.1 leo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 1.1 leo * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 1.1 leo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 1.1 leo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 1.1 leo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 1.1 leo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 1.1 leo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 1.1 leo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 1.1 leo * SUCH DAMAGE.
45 1.1 leo *
46 1.1 leo * @(#)zs.c 8.1 (Berkeley) 7/19/93
47 1.1 leo */
48 1.1 leo
49 1.1 leo /*
50 1.1 leo * Zilog Z8530 (ZSCC) driver.
51 1.1 leo *
52 1.1 leo * Runs two tty ports (modem2 and serial2) on zs0.
53 1.1 leo *
54 1.1 leo * This driver knows far too much about chip to usage mappings.
55 1.1 leo */
56 1.1 leo #include <sys/param.h>
57 1.9 leo #include <sys/systm.h>
58 1.1 leo #include <sys/proc.h>
59 1.1 leo #include <sys/device.h>
60 1.1 leo #include <sys/conf.h>
61 1.1 leo #include <sys/file.h>
62 1.1 leo #include <sys/ioctl.h>
63 1.13 leo #include <sys/malloc.h>
64 1.1 leo #include <sys/tty.h>
65 1.1 leo #include <sys/time.h>
66 1.1 leo #include <sys/kernel.h>
67 1.1 leo #include <sys/syslog.h>
68 1.1 leo
69 1.1 leo #include <machine/cpu.h>
70 1.1 leo #include <machine/iomap.h>
71 1.1 leo #include <machine/scu.h>
72 1.1 leo #include <machine/mfp.h>
73 1.18 leo #include <atari/dev/ym2149reg.h>
74 1.1 leo
75 1.7 cgd #include <dev/ic/z8530reg.h>
76 1.1 leo #include <atari/dev/zsvar.h>
77 1.1 leo #include "zs.h"
78 1.1 leo #if NZS > 1
79 1.1 leo #error "This driver supports only 1 85C30!"
80 1.1 leo #endif
81 1.1 leo
82 1.1 leo #if NZS > 0
83 1.1 leo
84 1.12 leo #define PCLK (8053976) /* PCLK pin input clock rate */
85 1.30 mycroft #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
86 1.1 leo
87 1.1 leo #define splzs spl5
88 1.1 leo
89 1.1 leo /*
90 1.1 leo * Software state per found chip.
91 1.1 leo */
92 1.1 leo struct zs_softc {
93 1.1 leo struct device zi_dev; /* base device */
94 1.1 leo volatile struct zsdevice *zi_zs; /* chip registers */
95 1.1 leo struct zs_chanstate zi_cs[2]; /* chan A and B software state */
96 1.1 leo };
97 1.1 leo
98 1.8 leo static u_char cb_scheduled = 0; /* Already asked for callback? */
99 1.1 leo /*
100 1.1 leo * Define the registers for a closed port
101 1.1 leo */
102 1.6 leo static u_char zs_init_regs[16] = {
103 1.1 leo /* 0 */ 0,
104 1.1 leo /* 1 */ 0,
105 1.1 leo /* 2 */ 0x60,
106 1.1 leo /* 3 */ 0,
107 1.1 leo /* 4 */ 0,
108 1.1 leo /* 5 */ 0,
109 1.1 leo /* 6 */ 0,
110 1.1 leo /* 7 */ 0,
111 1.1 leo /* 8 */ 0,
112 1.13 leo /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
113 1.1 leo /* 10 */ ZSWR10_NRZ,
114 1.1 leo /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
115 1.1 leo /* 12 */ 0,
116 1.1 leo /* 13 */ 0,
117 1.1 leo /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
118 1.1 leo /* 15 */ 0
119 1.1 leo };
120 1.1 leo
121 1.6 leo /*
122 1.6 leo * Define the machine dependant clock frequencies
123 1.6 leo * If BRgen feeds sender/receiver we always use a
124 1.6 leo * divisor 16, therefor the division by 16 can as
125 1.6 leo * well be done here.
126 1.6 leo */
127 1.6 leo static u_long zs_freqs_tt[] = {
128 1.6 leo /*
129 1.6 leo * Atari TT, RTxCB is generated by TT-MFP timer C,
130 1.6 leo * which is set to 307.2KHz during initialisation
131 1.6 leo * and never changed afterwards.
132 1.6 leo */
133 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
134 1.6 leo 229500, /* BRgen, RTxCA, divisor 16 */
135 1.6 leo 3672000, /* RTxCA, from PCLK4 */
136 1.6 leo 0, /* TRxCA, external */
137 1.6 leo
138 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
139 1.6 leo 19200, /* BRgen, RTxCB, divisor 16 */
140 1.6 leo 307200, /* RTxCB, from TT-MFP TCO */
141 1.6 leo 2457600 /* TRxCB, from BCLK */
142 1.6 leo };
143 1.24 leo
144 1.6 leo static u_long zs_freqs_falcon[] = {
145 1.6 leo /*
146 1.6 leo * Atari Falcon, XXX no specs available, this might be wrong
147 1.6 leo */
148 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
149 1.6 leo 229500, /* BRgen, RTxCA, divisor 16 */
150 1.6 leo 3672000, /* RTxCA, ??? */
151 1.6 leo 0, /* TRxCA, external */
152 1.6 leo
153 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
154 1.6 leo 229500, /* BRgen, RTxCB, divisor 16 */
155 1.6 leo 3672000, /* RTxCB, ??? */
156 1.6 leo 2457600 /* TRxCB, ??? */
157 1.6 leo };
158 1.24 leo
159 1.24 leo static u_long zs_freqs_hades[] = {
160 1.24 leo /*
161 1.24 leo * XXX: Channel-A unchecked!!!!!
162 1.24 leo */
163 1.24 leo PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
164 1.24 leo 229500, /* BRgen, RTxCA, divisor 16 */
165 1.24 leo 3672000, /* RTxCA, from PCLK4 */
166 1.24 leo 0, /* TRxCA, external */
167 1.24 leo
168 1.24 leo PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
169 1.24 leo 235550, /* BRgen, RTxCB, divisor 16 */
170 1.24 leo 3768800, /* RTxCB, 3.7688MHz */
171 1.24 leo 3768800 /* TRxCB, 3.7688MHz */
172 1.24 leo };
173 1.24 leo
174 1.6 leo static u_long zs_freqs_generic[] = {
175 1.6 leo /*
176 1.6 leo * other machines, assume only PCLK is available
177 1.6 leo */
178 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
179 1.6 leo 0, /* BRgen, RTxCA, divisor 16 */
180 1.6 leo 0, /* RTxCA, unknown */
181 1.6 leo 0, /* TRxCA, unknown */
182 1.6 leo
183 1.6 leo PCLK/16, /* BRgen, PCLK, divisor 16 */
184 1.6 leo 0, /* BRgen, RTxCB, divisor 16 */
185 1.6 leo 0, /* RTxCB, unknown */
186 1.6 leo 0 /* TRxCB, unknown */
187 1.6 leo };
188 1.6 leo static u_long *zs_frequencies;
189 1.6 leo
190 1.1 leo /* Definition of the driver for autoconfig. */
191 1.25 leo static int zsmatch __P((struct device *, struct cfdata *, void *));
192 1.1 leo static void zsattach __P((struct device *, struct device *, void *));
193 1.17 thorpej
194 1.17 thorpej struct cfattach zs_ca = {
195 1.17 thorpej sizeof(struct zs_softc), zsmatch, zsattach
196 1.17 thorpej };
197 1.17 thorpej
198 1.28 thorpej extern struct cfdriver zs_cd;
199 1.1 leo
200 1.15 leo /* {b,c}devsw[] function prototypes */
201 1.15 leo dev_type_open(zsopen);
202 1.15 leo dev_type_close(zsclose);
203 1.15 leo dev_type_read(zsread);
204 1.15 leo dev_type_write(zswrite);
205 1.34 scw dev_type_poll(zspoll);
206 1.15 leo dev_type_ioctl(zsioctl);
207 1.16 leo dev_type_tty(zstty);
208 1.15 leo
209 1.1 leo /* Interrupt handlers. */
210 1.1 leo int zshard __P((long));
211 1.1 leo static int zssoft __P((long));
212 1.1 leo static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
213 1.1 leo static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
214 1.1 leo static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
215 1.1 leo
216 1.6 leo static struct zs_chanstate *zslist;
217 1.1 leo
218 1.1 leo /* Routines called from other code. */
219 1.1 leo static void zsstart __P((struct tty *));
220 1.1 leo void zsstop __P((struct tty *, int));
221 1.16 leo
222 1.16 leo /* Routines purely local to this driver. */
223 1.16 leo static void zsoverrun __P((int, long *, char *));
224 1.1 leo static int zsparam __P((struct tty *, struct termios *));
225 1.6 leo static int zsbaudrate __P((int, int, int *, int *, int *, int *));
226 1.1 leo static int zs_modem __P((struct zs_chanstate *, int, int));
227 1.1 leo static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
228 1.29 leo static void zs_shutdown __P((struct zs_chanstate *));
229 1.1 leo
230 1.6 leo static int zsshortcuts; /* number of "shortcut" software interrupts */
231 1.1 leo
232 1.4 leo static int
233 1.25 leo zsmatch(pdp, cfp, auxp)
234 1.1 leo struct device *pdp;
235 1.25 leo struct cfdata *cfp;
236 1.25 leo void *auxp;
237 1.1 leo {
238 1.31 leo static int zs_matched = 0;
239 1.31 leo
240 1.31 leo if(strcmp("zs", auxp) || zs_matched)
241 1.1 leo return(0);
242 1.31 leo zs_matched = 1;
243 1.1 leo return(1);
244 1.1 leo }
245 1.1 leo
246 1.1 leo /*
247 1.1 leo * Attach a found zs.
248 1.1 leo */
249 1.1 leo static void
250 1.1 leo zsattach(parent, dev, aux)
251 1.1 leo struct device *parent;
252 1.1 leo struct device *dev;
253 1.1 leo void *aux;
254 1.1 leo {
255 1.1 leo register struct zs_softc *zi;
256 1.1 leo register struct zs_chanstate *cs;
257 1.1 leo register volatile struct zsdevice *addr;
258 1.1 leo char tmp;
259 1.1 leo
260 1.1 leo addr = (struct zsdevice *)AD_SCC;
261 1.1 leo zi = (struct zs_softc *)dev;
262 1.1 leo zi->zi_zs = addr;
263 1.1 leo cs = zi->zi_cs;
264 1.1 leo
265 1.1 leo /*
266 1.1 leo * Get the command register into a known state.
267 1.1 leo */
268 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
269 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
270 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
271 1.2 mycroft tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
272 1.1 leo
273 1.1 leo /*
274 1.1 leo * Do a hardware reset.
275 1.1 leo */
276 1.2 mycroft ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
277 1.1 leo delay(50000); /*enough ? */
278 1.2 mycroft ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
279 1.1 leo
280 1.1 leo /*
281 1.1 leo * Initialize both channels
282 1.1 leo */
283 1.2 mycroft zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
284 1.2 mycroft zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
285 1.1 leo
286 1.5 leo if(machineid & ATARI_TT) {
287 1.5 leo /*
288 1.6 leo * ininitialise TT-MFP timer C: 307200Hz
289 1.6 leo * timer C and D share one control register:
290 1.6 leo * bits 0-2 control timer D
291 1.6 leo * bits 4-6 control timer C
292 1.6 leo */
293 1.6 leo int cr = MFP2->mf_tcdcr & 7;
294 1.6 leo MFP2->mf_tcdcr = cr; /* stop timer C */
295 1.6 leo MFP2->mf_tcdr = 1; /* counter 1 */
296 1.6 leo cr |= T_Q004 << 4; /* divisor 4 */
297 1.6 leo MFP2->mf_tcdcr = cr; /* start timer C */
298 1.6 leo /*
299 1.5 leo * enable scc related interrupts
300 1.5 leo */
301 1.27 leo SCU->vme_mask |= SCU_SCC;
302 1.6 leo
303 1.6 leo zs_frequencies = zs_freqs_tt;
304 1.6 leo } else if (machineid & ATARI_FALCON) {
305 1.6 leo zs_frequencies = zs_freqs_falcon;
306 1.24 leo } else if (machineid & ATARI_HADES) {
307 1.24 leo zs_frequencies = zs_freqs_hades;
308 1.6 leo } else {
309 1.6 leo zs_frequencies = zs_freqs_generic;
310 1.5 leo }
311 1.1 leo
312 1.1 leo /* link into interrupt list with order (A,B) (B=A+1) */
313 1.1 leo cs[0].cs_next = &cs[1];
314 1.1 leo cs[1].cs_next = zslist;
315 1.1 leo zslist = cs;
316 1.1 leo
317 1.1 leo cs->cs_unit = 0;
318 1.2 mycroft cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
319 1.1 leo cs++;
320 1.1 leo cs->cs_unit = 1;
321 1.2 mycroft cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
322 1.1 leo
323 1.23 christos printf(": serial2 on channel a and modem2 on channel b\n");
324 1.1 leo }
325 1.1 leo
326 1.1 leo /*
327 1.1 leo * Open a zs serial port.
328 1.1 leo */
329 1.1 leo int
330 1.34.4.1 fvdl zsopen(devvp, flags, mode, p)
331 1.34.4.1 fvdl struct vnode *devvp;
332 1.1 leo int flags;
333 1.1 leo int mode;
334 1.1 leo struct proc *p;
335 1.1 leo {
336 1.1 leo register struct tty *tp;
337 1.1 leo register struct zs_chanstate *cs;
338 1.34.4.1 fvdl struct zs_softc *zi;
339 1.34.4.1 fvdl dev_t dev = vdev_rdev(devvp);
340 1.34.4.1 fvdl int unit = ZS_UNIT(dev);
341 1.34.4.1 fvdl int zs = unit >> 1;
342 1.34.4.1 fvdl int error, s;
343 1.1 leo
344 1.17 thorpej if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
345 1.1 leo return (ENXIO);
346 1.1 leo cs = &zi->zi_cs[unit & 1];
347 1.10 jtc
348 1.10 jtc /*
349 1.10 jtc * When port A (ser02) is selected on the TT, make sure
350 1.10 jtc * the port is enabled.
351 1.10 jtc */
352 1.18 leo if((machineid & ATARI_TT) && !(unit & 1))
353 1.26 leo ym2149_ser2(1);
354 1.13 leo
355 1.13 leo if (cs->cs_rbuf == NULL) {
356 1.13 leo cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
357 1.13 leo M_WAITOK);
358 1.10 jtc }
359 1.10 jtc
360 1.1 leo tp = cs->cs_ttyp;
361 1.1 leo if(tp == NULL) {
362 1.21 leo cs->cs_ttyp = tp = ttymalloc();
363 1.21 leo tty_attach(tp);
364 1.21 leo tp->t_dev = dev;
365 1.21 leo tp->t_oproc = zsstart;
366 1.21 leo tp->t_param = zsparam;
367 1.1 leo }
368 1.1 leo
369 1.29 leo if ((tp->t_state & TS_ISOPEN) &&
370 1.29 leo (tp->t_state & TS_XCLUDE) &&
371 1.29 leo p->p_ucred->cr_uid != 0)
372 1.29 leo return (EBUSY);
373 1.29 leo
374 1.1 leo s = spltty();
375 1.29 leo
376 1.29 leo /*
377 1.29 leo * Do the following iff this is a first open.
378 1.29 leo */
379 1.29 leo if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
380 1.1 leo if(tp->t_ispeed == 0) {
381 1.1 leo tp->t_iflag = TTYDEF_IFLAG;
382 1.1 leo tp->t_oflag = TTYDEF_OFLAG;
383 1.1 leo tp->t_cflag = TTYDEF_CFLAG;
384 1.1 leo tp->t_lflag = TTYDEF_LFLAG;
385 1.1 leo tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
386 1.1 leo }
387 1.29 leo ttychars(tp);
388 1.29 leo ttsetwater(tp);
389 1.29 leo
390 1.1 leo (void)zsparam(tp, &tp->t_termios);
391 1.29 leo
392 1.29 leo /*
393 1.29 leo * Turn on DTR. We must always do this, even if carrier is not
394 1.29 leo * present, because otherwise we'd have to use TIOCSDTR
395 1.29 leo * immediately after setting CLOCAL, which applications do not
396 1.29 leo * expect. We always assert DTR while the device is open
397 1.29 leo * unless explicitly requested to deassert it.
398 1.29 leo */
399 1.1 leo zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
400 1.8 leo /* May never get a status intr. if DCD already on. -gwr */
401 1.16 leo if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
402 1.8 leo tp->t_state |= TS_CARR_ON;
403 1.1 leo if(cs->cs_softcar)
404 1.1 leo tp->t_state |= TS_CARR_ON;
405 1.1 leo }
406 1.29 leo
407 1.1 leo splx(s);
408 1.29 leo
409 1.29 leo error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
410 1.29 leo if (error)
411 1.29 leo goto bad;
412 1.29 leo
413 1.34.4.1 fvdl error = tp->t_linesw->l_open(devvp, tp);
414 1.1 leo if(error)
415 1.29 leo goto bad;
416 1.29 leo return (0);
417 1.29 leo
418 1.29 leo bad:
419 1.29 leo if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
420 1.29 leo /*
421 1.29 leo * We failed to open the device, and nobody else had it opened.
422 1.29 leo * Clean up the state as appropriate.
423 1.29 leo */
424 1.29 leo zs_shutdown(cs);
425 1.29 leo }
426 1.1 leo return(error);
427 1.1 leo }
428 1.1 leo
429 1.1 leo /*
430 1.1 leo * Close a zs serial port.
431 1.1 leo */
432 1.1 leo int
433 1.34.4.1 fvdl zsclose(devvp, flags, mode, p)
434 1.34.4.1 fvdl struct vnode *devvp;
435 1.1 leo int flags;
436 1.1 leo int mode;
437 1.1 leo struct proc *p;
438 1.1 leo {
439 1.1 leo register struct zs_chanstate *cs;
440 1.1 leo register struct tty *tp;
441 1.34.4.1 fvdl struct zs_softc *zi;
442 1.34.4.1 fvdl dev_t dev = vdev_rdev(devvp);
443 1.34.4.1 fvdl int unit = ZS_UNIT(dev);
444 1.1 leo
445 1.17 thorpej zi = zs_cd.cd_devs[unit >> 1];
446 1.1 leo cs = &zi->zi_cs[unit & 1];
447 1.1 leo tp = cs->cs_ttyp;
448 1.29 leo
449 1.32 eeh tp->t_linesw->l_close(tp, flags);
450 1.1 leo ttyclose(tp);
451 1.1 leo
452 1.29 leo if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
453 1.29 leo /*
454 1.29 leo * Although we got a last close, the device may still be in
455 1.29 leo * use; e.g. if this was the dialout node, and there are still
456 1.29 leo * processes waiting for carrier on the non-dialout node.
457 1.29 leo */
458 1.29 leo zs_shutdown(cs);
459 1.29 leo }
460 1.1 leo return (0);
461 1.1 leo }
462 1.1 leo
463 1.1 leo /*
464 1.1 leo * Read/write zs serial port.
465 1.1 leo */
466 1.1 leo int
467 1.34.4.1 fvdl zsread(devvp, uio, flags)
468 1.34.4.1 fvdl struct vnode *devvp;
469 1.1 leo struct uio *uio;
470 1.1 leo int flags;
471 1.1 leo {
472 1.4 leo register struct zs_chanstate *cs;
473 1.4 leo register struct zs_softc *zi;
474 1.4 leo register struct tty *tp;
475 1.34.4.1 fvdl int unit;
476 1.34.4.1 fvdl dev_t dev;
477 1.4 leo
478 1.34.4.1 fvdl dev = vdev_rdev(devvp);
479 1.4 leo unit = ZS_UNIT(dev);
480 1.17 thorpej zi = zs_cd.cd_devs[unit >> 1];
481 1.4 leo cs = &zi->zi_cs[unit & 1];
482 1.4 leo tp = cs->cs_ttyp;
483 1.1 leo
484 1.32 eeh return(tp->t_linesw->l_read(tp, uio, flags));
485 1.1 leo }
486 1.1 leo
487 1.4 leo int
488 1.34.4.1 fvdl zswrite(devvp, uio, flags)
489 1.34.4.1 fvdl struct vnode *devvp;
490 1.1 leo struct uio *uio;
491 1.1 leo int flags;
492 1.1 leo {
493 1.4 leo register struct zs_chanstate *cs;
494 1.4 leo register struct zs_softc *zi;
495 1.4 leo register struct tty *tp;
496 1.34.4.1 fvdl int unit;
497 1.34.4.1 fvdl dev_t dev;
498 1.4 leo
499 1.34.4.1 fvdl dev = vdev_rdev(devvp);
500 1.4 leo unit = ZS_UNIT(dev);
501 1.17 thorpej zi = zs_cd.cd_devs[unit >> 1];
502 1.4 leo cs = &zi->zi_cs[unit & 1];
503 1.4 leo tp = cs->cs_ttyp;
504 1.1 leo
505 1.32 eeh return(tp->t_linesw->l_write(tp, uio, flags));
506 1.34 scw }
507 1.34 scw
508 1.34 scw int
509 1.34.4.1 fvdl zspoll(devvp, events, p)
510 1.34.4.1 fvdl struct vnode *devvp;
511 1.34 scw int events;
512 1.34 scw struct proc *p;
513 1.34 scw {
514 1.34 scw register struct zs_chanstate *cs;
515 1.34 scw register struct zs_softc *zi;
516 1.34 scw register struct tty *tp;
517 1.34.4.1 fvdl int unit;
518 1.34.4.1 fvdl dev_t dev;
519 1.34 scw
520 1.34.4.1 fvdl dev = vdev_rdev(devvp);
521 1.34 scw unit = ZS_UNIT(dev);
522 1.34 scw zi = zs_cd.cd_devs[unit >> 1];
523 1.34 scw cs = &zi->zi_cs[unit & 1];
524 1.34 scw tp = cs->cs_ttyp;
525 1.34 scw
526 1.34 scw return ((*tp->t_linesw->l_poll)(tp, events, p));
527 1.4 leo }
528 1.4 leo
529 1.4 leo struct tty *
530 1.34.4.1 fvdl zstty(devvp)
531 1.34.4.1 fvdl struct vnode *devvp;
532 1.4 leo {
533 1.4 leo register struct zs_chanstate *cs;
534 1.4 leo register struct zs_softc *zi;
535 1.34.4.1 fvdl int unit;
536 1.34.4.1 fvdl dev_t dev;
537 1.4 leo
538 1.34.4.1 fvdl dev = vdev_rdev(devvp);
539 1.4 leo unit = ZS_UNIT(dev);
540 1.17 thorpej zi = zs_cd.cd_devs[unit >> 1];
541 1.4 leo cs = &zi->zi_cs[unit & 1];
542 1.4 leo return(cs->cs_ttyp);
543 1.1 leo }
544 1.1 leo
545 1.1 leo /*
546 1.1 leo * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
547 1.1 leo * channels are kept in (A,B) pairs.
548 1.1 leo *
549 1.1 leo * Do just a little, then get out; set a software interrupt if more
550 1.1 leo * work is needed.
551 1.1 leo *
552 1.1 leo * We deliberately ignore the vectoring Zilog gives us, and match up
553 1.1 leo * only the number of `reset interrupt under service' operations, not
554 1.1 leo * the order.
555 1.1 leo */
556 1.8 leo
557 1.1 leo int
558 1.1 leo zshard(sr)
559 1.1 leo long sr;
560 1.1 leo {
561 1.1 leo register struct zs_chanstate *a;
562 1.1 leo #define b (a + 1)
563 1.1 leo register volatile struct zschan *zc;
564 1.1 leo register int rr3, intflags = 0, v, i;
565 1.1 leo
566 1.8 leo do {
567 1.8 leo intflags &= ~4;
568 1.8 leo for(a = zslist; a != NULL; a = b->cs_next) {
569 1.1 leo rr3 = ZS_READ(a->cs_zc, 3);
570 1.1 leo if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
571 1.8 leo intflags |= 4|2;
572 1.1 leo zc = a->cs_zc;
573 1.1 leo i = a->cs_rbput;
574 1.1 leo if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
575 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
576 1.1 leo intflags |= 1;
577 1.1 leo }
578 1.1 leo if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
579 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
580 1.1 leo intflags |= 1;
581 1.1 leo }
582 1.1 leo if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
583 1.1 leo a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
584 1.1 leo intflags |= 1;
585 1.1 leo }
586 1.1 leo a->cs_rbput = i;
587 1.1 leo }
588 1.1 leo if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
589 1.8 leo intflags |= 4|2;
590 1.1 leo zc = b->cs_zc;
591 1.1 leo i = b->cs_rbput;
592 1.1 leo if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
593 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
594 1.1 leo intflags |= 1;
595 1.1 leo }
596 1.1 leo if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
597 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
598 1.1 leo intflags |= 1;
599 1.1 leo }
600 1.1 leo if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
601 1.1 leo b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
602 1.1 leo intflags |= 1;
603 1.1 leo }
604 1.1 leo b->cs_rbput = i;
605 1.1 leo }
606 1.8 leo }
607 1.8 leo } while(intflags & 4);
608 1.1 leo #undef b
609 1.1 leo
610 1.1 leo if(intflags & 1) {
611 1.1 leo if(BASEPRI(sr)) {
612 1.1 leo spl1();
613 1.1 leo zsshortcuts++;
614 1.1 leo return(zssoft(sr));
615 1.1 leo }
616 1.8 leo else if(!cb_scheduled) {
617 1.8 leo cb_scheduled++;
618 1.19 leo add_sicallback((si_farg)zssoft, 0, 0);
619 1.8 leo }
620 1.1 leo }
621 1.1 leo return(intflags & 2);
622 1.1 leo }
623 1.1 leo
624 1.1 leo static int
625 1.1 leo zsrint(cs, zc)
626 1.1 leo register struct zs_chanstate *cs;
627 1.1 leo register volatile struct zschan *zc;
628 1.1 leo {
629 1.8 leo register int c;
630 1.1 leo
631 1.8 leo /*
632 1.8 leo * First read the status, because read of the received char
633 1.8 leo * destroy the status of this char.
634 1.8 leo */
635 1.8 leo c = ZS_READ(zc, 1);
636 1.8 leo c |= (zc->zc_data << 8);
637 1.1 leo
638 1.1 leo /* clear receive error & interrupt condition */
639 1.1 leo zc->zc_csr = ZSWR0_RESET_ERRORS;
640 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
641 1.1 leo
642 1.1 leo return(ZRING_MAKE(ZRING_RINT, c));
643 1.1 leo }
644 1.1 leo
645 1.1 leo static int
646 1.1 leo zsxint(cs, zc)
647 1.1 leo register struct zs_chanstate *cs;
648 1.1 leo register volatile struct zschan *zc;
649 1.1 leo {
650 1.1 leo register int i = cs->cs_tbc;
651 1.1 leo
652 1.1 leo if(i == 0) {
653 1.1 leo zc->zc_csr = ZSWR0_RESET_TXINT;
654 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
655 1.1 leo return(ZRING_MAKE(ZRING_XINT, 0));
656 1.1 leo }
657 1.1 leo cs->cs_tbc = i - 1;
658 1.1 leo zc->zc_data = *cs->cs_tba++;
659 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
660 1.1 leo return (0);
661 1.1 leo }
662 1.1 leo
663 1.1 leo static int
664 1.1 leo zssint(cs, zc)
665 1.1 leo register struct zs_chanstate *cs;
666 1.1 leo register volatile struct zschan *zc;
667 1.1 leo {
668 1.1 leo register int rr0;
669 1.1 leo
670 1.1 leo rr0 = zc->zc_csr;
671 1.1 leo zc->zc_csr = ZSWR0_RESET_STATUS;
672 1.1 leo zc->zc_csr = ZSWR0_CLR_INTR;
673 1.1 leo /*
674 1.1 leo * The chip's hardware flow control is, as noted in zsreg.h,
675 1.1 leo * busted---if the DCD line goes low the chip shuts off the
676 1.1 leo * receiver (!). If we want hardware CTS flow control but do
677 1.1 leo * not have it, and carrier is now on, turn HFC on; if we have
678 1.1 leo * HFC now but carrier has gone low, turn it off.
679 1.1 leo */
680 1.1 leo if(rr0 & ZSRR0_DCD) {
681 1.1 leo if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
682 1.1 leo (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
683 1.1 leo cs->cs_creg[3] |= ZSWR3_HFC;
684 1.1 leo ZS_WRITE(zc, 3, cs->cs_creg[3]);
685 1.1 leo }
686 1.1 leo }
687 1.1 leo else {
688 1.1 leo if (cs->cs_creg[3] & ZSWR3_HFC) {
689 1.1 leo cs->cs_creg[3] &= ~ZSWR3_HFC;
690 1.1 leo ZS_WRITE(zc, 3, cs->cs_creg[3]);
691 1.1 leo }
692 1.1 leo }
693 1.1 leo return(ZRING_MAKE(ZRING_SINT, rr0));
694 1.1 leo }
695 1.1 leo
696 1.1 leo /*
697 1.1 leo * Print out a ring or fifo overrun error message.
698 1.1 leo */
699 1.1 leo static void
700 1.1 leo zsoverrun(unit, ptime, what)
701 1.1 leo int unit;
702 1.1 leo long *ptime;
703 1.1 leo char *what;
704 1.1 leo {
705 1.1 leo
706 1.1 leo if(*ptime != time.tv_sec) {
707 1.1 leo *ptime = time.tv_sec;
708 1.1 leo log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
709 1.1 leo (unit & 1) + 'a', what);
710 1.1 leo }
711 1.1 leo }
712 1.1 leo
713 1.1 leo /*
714 1.1 leo * ZS software interrupt. Scan all channels for deferred interrupts.
715 1.1 leo */
716 1.1 leo int
717 1.1 leo zssoft(sr)
718 1.1 leo long sr;
719 1.1 leo {
720 1.1 leo register struct zs_chanstate *cs;
721 1.1 leo register volatile struct zschan *zc;
722 1.1 leo register struct linesw *line;
723 1.1 leo register struct tty *tp;
724 1.1 leo register int get, n, c, cc, unit, s;
725 1.1 leo int retval = 0;
726 1.1 leo
727 1.8 leo cb_scheduled = 0;
728 1.1 leo s = spltty();
729 1.1 leo for(cs = zslist; cs != NULL; cs = cs->cs_next) {
730 1.1 leo get = cs->cs_rbget;
731 1.1 leo again:
732 1.1 leo n = cs->cs_rbput; /* atomic */
733 1.1 leo if(get == n) /* nothing more on this line */
734 1.1 leo continue;
735 1.1 leo retval = 1;
736 1.1 leo unit = cs->cs_unit; /* set up to handle interrupts */
737 1.1 leo zc = cs->cs_zc;
738 1.1 leo tp = cs->cs_ttyp;
739 1.33 leo line = tp->t_linesw;
740 1.1 leo /*
741 1.1 leo * Compute the number of interrupts in the receive ring.
742 1.1 leo * If the count is overlarge, we lost some events, and
743 1.1 leo * must advance to the first valid one. It may get
744 1.1 leo * overwritten if more data are arriving, but this is
745 1.1 leo * too expensive to check and gains nothing (we already
746 1.1 leo * lost out; all we can do at this point is trade one
747 1.1 leo * kind of loss for another).
748 1.1 leo */
749 1.1 leo n -= get;
750 1.1 leo if(n > ZLRB_RING_SIZE) {
751 1.1 leo zsoverrun(unit, &cs->cs_rotime, "ring");
752 1.1 leo get += n - ZLRB_RING_SIZE;
753 1.1 leo n = ZLRB_RING_SIZE;
754 1.1 leo }
755 1.1 leo while(--n >= 0) {
756 1.1 leo /* race to keep ahead of incoming interrupts */
757 1.1 leo c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
758 1.1 leo switch (ZRING_TYPE(c)) {
759 1.1 leo
760 1.1 leo case ZRING_RINT:
761 1.1 leo c = ZRING_VALUE(c);
762 1.1 leo if(c & ZSRR1_DO)
763 1.1 leo zsoverrun(unit, &cs->cs_fotime, "fifo");
764 1.1 leo cc = c >> 8;
765 1.1 leo if(c & ZSRR1_FE)
766 1.1 leo cc |= TTY_FE;
767 1.1 leo if(c & ZSRR1_PE)
768 1.1 leo cc |= TTY_PE;
769 1.1 leo line->l_rint(cc, tp);
770 1.1 leo break;
771 1.1 leo
772 1.1 leo case ZRING_XINT:
773 1.1 leo /*
774 1.1 leo * Transmit done: change registers and resume,
775 1.1 leo * or clear BUSY.
776 1.1 leo */
777 1.1 leo if(cs->cs_heldchange) {
778 1.1 leo int sps;
779 1.1 leo
780 1.1 leo sps = splzs();
781 1.1 leo c = zc->zc_csr;
782 1.1 leo if((c & ZSRR0_DCD) == 0)
783 1.1 leo cs->cs_preg[3] &= ~ZSWR3_HFC;
784 1.1 leo bcopy((caddr_t)cs->cs_preg,
785 1.1 leo (caddr_t)cs->cs_creg, 16);
786 1.1 leo zs_loadchannelregs(zc, cs->cs_creg);
787 1.1 leo splx(sps);
788 1.1 leo cs->cs_heldchange = 0;
789 1.1 leo if(cs->cs_heldtbc
790 1.1 leo && (tp->t_state & TS_TTSTOP) == 0) {
791 1.1 leo cs->cs_tbc = cs->cs_heldtbc - 1;
792 1.1 leo zc->zc_data = *cs->cs_tba++;
793 1.1 leo goto again;
794 1.1 leo }
795 1.1 leo }
796 1.1 leo tp->t_state &= ~TS_BUSY;
797 1.1 leo if(tp->t_state & TS_FLUSH)
798 1.1 leo tp->t_state &= ~TS_FLUSH;
799 1.1 leo else ndflush(&tp->t_outq,cs->cs_tba
800 1.1 leo - (caddr_t)tp->t_outq.c_cf);
801 1.1 leo line->l_start(tp);
802 1.1 leo break;
803 1.1 leo
804 1.1 leo case ZRING_SINT:
805 1.1 leo /*
806 1.1 leo * Status line change. HFC bit is run in
807 1.1 leo * hardware interrupt, to avoid locking
808 1.1 leo * at splzs here.
809 1.1 leo */
810 1.1 leo c = ZRING_VALUE(c);
811 1.1 leo if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
812 1.1 leo cc = (c & ZSRR0_DCD) != 0;
813 1.1 leo if(line->l_modem(tp, cc) == 0)
814 1.1 leo zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
815 1.1 leo cc ? DMBIS : DMBIC);
816 1.1 leo }
817 1.1 leo cs->cs_rr0 = c;
818 1.1 leo break;
819 1.1 leo
820 1.1 leo default:
821 1.1 leo log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
822 1.1 leo unit >> 1, (unit & 1) + 'a', c);
823 1.1 leo break;
824 1.1 leo }
825 1.1 leo }
826 1.1 leo cs->cs_rbget = get;
827 1.1 leo goto again;
828 1.1 leo }
829 1.1 leo splx(s);
830 1.1 leo return (retval);
831 1.1 leo }
832 1.1 leo
833 1.1 leo int
834 1.34.4.1 fvdl zsioctl(devvp, cmd, data, flag, p)
835 1.34.4.1 fvdl struct vnode *devvp;
836 1.1 leo u_long cmd;
837 1.1 leo caddr_t data;
838 1.1 leo int flag;
839 1.1 leo struct proc *p;
840 1.1 leo {
841 1.34.4.1 fvdl dev_t dev = vdev_rdev(devvp);
842 1.34.4.1 fvdl int unit = ZS_UNIT(dev);
843 1.34.4.1 fvdl struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
844 1.1 leo register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
845 1.1 leo register int error, s;
846 1.1 leo register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
847 1.1 leo
848 1.32 eeh error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
849 1.1 leo if(error >= 0)
850 1.1 leo return(error);
851 1.34.4.1 fvdl error = ttioctl(tp, devvp, cmd, data, flag, p);
852 1.1 leo if(error >= 0)
853 1.1 leo return (error);
854 1.1 leo
855 1.1 leo switch (cmd) {
856 1.1 leo case TIOCSBRK:
857 1.1 leo s = splzs();
858 1.1 leo cs->cs_preg[5] |= ZSWR5_BREAK;
859 1.1 leo cs->cs_creg[5] |= ZSWR5_BREAK;
860 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
861 1.1 leo splx(s);
862 1.1 leo break;
863 1.1 leo case TIOCCBRK:
864 1.1 leo s = splzs();
865 1.1 leo cs->cs_preg[5] &= ~ZSWR5_BREAK;
866 1.1 leo cs->cs_creg[5] &= ~ZSWR5_BREAK;
867 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
868 1.1 leo splx(s);
869 1.1 leo break;
870 1.1 leo case TIOCGFLAGS: {
871 1.1 leo int bits = 0;
872 1.1 leo
873 1.1 leo if(cs->cs_softcar)
874 1.1 leo bits |= TIOCFLAG_SOFTCAR;
875 1.1 leo if(cs->cs_creg[15] & ZSWR15_DCD_IE)
876 1.1 leo bits |= TIOCFLAG_CLOCAL;
877 1.1 leo if(cs->cs_creg[3] & ZSWR3_HFC)
878 1.1 leo bits |= TIOCFLAG_CRTSCTS;
879 1.1 leo *(int *)data = bits;
880 1.1 leo break;
881 1.1 leo }
882 1.1 leo case TIOCSFLAGS: {
883 1.15 leo int userbits = 0;
884 1.1 leo
885 1.3 mycroft error = suser(p->p_ucred, &p->p_acflag);
886 1.1 leo if(error != 0)
887 1.1 leo return (EPERM);
888 1.1 leo
889 1.1 leo userbits = *(int *)data;
890 1.1 leo
891 1.1 leo /*
892 1.1 leo * can have `local' or `softcar', and `rtscts' or `mdmbuf'
893 1.1 leo # defaulting to software flow control.
894 1.1 leo */
895 1.1 leo if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
896 1.1 leo return(EINVAL);
897 1.1 leo if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
898 1.11 leo return(ENODEV);
899 1.1 leo
900 1.1 leo s = splzs();
901 1.1 leo if((userbits & TIOCFLAG_SOFTCAR)) {
902 1.1 leo cs->cs_softcar = 1; /* turn on softcar */
903 1.1 leo cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
904 1.1 leo cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
905 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
906 1.1 leo }
907 1.1 leo else if(userbits & TIOCFLAG_CLOCAL) {
908 1.1 leo cs->cs_softcar = 0; /* turn off softcar */
909 1.1 leo cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
910 1.1 leo cs->cs_creg[15] |= ZSWR15_DCD_IE;
911 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
912 1.1 leo tp->t_termios.c_cflag |= CLOCAL;
913 1.1 leo }
914 1.1 leo if(userbits & TIOCFLAG_CRTSCTS) {
915 1.1 leo cs->cs_preg[15] |= ZSWR15_CTS_IE;
916 1.1 leo cs->cs_creg[15] |= ZSWR15_CTS_IE;
917 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
918 1.1 leo cs->cs_preg[3] |= ZSWR3_HFC;
919 1.1 leo cs->cs_creg[3] |= ZSWR3_HFC;
920 1.1 leo ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
921 1.1 leo tp->t_termios.c_cflag |= CRTSCTS;
922 1.1 leo }
923 1.1 leo else {
924 1.1 leo /* no mdmbuf, so we must want software flow control */
925 1.1 leo cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
926 1.1 leo cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
927 1.1 leo ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
928 1.1 leo cs->cs_preg[3] &= ~ZSWR3_HFC;
929 1.1 leo cs->cs_creg[3] &= ~ZSWR3_HFC;
930 1.1 leo ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
931 1.1 leo tp->t_termios.c_cflag &= ~CRTSCTS;
932 1.1 leo }
933 1.1 leo splx(s);
934 1.1 leo break;
935 1.1 leo }
936 1.1 leo case TIOCSDTR:
937 1.1 leo zs_modem(cs, ZSWR5_DTR, DMBIS);
938 1.1 leo break;
939 1.1 leo case TIOCCDTR:
940 1.1 leo zs_modem(cs, ZSWR5_DTR, DMBIC);
941 1.1 leo break;
942 1.1 leo case TIOCMGET:
943 1.1 leo zs_modem(cs, 0, DMGET);
944 1.1 leo break;
945 1.1 leo case TIOCMSET:
946 1.1 leo case TIOCMBIS:
947 1.1 leo case TIOCMBIC:
948 1.1 leo default:
949 1.1 leo return (ENOTTY);
950 1.1 leo }
951 1.1 leo return (0);
952 1.1 leo }
953 1.1 leo
954 1.1 leo /*
955 1.1 leo * Start or restart transmission.
956 1.1 leo */
957 1.1 leo static void
958 1.1 leo zsstart(tp)
959 1.1 leo register struct tty *tp;
960 1.1 leo {
961 1.1 leo register struct zs_chanstate *cs;
962 1.1 leo register int s, nch;
963 1.34.4.1 fvdl int unit = ZS_UNIT(tp->t_dev);
964 1.34.4.1 fvdl struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
965 1.1 leo
966 1.1 leo cs = &zi->zi_cs[unit & 1];
967 1.1 leo s = spltty();
968 1.1 leo
969 1.1 leo /*
970 1.1 leo * If currently active or delaying, no need to do anything.
971 1.1 leo */
972 1.1 leo if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
973 1.1 leo goto out;
974 1.1 leo
975 1.1 leo /*
976 1.1 leo * If there are sleepers, and output has drained below low
977 1.1 leo * water mark, awaken.
978 1.1 leo */
979 1.1 leo if(tp->t_outq.c_cc <= tp->t_lowat) {
980 1.1 leo if(tp->t_state & TS_ASLEEP) {
981 1.1 leo tp->t_state &= ~TS_ASLEEP;
982 1.1 leo wakeup((caddr_t)&tp->t_outq);
983 1.1 leo }
984 1.1 leo selwakeup(&tp->t_wsel);
985 1.1 leo }
986 1.1 leo
987 1.1 leo nch = ndqb(&tp->t_outq, 0); /* XXX */
988 1.1 leo if(nch) {
989 1.1 leo register char *p = tp->t_outq.c_cf;
990 1.1 leo
991 1.1 leo /* mark busy, enable tx done interrupts, & send first byte */
992 1.1 leo tp->t_state |= TS_BUSY;
993 1.1 leo (void) splzs();
994 1.1 leo cs->cs_preg[1] |= ZSWR1_TIE;
995 1.1 leo cs->cs_creg[1] |= ZSWR1_TIE;
996 1.1 leo ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
997 1.1 leo cs->cs_zc->zc_data = *p;
998 1.1 leo cs->cs_tba = p + 1;
999 1.1 leo cs->cs_tbc = nch - 1;
1000 1.1 leo } else {
1001 1.1 leo /*
1002 1.1 leo * Nothing to send, turn off transmit done interrupts.
1003 1.1 leo * This is useful if something is doing polled output.
1004 1.1 leo */
1005 1.1 leo (void) splzs();
1006 1.1 leo cs->cs_preg[1] &= ~ZSWR1_TIE;
1007 1.1 leo cs->cs_creg[1] &= ~ZSWR1_TIE;
1008 1.1 leo ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1009 1.1 leo }
1010 1.1 leo out:
1011 1.1 leo splx(s);
1012 1.1 leo }
1013 1.1 leo
1014 1.1 leo /*
1015 1.1 leo * Stop output, e.g., for ^S or output flush.
1016 1.1 leo */
1017 1.1 leo void
1018 1.1 leo zsstop(tp, flag)
1019 1.1 leo register struct tty *tp;
1020 1.1 leo int flag;
1021 1.1 leo {
1022 1.1 leo register struct zs_chanstate *cs;
1023 1.1 leo register int s, unit = ZS_UNIT(tp->t_dev);
1024 1.17 thorpej struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1025 1.1 leo
1026 1.1 leo cs = &zi->zi_cs[unit & 1];
1027 1.1 leo s = splzs();
1028 1.1 leo if(tp->t_state & TS_BUSY) {
1029 1.1 leo /*
1030 1.1 leo * Device is transmitting; must stop it.
1031 1.1 leo */
1032 1.1 leo cs->cs_tbc = 0;
1033 1.1 leo if ((tp->t_state & TS_TTSTOP) == 0)
1034 1.1 leo tp->t_state |= TS_FLUSH;
1035 1.1 leo }
1036 1.29 leo splx(s);
1037 1.29 leo }
1038 1.29 leo
1039 1.29 leo static void
1040 1.29 leo zs_shutdown(cs)
1041 1.29 leo struct zs_chanstate *cs;
1042 1.29 leo {
1043 1.29 leo struct tty *tp = cs->cs_ttyp;
1044 1.29 leo int s;
1045 1.29 leo
1046 1.29 leo s = splzs();
1047 1.29 leo
1048 1.29 leo /*
1049 1.29 leo * Hang up if necessary. Wait a bit, so the other side has time to
1050 1.29 leo * notice even if we immediately open the port again.
1051 1.29 leo */
1052 1.29 leo if(tp->t_cflag & HUPCL) {
1053 1.29 leo zs_modem(cs, 0, DMSET);
1054 1.29 leo (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1055 1.29 leo }
1056 1.29 leo
1057 1.29 leo /* Clear any break condition set with TIOCSBRK. */
1058 1.29 leo if(cs->cs_creg[5] & ZSWR5_BREAK) {
1059 1.29 leo cs->cs_preg[5] &= ~ZSWR5_BREAK;
1060 1.29 leo cs->cs_creg[5] &= ~ZSWR5_BREAK;
1061 1.29 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1062 1.29 leo }
1063 1.29 leo
1064 1.29 leo /*
1065 1.29 leo * Drop all lines and cancel interrupts
1066 1.29 leo */
1067 1.29 leo zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1068 1.1 leo splx(s);
1069 1.1 leo }
1070 1.1 leo
1071 1.1 leo /*
1072 1.1 leo * Set ZS tty parameters from termios.
1073 1.1 leo *
1074 1.1 leo * This routine makes use of the fact that only registers
1075 1.1 leo * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1076 1.1 leo */
1077 1.1 leo static int
1078 1.1 leo zsparam(tp, t)
1079 1.1 leo register struct tty *tp;
1080 1.1 leo register struct termios *t;
1081 1.1 leo {
1082 1.1 leo int unit = ZS_UNIT(tp->t_dev);
1083 1.17 thorpej struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1084 1.1 leo register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1085 1.6 leo int cdiv, clkm, brgm, tcon;
1086 1.1 leo register int tmp, tmp5, cflag, s;
1087 1.1 leo
1088 1.6 leo tmp = t->c_ospeed;
1089 1.6 leo tmp5 = t->c_ispeed;
1090 1.6 leo if(tmp < 0 || (tmp5 && tmp5 != tmp))
1091 1.1 leo return(EINVAL);
1092 1.1 leo if(tmp == 0) {
1093 1.1 leo /* stty 0 => drop DTR and RTS */
1094 1.1 leo zs_modem(cs, 0, DMSET);
1095 1.1 leo return(0);
1096 1.1 leo }
1097 1.6 leo tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1098 1.6 leo if (tmp < 0)
1099 1.1 leo return(EINVAL);
1100 1.6 leo tp->t_ispeed = tp->t_ospeed = tmp;
1101 1.1 leo
1102 1.6 leo cflag = tp->t_cflag = t->c_cflag;
1103 1.6 leo if (cflag & CSTOPB)
1104 1.6 leo cdiv |= ZSWR4_TWOSB;
1105 1.6 leo else
1106 1.6 leo cdiv |= ZSWR4_ONESB;
1107 1.6 leo if (!(cflag & PARODD))
1108 1.6 leo cdiv |= ZSWR4_EVENP;
1109 1.6 leo if (cflag & PARENB)
1110 1.6 leo cdiv |= ZSWR4_PARENB;
1111 1.1 leo
1112 1.1 leo switch(cflag & CSIZE) {
1113 1.1 leo case CS5:
1114 1.1 leo tmp = ZSWR3_RX_5;
1115 1.1 leo tmp5 = ZSWR5_TX_5;
1116 1.1 leo break;
1117 1.1 leo case CS6:
1118 1.1 leo tmp = ZSWR3_RX_6;
1119 1.1 leo tmp5 = ZSWR5_TX_6;
1120 1.1 leo break;
1121 1.1 leo case CS7:
1122 1.1 leo tmp = ZSWR3_RX_7;
1123 1.1 leo tmp5 = ZSWR5_TX_7;
1124 1.1 leo break;
1125 1.1 leo case CS8:
1126 1.1 leo default:
1127 1.1 leo tmp = ZSWR3_RX_8;
1128 1.1 leo tmp5 = ZSWR5_TX_8;
1129 1.1 leo break;
1130 1.1 leo }
1131 1.6 leo tmp |= ZSWR3_RX_ENABLE;
1132 1.6 leo tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1133 1.6 leo
1134 1.6 leo /*
1135 1.6 leo * Block interrupts so that state will not
1136 1.6 leo * be altered until we are done setting it up.
1137 1.6 leo */
1138 1.6 leo s = splzs();
1139 1.6 leo cs->cs_preg[4] = cdiv;
1140 1.6 leo cs->cs_preg[11] = clkm;
1141 1.6 leo cs->cs_preg[12] = tcon;
1142 1.6 leo cs->cs_preg[13] = tcon >> 8;
1143 1.6 leo cs->cs_preg[14] = brgm;
1144 1.6 leo cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1145 1.6 leo cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1146 1.6 leo cs->cs_preg[10] = ZSWR10_NRZ;
1147 1.6 leo cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1148 1.1 leo
1149 1.1 leo /*
1150 1.1 leo * Output hardware flow control on the chip is horrendous: if
1151 1.1 leo * carrier detect drops, the receiver is disabled. Hence we
1152 1.1 leo * can only do this when the carrier is on.
1153 1.1 leo */
1154 1.1 leo if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1155 1.6 leo tmp |= ZSWR3_HFC;
1156 1.1 leo cs->cs_preg[3] = tmp;
1157 1.6 leo cs->cs_preg[5] = tmp5;
1158 1.1 leo
1159 1.1 leo /*
1160 1.1 leo * If nothing is being transmitted, set up new current values,
1161 1.1 leo * else mark them as pending.
1162 1.1 leo */
1163 1.1 leo if(cs->cs_heldchange == 0) {
1164 1.1 leo if (cs->cs_ttyp->t_state & TS_BUSY) {
1165 1.1 leo cs->cs_heldtbc = cs->cs_tbc;
1166 1.1 leo cs->cs_tbc = 0;
1167 1.1 leo cs->cs_heldchange = 1;
1168 1.6 leo } else {
1169 1.1 leo bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1170 1.1 leo zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1171 1.1 leo }
1172 1.1 leo }
1173 1.1 leo splx(s);
1174 1.1 leo return (0);
1175 1.6 leo }
1176 1.6 leo
1177 1.6 leo /*
1178 1.6 leo * search for the best matching baudrate
1179 1.6 leo */
1180 1.6 leo static int
1181 1.6 leo zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1182 1.6 leo int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1183 1.6 leo {
1184 1.6 leo int bestdiff, bestbps, source;
1185 1.6 leo
1186 1.20 leo bestdiff = bestbps = 0;
1187 1.6 leo unit = (unit & 1) << 2;
1188 1.6 leo for (source = 0; source < 4; ++source) {
1189 1.6 leo long freq = zs_frequencies[unit + source];
1190 1.6 leo int diff, bps, div, clkm, brgm, tcon;
1191 1.20 leo
1192 1.20 leo bps = div = clkm = brgm = tcon = 0;
1193 1.6 leo switch (source) {
1194 1.6 leo case 0: /* BRgen, PCLK */
1195 1.6 leo brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1196 1.6 leo break;
1197 1.6 leo case 1: /* BRgen, RTxC */
1198 1.6 leo brgm = ZSWR14_BAUD_ENA;
1199 1.6 leo break;
1200 1.6 leo case 2: /* RTxC */
1201 1.6 leo clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1202 1.6 leo break;
1203 1.6 leo case 3: /* TRxC */
1204 1.6 leo clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1205 1.6 leo break;
1206 1.6 leo }
1207 1.6 leo switch (source) {
1208 1.6 leo case 0:
1209 1.6 leo case 1:
1210 1.6 leo div = ZSWR4_CLK_X16;
1211 1.6 leo clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1212 1.6 leo tcon = BPS_TO_TCONST(freq, wanted);
1213 1.6 leo if (tcon < 0)
1214 1.6 leo tcon = 0;
1215 1.6 leo bps = TCONST_TO_BPS(freq, tcon);
1216 1.6 leo break;
1217 1.6 leo case 2:
1218 1.6 leo case 3:
1219 1.6 leo { int b1 = freq / 16, d1 = abs(b1 - wanted);
1220 1.6 leo int b2 = freq / 32, d2 = abs(b2 - wanted);
1221 1.6 leo int b3 = freq / 64, d3 = abs(b3 - wanted);
1222 1.6 leo
1223 1.6 leo if (d1 < d2 && d1 < d3) {
1224 1.6 leo div = ZSWR4_CLK_X16;
1225 1.6 leo bps = b1;
1226 1.6 leo } else if (d2 < d3 && d2 < d1) {
1227 1.6 leo div = ZSWR4_CLK_X32;
1228 1.6 leo bps = b2;
1229 1.6 leo } else {
1230 1.6 leo div = ZSWR4_CLK_X64;
1231 1.6 leo bps = b3;
1232 1.6 leo }
1233 1.6 leo brgm = tcon = 0;
1234 1.6 leo break;
1235 1.6 leo }
1236 1.6 leo }
1237 1.6 leo diff = abs(bps - wanted);
1238 1.6 leo if (!source || diff < bestdiff) {
1239 1.6 leo *divisor = div;
1240 1.6 leo *clockmode = clkm;
1241 1.6 leo *brgenmode = brgm;
1242 1.6 leo *timeconst = tcon;
1243 1.6 leo bestbps = bps;
1244 1.6 leo bestdiff = diff;
1245 1.6 leo if (diff == 0)
1246 1.6 leo break;
1247 1.6 leo }
1248 1.6 leo }
1249 1.6 leo /* Allow deviations upto 5% */
1250 1.6 leo if (20 * bestdiff > wanted)
1251 1.6 leo return -1;
1252 1.6 leo return bestbps;
1253 1.1 leo }
1254 1.1 leo
1255 1.1 leo /*
1256 1.1 leo * Raise or lower modem control (DTR/RTS) signals. If a character is
1257 1.1 leo * in transmission, the change is deferred.
1258 1.1 leo */
1259 1.1 leo static int
1260 1.1 leo zs_modem(cs, bits, how)
1261 1.1 leo struct zs_chanstate *cs;
1262 1.1 leo int bits, how;
1263 1.1 leo {
1264 1.1 leo int s, mbits;
1265 1.1 leo
1266 1.1 leo bits &= ZSWR5_DTR | ZSWR5_RTS;
1267 1.1 leo
1268 1.1 leo s = splzs();
1269 1.1 leo mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1270 1.1 leo
1271 1.1 leo switch(how) {
1272 1.1 leo case DMSET:
1273 1.1 leo mbits = bits;
1274 1.1 leo break;
1275 1.1 leo case DMBIS:
1276 1.1 leo mbits |= bits;
1277 1.1 leo break;
1278 1.1 leo case DMBIC:
1279 1.1 leo mbits &= ~bits;
1280 1.1 leo break;
1281 1.1 leo case DMGET:
1282 1.1 leo splx(s);
1283 1.1 leo return(mbits);
1284 1.1 leo }
1285 1.1 leo
1286 1.1 leo cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1287 1.1 leo if(cs->cs_heldchange == 0) {
1288 1.1 leo if(cs->cs_ttyp->t_state & TS_BUSY) {
1289 1.1 leo cs->cs_heldtbc = cs->cs_tbc;
1290 1.1 leo cs->cs_tbc = 0;
1291 1.1 leo cs->cs_heldchange = 1;
1292 1.1 leo }
1293 1.1 leo else {
1294 1.1 leo ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1295 1.1 leo }
1296 1.1 leo }
1297 1.1 leo splx(s);
1298 1.1 leo return(0);
1299 1.1 leo }
1300 1.1 leo
1301 1.1 leo /*
1302 1.1 leo * Write the given register set to the given zs channel in the proper order.
1303 1.1 leo * The channel must not be transmitting at the time. The receiver will
1304 1.1 leo * be disabled for the time it takes to write all the registers.
1305 1.1 leo */
1306 1.1 leo static void
1307 1.1 leo zs_loadchannelregs(zc, reg)
1308 1.1 leo volatile struct zschan *zc;
1309 1.1 leo u_char *reg;
1310 1.1 leo {
1311 1.1 leo int i;
1312 1.1 leo
1313 1.1 leo zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1314 1.1 leo i = zc->zc_data; /* drain fifo */
1315 1.1 leo i = zc->zc_data;
1316 1.1 leo i = zc->zc_data;
1317 1.1 leo ZS_WRITE(zc, 4, reg[4]);
1318 1.1 leo ZS_WRITE(zc, 10, reg[10]);
1319 1.1 leo ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1320 1.1 leo ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1321 1.1 leo ZS_WRITE(zc, 1, reg[1]);
1322 1.1 leo ZS_WRITE(zc, 9, reg[9]);
1323 1.1 leo ZS_WRITE(zc, 11, reg[11]);
1324 1.1 leo ZS_WRITE(zc, 12, reg[12]);
1325 1.1 leo ZS_WRITE(zc, 13, reg[13]);
1326 1.1 leo ZS_WRITE(zc, 14, reg[14]);
1327 1.1 leo ZS_WRITE(zc, 15, reg[15]);
1328 1.1 leo ZS_WRITE(zc, 3, reg[3]);
1329 1.1 leo ZS_WRITE(zc, 5, reg[5]);
1330 1.1 leo }
1331 1.1 leo #endif /* NZS > 1 */
1332